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Slow relaxation processes spanning widely separated timescales pose fundamental challenges for
probing steady-state properties and engineering functional quantum systems, such as quantum heat engines
and quantum computing devices. We introduce a protocol that enables significant acceleration of relaxation
in general Markovian open quantum systems by temporarily coupling the system to a reset channel,
inspired by the Mpemba effect. Crucially, this acceleration persists even when the slowest decaying
Lindbladian modes form complex-conjugate pairs. Unlike previous approaches, which typically target a
single mode, our protocol may suppress multiple relaxation modes simultaneously. This framework
provides a versatile and experimentally feasible tool for controlling relaxation timescales, with broad
implications for quantum thermodynamics, computation, and state preparation.
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Introduction—Relaxation processes in open quantum
systems, wherein a driven or interacting system settles
into an equilibrium or a nonequilibrium steady state, are of
fundamental importance in nonequilibrium physics and for
practical quantum technologies. The timescales of such
relaxations often determine the feasibility and performance
of quantum devices. For example, in quantum thermody-
namics, the power output of cyclic heat engines or transport
junctions can be limited by how rapidly the working
substance relaxes to its steady state in each cycle [1,2].
In addition, fast relaxation facilitates ground state laser
cooling [3–5] and the reliable preparation of quantum states
[6]. Faster relaxation can also lead to more efficient
quantum algorithms [7], particularly in dissipative compu-
tational architectures where the output is encoded in the
system’s stationary state [7,8]. Slow relaxation inevitably
allows other unwanted dissipative dynamics to consume
substantial time resources, compromising the efficiency of
the final stabilized state [9,10]. In contrast, slow relaxation
is sometimes desirable—such as when the computational
task targets metastable states [11–14], whose prolonged
lifetimes are essential for robust information storage or
approximate optimization.
Researchers have developed various techniques to accel-

erate relaxation toward both thermal equilibrium [15] and
nonequilibrium steady states [10,16,17]. Most of these
methods, however, are restricted to specific systems and

rely on intricate external controls. For instance, some
approaches require auxiliary Hamiltonians or full knowl-
edge of the system Hamiltonian, limiting their applicability
to simple setups. A more general and elegant strategy is to
accelerate relaxation by tailoring the initial state distribu-
tion, without the need for continuous external driving. A
particularly intriguing example of this approach is inspired
by the so-called Mpemba effect [18], a counterintuitive
relaxation anomaly in which a hotter system can cool faster
than a colder one. This phenomenon implies the existence
of an optimal initial state that minimizes the relaxation
timescale. Theoretical frameworks for identifying such
optimal states have been proposed in both classical
[19–31] and quantum systems [9,32–41]; see also
Refs. [42,43] for recent reviews. However, existing quan-
tum implementations typically impose strict constraints,
such as assuming pure initial states or requiring the second-
largest eigenvalue of the Lindbladian to be real. Moreover,
careful initial-state design is delicate since it relies on fine-
tuning of control parameters and detailed knowledge of the
initial state and system dynamics, which are typically not
known a priori in complex quantum systems. These issues
limit their applicability in general settings. Thus, a general
and practical method for inducing faster relaxation in open
quantum systems, which is robust with respect to different
initial states, remains elusive.
In this Letter, we contribute to addressing these chal-

lenges by proposing an experimentally feasible protocol
that can both accelerate and decelerate general quantum
relaxation processes from any initial state, by resetting the
system to a specified (possibly mixed) target state [44–46].
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Here, this type of quantum reset operation can be realized
through engineered dissipation, i.e., quantum reservoir
engineering [8,47–49], and should be distinguished from
the conventional reset typically used for qubit initialization
in quantum computation [50–55]. The motivation is more
closely related to Refs. [56,57]. In our protocol, we
introduce a finite-duration reset phase into the open-system
dynamics by temporarily coupling the system to a reset
channel. We show that this protocol can significantly
accelerate relaxation, even when starting from mixed initial
states and in the presence of complex decay modes.
Remarkably, our method allows for the simultaneous
suppression of multiple relaxation modes—a capability
absent in previous approaches. Moreover, selective appli-
cation of the protocol enables the system of interest to
remain in metastable states for extended periods, offering a
systematic route to suppress relaxation.
Setup—We consider a general Markovian open quan-

tum system defined on a Hilbert space H of dimension d,
whose dynamics are governed by the Lindblad-Gorini-
Kossakowski-Sudarshan master equation dρ=dt ¼ LðρÞ,
where the Lindbladian superoperator L is given by

LðρÞ≡ −i½H; ρ� þ
X
i

�
JiρJ

†
i −

1

2
fJ†i Ji; ρg

�
: ð1Þ

Here, H is the Hamiltonian of the system and the jump
operators Ji describe the dissipative coupling to the envi-
ronment. The evolution can be analyzed via the spectral
decomposition of L, whose eigenvalues are denoted λk and
ordered such that 0 ≥ ReðλkÞ ≥ Reðλkþ1Þ. Assuming that
L is diagonalizable, let Rk and Lk denote the corresponding
right and left eigenmatrices, respectively, satisfyingLðRkÞ ¼
λkRk and L†ðLkÞ ¼ λ⋆k Lk; k ¼ 1;…; d2, with biorthogonal
normalization [58]

TrðL†
kRhÞ ¼ δkh: ð2Þ

The dual superoperator L† governs the Heisenberg-picture
dynamics of observables:

L†ðOÞ ¼ i½H;O� þ
X
i

�
J†i OJi −

1

2
fJ†i Ji; Og

�
:

Given an initial state ρ0, the system state at time t evolves as

ρðtÞ ¼ etL½ρ0� ¼ ρss þ
Xd2
k¼2

ckeλktRk; ð3Þ

where ck ≡ TrðL†
kρ0Þ. The unique stationary state of the

open quantum system ρss is given by ρss¼ limt→∞ρðtÞ¼R1,
assuming λ1¼0 is nondegenerate. In the long-time limit, the
relaxation is dominated by the slowest decaying mode,
and the deviation from stationarity obeys jjρðtÞ − ρssjj∼
exp ð−jReλ2jtÞ.

Reset protocol to accelerate or decelerate relaxation
processes—Recognizing that the slowest decaying mode
governs the relaxation timescale, we propose a quantum
reset protocol that can suppress or promote its excitation
from a general initial state via a finite-duration reset phase,
thereby enabling exponential acceleration of relaxation.
Specifically, we let the system evolve under modified
dynamics for a finite time ts, during which it is stochas-
tically reset to a chosen state ρδ at random times, with
events following a Poisson process of rate r. After time ts,
the reset channel is turned off, and the system resumes
evolving under the original Lindbladian L, that is, the
system density matrix ρðtÞ evolves under the reset channel
for t∈ ½0; ts� and decouples from the channel for t > ts. The
modified dynamics during the reset phase t∈ ½0; ts� is
governed by a new Lindbladian Lr [44], defined as

LrðρÞ ≔ LðρÞ þDrðρÞ ¼ LðρÞ þ rTrðρÞρδ − rρ; ð4Þ

whereDrðρÞ¼ r½TrðρÞρδ−ρ�. Expressing ρδ¼
P

αpαjψαi×
hψαj, Lr is equivalent to introducing jump operators
Jri;α ¼

ffiffiffiffiffiffiffiffi
rpα

p jψαihϕij into L, where jϕii form an auxiliary
complete orthonormal basis (see End Matter). The term
rTrðρÞρδ contributes only to the stationary mode and
vanishes on all traceless eigenmodes Ri with i ≥ 2, which
satisfy TrðRiÞ ¼ 0 due to TrðL†

1RiÞ ¼ 0 and L†
1 ¼ I

[cf. Eq. (2)]. Consequently, the modified Lindbladian
acts as

LrðRiÞ ¼ ðλi − rÞRi; i∈ f2;…; d2g: ð5Þ

This induces a uniform spectral shift by −r for all
nonstationary eigenmodes, leaving the eigenmatrices
(Ri, i ≥ 2) themselves unchanged. In contrast, the sta-
tionary mode R1 retains eigenvalue zero but is modified
under reset. Let ρrðtÞ ≔ etLrρ0 be the state at time t under
reset dynamics. Its spectral decomposition reads as

ρrðtÞ ¼ etLrρss þ
Xd2
k¼2

ckeðλk−rÞtRk

≔ ρss þ
X
k

crkðtÞeλktRk; ð0 ≤ t ≤ tsÞ; ð6Þ

where crkðtÞ are time-dependent mode amplitudes.
Explicitly, these modified coefficients are given by
(End Matter)

crkðtÞ≡
�
ck −

r · dk
r − λk

�
e−rt þ r · dk

r − λk
e−λkt; ð7Þ

where dk ≡ TrðL†
kρδÞ is the overlap coefficient of ρδ.

Notably, Eq. (6) can be generalized to the dynamics of
observables (see Supplemental Material [59]), which may
be more convenient to measure.
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After the reset phase (t > ts), the system returns to the
original Lindbladian evolution. The dynamics for t > ts
then reads as

ρrðtÞ ¼ ρss þ
X
k

crkðtsÞeλktRk: ðt > tsÞ: ð8Þ

Importantly, the modified spectral decomposition, Eq. (8),
takes the same form as the original one, Eq. (3), which
allows us to directly compare the relaxation dynamics with
and without reset. From this comparison, it is clear that for
t > ts our protocol is equivalent to the original Lindbladian
evolution, but with different overlap coefficients,

ρðtÞ ¼ ρss þ
Xd2
k¼2

c0ke
λktRk: ðt > tsÞ: ð9Þ

Here, c0k ≡ crkðtsÞ are determined by the reset protocol.
Thus, our protocol controls relaxation dynamics by

tuning the overlap coefficients ck, without requiring any
special preparation of the initial state. By choosing an
appropriate ρδ and varying r and ts, one can tune the
amplitudes of multiple relaxation modes. In particular,
ensuring jcr2ðtsÞj < jc2jð> jc2jÞ suppresses (enhances)
the dominant mode, which is sufficient for acceleration
(deceleration), ultimately bringing the system closer to
(farther from) stationarity [19,32]. Specifically, the dom-
inant mode is fully eliminated and exponential speed-up
occurs when jcr2ðtsÞj ¼ 0; this, however, requires fine-
tuning and prior knowledge and is therefore challenging
to realize in large systems. We thus focus on the weaker but
practically relevant scenario jcr2ðtsÞj < jc2j.
Sufficient conditions for suppression or promotion of

relaxation modes—We derive a sufficient condition [59],

Reðc�2d2Þ < jc2j2; ð10Þ

under which there always exists a threshold tc > 0 such that,
for any r > 0 and any ts ∈ ð0; tc�, one has jcr2ðtsÞj < jc2j,
that is, the relaxation is accelerated for all ts in this range.
If the condition is violated, there exists another threshold
t0c > 0 with jcr2ðtsÞj ≥ jc2j for ts ∈ ð0; t0c�, leading to decel-
eration. However, Eq. (10) is not necessary for acceleration
since one may still have jcr2ðtsÞj < jc2j for ts > t0c, when it is
not satisfied.
Several remarks are in order. First, the condition applies

both when λ2 is real and when it forms a complex-conjugate
pair. In the latter case, the long-time dynamics takes the
form

ρðtÞ ¼ ρss þ eλ2tc2R2 þ eλ
�
2
tc�2R

†
2 þOðeλ3tÞ; ð11Þ

where c2 ¼ TrðL†
2ρ0Þ and c�2 ¼ TrðL2ρ0Þ is its complex

conjugate. Most existing strategies cannot simultaneously
suppress both components of such complex relaxation

modes. Our protocol, however, naturally addresses this
limitation. The modified coefficients under reset are

cr2ðtÞ ¼
�
c2 −

rd2
r − λ2

�
e−rt þ rd2

r − λ2
e−λ2t; ð12aÞ

cr;�2 ðtÞ ¼
�
c�2 −

rd�2
r − λ�2

�
e−rt þ rd�2

r − λ�2
e−λ

�
2
t: ð12bÞ

These coefficients remain complex conjugates for all t,
i.e., ½cr2ðtÞ�� ¼ cr;�2 ðtÞ. Equation (10) then ensures that
jcr;�2 ðtsÞj ¼ jcr2ðtsÞj ≤ jc2j ¼ jc�2j for a moderate ts.
Second, Eq. (10) is a weak condition satisfied by many

choices of ρδ. In particular, it does not require that ρδ be
closer to the steady state than ρ0, nor that the overlap
coefficient jd2j be smaller than jc2j. For example, when λ2 is
real, if Reðd2Þ and c2 have opposite signs, the condition is
satisfied even when jd2j is arbitrarily large. In Example 2 we
show that the condition is typically satisfied for a large
fraction of randomly chosen initial states.
Third, neither r nor ts needs to be precisely tuned in

advance to achieve acceleration or deceleration. Provided
that Eq. (10) holds, any positive r and moderately small ts
are sufficient for acceleration, and ts can be further
optimized a posteriori based on the observed dynamics.
Our protocol therefore provides a general and robust
framework for controlling relaxation in open quantum
systems, without the need for fine-tuning.
Finally, it is straightforward to see that

Reðc�kdkÞ < jckj2 ð13Þ

is a sufficient condition for suppression of the kth mode.
Since multiple such conditions for different k can be
satisfied simultaneously, our protocol allows simultaneous
suppression (or promotion) of multiple relaxation modes.
In [59] we provide numerical evidence that multiple
conditions can indeed be satisfied in parallel, using the
model and protocol of Example 2.
So far we have focused on practical scenarios where fine-

tuning is not possible and neither the system dynamics nor
the initial state are known a priori. If these constraints are
lifted, as in most previous studies, our protocol can fully
eliminate the dominant relaxation mode (jcr2ðtsÞj ¼ 0) by
choosing an optimal ts ¼ t�s . When λ2 is real, the exact
expression is [24,59]

t�s ¼
1

r − λ2
ln

�
1 −

c2ðr − λ2Þ
rd2

�
: ð14Þ

A sufficient condition ensuring that t�s ≥ 0 is c2=d2 ≤ 0.
Further details, including the case of complex-conjugate
pairs, are given in [59].
Example 1—To illustrate our protocol, we first consider a

minimal example: a two-level quantum system, which may
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represent a qubit or a spin-1=2 particle. While minimal, this
example is crucial in many practical settings, as qubit reset
often constitutes the bottleneck in large-scale quantum
processes [57,72]. We set the ground state energy E0 ¼ 0
and excited state energy E1 ¼ E, such that the system
Hamiltonian readsH ¼ Ej1ih1j þ Ωðσþ þ σ−Þ, whereΩ is
the intrinsic coherent coupling between the two levels,
σþ ¼ j1ih0j and σ− ¼ j0ih1j. The system is coupled to a
thermal environment through the Lindblad jump operators
J0 ¼ ffiffiffiffiffi

γ0
p

σþ and J1 ¼ ffiffiffiffiffi
γ1

p
σ−. Here, γ0 (γ1) is the tran-

sition rate from state j0i to state j1i (or vice versa).
Assuming the rates satisfy detailed balance with inverse
temperature γ0e−βenvE0 ¼ γ1e−βenvE1 , i.e., γ0 ¼ γ1e−βenvE, the
system evolves to a unique equilibrium state ρeq ¼
½e−βenvH=Trðe−βenvHÞ� irrespective of the initial condition.
We initialize the system in a general mixed state:

ρ̂0 ¼
 

1
1þe−β0E keiϕ

ke−iϕ e−β0E

1þe−β0E

!
;

0 ≤ k ≤
ffiffiffiffiffiffiffiffi
eβ0E

p

eβ0E þ 1
; 0 ≤ ϕ ≤ 2π;

where the off-diagonal terms ke�iϕ quantify initial quantum
coherence. When Ω ¼ 0, all eigenmodes and eigenvalues
of the Lindbladian can be computed analytically [59].
When we apply our reset protocol with the reset state
ρδ ¼ j0ih0j, corresponding to the ground state, the two
slowest decaying modes form a complex-conjugate pair:

cr2ðtÞ ¼ e−rtþiϕk; cr;�2 ðtÞ ¼ e−rt−iϕk: ð15Þ

These overlaps are exponentially suppressed compared
with the original overlap, i.e., cr2ðtÞ ¼ e−rtc2 and
cr;�2 ðtÞ ¼ e−rtc�2. Clearly, the relaxation is accelerated for
any r and ts.
Since any ts can ensure acceleration, we choose ts such

that a faster decaying mode is eliminated. Specifically,
solving cr4ðtsÞ ¼ 0 gives such a ts, whose expression is
provided in [59]. For a sufficiently large r, the slowest
mode’s amplitude becomes exponentially small after the
reset phase. Alternative selections for ts can also achieve
accelerated relaxation, indicating that detailed dynamics
knowledge is not essential. Notably, if the initial inverse
temperature satisfies β0 < βenv, a scenario analogous to
“cooling,” the ground state j0ih0j serves as a useful ρδ
regardless of the rate r. Conversely, when β0 > βenv,
resetting to the ground state decelerates relaxation, neces-
sitating the choice ρδ ¼ j1ih1j for acceleration. This exam-
ple demonstrates that, by appropriately choosing ρδ, one
can switch between reset-induced acceleration and decel-
eration of relaxation.
We next present numerical results for illustration. We

characterize the distance between the transient state ρðtÞ
and the stationary state ρss using the standard trace distance

D½ρðtÞjρss� ≔ TrjρðtÞ − ρssj=2, where jAj ≔
ffiffiffiffiffiffiffiffiffi
A†A

p
. Other

measures, such as the L∞ normD∞½ρðtÞjρss� ≔ maxijλij [λi
is the ith eigenvalue of ρðtÞ − ρss], yield qualitatively
similar outcomes. We first plot D½ρðtÞjρeq� over t for
various rates r in Fig. 1(a). The parameters for r > 0 cases
are chosen so that they are initially farther from equilibrium
compared to the r ¼ 0 case (see the caption of Fig. 1). The
reset protocol substantially accelerates relaxation so that
the former cases reach stationarity faster even if they are
farther from stationarity initially. We next plot ts as a
function of r in Figs. 1(b) and 1(d), which show that ts
decreases monotonically as r increases [recall that ts is
chosen so that cr4ðtsÞ ¼ 0]. Figure 1(c) confirms accelerated
relaxation for Ω ¼ 2, here measured by the L∞ norm to
reduce fluctuations in the curves. Notably, the steady state
is not equilibrium when Ω > 0.
Example 2—To illustrate the potential feasibility of our

protocol in complex quantum systems, we consider another
example, the dissipative transverse-field Ising model
(TFIM), a paradigmatic system relevant to various quantum
platforms. We numerically study an open dissipative TFIM
of length N with Hamiltonian

H ¼ −J
XN−1

i¼1

σziσ
z
iþ1 − g

XN
i¼1

σxi ð16Þ

and jump operators Ji;↓ ¼ ffiffiffi
γ

p
σ−i ; Ji;↑ ¼

ffiffiffiffiffiffiffiffiffi
γe−β

p
σþi . Here,

σx;zi are Pauli operators, σ−i ¼ j0ih1j and σþi ¼ j1ih0j. We
fix J ¼ 1, g ¼ 1.2, γ ¼ 0.5, and β ¼ 1=kBT ¼ 1 through-
out. We choose ρδ ¼ I=d (with d ¼ 2N). The initial state ρ0
is chosen by normalizing ρss þ αV2, with ρss being the
steady-state and V2 being the second normalized eigenvector

FIG. 1. Relaxation dynamics of the two-state system. (a),
(c) Distances between ρðtÞ and ρeq as a function of time t with
different resetting rates r. (b),(d) The ts as a function of the
resetting rate r. The parameters are chosen as β0 ¼ 2.0, k ¼ 0.32,
and ϕ ¼ 1 with reset protocol and β0 ¼ 3.0, k ¼ 0.21, and ϕ ¼ 1
without reset. The environment is at lower temperature
βenv ¼ 4.0. γ1 ¼ 1.0. For (a),(b) Ω ¼ 0, and for (c),(d) Ω ¼ 2.0.
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of the Lindbladian. A larger α implies that ρ0 is farther from
ρss. Here, ρss is nontrivial, with nonzero entanglement.
Moreover, as shown in [59], for a large fraction of randomly
chosen pure initial states our protocol with ρδ ¼ I=d still
yields substantial acceleration, further demonstrating its
robustness. The parameters are ts ¼ 0.5τ2 and ts ¼ 0.08τ2
with τ2 ¼ 1=jReλ2j, the relaxation timescale, total duration
T ¼ 6τ2, α ¼ 0.55=0.05. Notably, ts is chosen arbitrarily
rather than being determined a priori. The accelerated
relaxation processes under different reset rates are shown
in Fig. 2. We also examine cases with different parameters in
[59], where acceleration is consistently observed. In Figs. 2
(b) and 2(d), genuine Mpemba effects are observed, where
the system is first driven away from the steady state by the
reset protocol compared to the no-reset case and then reaches
stationarity faster. The existence of such an effect broadens
the range of usable reset states.
We further verify in [59] that the same protocol signifi-

cantly accelerates relaxation in another many-body setting,
the Dicke model, again using ρδ ¼ I=d.
Some remarks are in order regarding experimental

implications. In practice, the precise optimal duration ts
is generally unknown in advance, but as emphasized
before, fine-tuning is unnecessary. The TFIM example
directly supports this conclusion: any choice of ts shorter
than the intrinsic relaxation time already leads to a clear
acceleration. Additionally, the reset channel in the example
corresponds to a depolarizing channel, which is concep-
tually straightforward to implement, e.g., by applying an
isotropic white-noise field or coupling an infinite-temper-
ature reservoir.

Experimental feasibility in general cases—The TFIM
example illustrates the power of our protocol: the accel-
eration of relaxation via a depolarizing channel has the
potential to be applied to complex quantum platforms.
However, in general, it may be necessary to choose other
ρδ to achieve acceleration. For few-body systems (such as
single Rydberg atoms or other multilevel emitters), the
protocol may be implemented with quantum reservoir
engineering. Such techniques have become increasingly
routine for tailoring dissipative dynamics in diverse quan-
tum systems, including atoms [73–75], trapped ions
[47,76], superconducting circuits [49,73,77], and optome-
chanical setups [78–80]. For quantum many-body systems,
an exact implementation via reservoir engineering generally
requires high-order interactions. Such engineered N-body
dissipators have been put forward theoretically [81,82] and
realized experimentally up to four-body interactions [83].
A complementary route is to approximate the reset

channel: combine any available state-preparation protocol
for ρδ, whether reservoir engineering, measurement-based
feedback, or other methods, with Trotterization [60,61,84]
(see End Matter). This strategy sidesteps the need to engi-
neer reset jump operators directly and therefore avoids
high-order couplings even in many-body systems. The
main experimental challenge then reduces to preparing ρδ.
Encouragingly, fast and high-fidelity state preparation has
been reported across diverse platforms [62,75,85,86].
Notably, Ref. [62] realized state preparation in a 35-spin
TFIM with Trotterization. This suggests that our protocol
may be testable and applicable on existing platforms.
To connect our theoretical protocol more directly with

experiments, we provide in [59] proposals that relate r to
experimentally tunable parameters, offering realistic paths
toward implementation.
Concluding remarks—We have introduced a general

framework for accelerating relaxation in open quantum
systems via temporary reset, applicable to arbitrary initial
states. The proposed protocol can suppress multiple relax-
ation modes simultaneously, enabling enhanced control
over the relaxation dynamics. As a practical example, we
demonstrated that the relaxation of a TFIM can be
significantly accelerated by using a simple depolarizing
channel. This example highlights a powerful feature of our
protocol: leveraging easily prepared states to accelerate the
preparation of states that are difficult to reach. Furthermore,
introducing temporary dephasing noise—a different type of
channel—can also accelerate relaxation (End Matter). This
suggests the broader applicability of our central idea:
temporarily coupling the system to various quantum
channels may provide a general route to enhanced relax-
ation. In future studies, our approach could be extended to
certain non-Markovian and Floquet dissipative systems
(e.g., using ideas in [9,87]). Overall, our results establish
temporary reset as a powerful and experimentally feasible

FIG. 2. Acceleration of the relaxation of TFIMs. Reset rates r
are chosen as 0, 1.0, 5.0, 10.0, 20.0. (a) N ¼ 5 (d ¼ 32),
α ¼ 0.55, ts ¼ 0.08τ2. (b) N ¼ 5, α ¼ 0.05, ts ¼ 0.50τ2.
(c) N ¼ 6 (d ¼ 64), α ¼ 0.55, ts ¼ 0.08τ2. (d) N ¼ 6,
α ¼ 0.05, ts ¼ 0.50τ2. The vertical gray lines mark ts at which
the reset channel is removed. Inset: schematic representation of
the dissipative TFIM, with each spin coupled to a thermal bath.
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tool for controlling relaxation timescales in open quantum
dynamics.
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Derivation of the modified Lindbladian Lr—Here, we
derive Eq. (4) of the main text. Let fjϕiigdi¼1 be an
orthonormal basis, satisfying

P
i jϕiihϕij ¼ I. The reset

state is generally written as ρδ ¼
P

α pαjψαihψαj. Intro-
duce jump operators

Jri;α ¼
ffiffiffiffiffiffiffiffi
rpα

p jψαihϕij; i ¼ 1;…; d:

The associated Lindblad term is

DrðρÞ ¼
X
i;α

�
Jri;αρJ

r†
i;α −

1

2
fJr†i;αJri;α; ρg

�
: ðA1Þ

Direct evaluation gives

X
i;α

Jri;αρJ
r†
i;α ¼ rρδTr½ρ�

−
1

2

X
i;α

fJr†i;αJri;α; ρg ¼ −rρ;

where Tr½ρ� ¼ P
ihϕijρjϕii,

P
i jϕiihϕij ¼ I and

hψαjψαi¼1 have been used. This yields DrðρÞ ¼
r½Tr½ρ�ρδ − ρ�. Hence, we arrive at Eq. (4):

LrðρÞ ¼ LðρÞ þ rTr½ρ�ρδ − rρ: ðA2Þ

Derivation of the modified coefficients—Here, we
derive Eq. (7), the explicit form of the modified
coefficients with reset. Acting the modified semigroup
etLr on both sides of

ρ0 ¼ ρss þ
Xd2
k¼2

TrðL†
kρ0ÞRk ðB1Þ

yields

ρrðtÞ ¼ etLrρ0 ¼ etLrρss þ
Xd2
k¼2

TrðL†
kρ0Þeðλk−rÞtRk: ðB2Þ
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To proceed, we use an explicit form of the steady state
under reset dynamics [44]

ρrss ¼ lim
t→∞

ρrðtÞ ¼ ρss þ
Xd2
k¼2

rdk
r − λk

Rk: ðB3Þ

Then, expressing the steady-state condition etLrρrss ¼ ρrss
with Eq. (B3) and applying Eq. (5), we get

etLrρss þ
Xd2
k¼2

rdk
r − λk

eðλk−rÞtRk ¼ ρss þ
Xd2
k¼2

rdk
r − λk

Rk;

from which we solve etLrρss. Substituting etLrρss into
Eq. (B2) and comparing with Eq. (6), we identify
modified coefficients crkðtÞ defined in Eq. (7).

Realizing the reset protocol with arbitrary state
preparation processes—We now show that any state
preparation protocol could approximately realize the reset
channel in our scheme via a Trotterization-based construc-
tion. Notably, Trotterization has already been implemen-
ted experimentally in superconducting quantum circuits
[88], IBM Quantum’s hardware [84], and even quantum
many-body platforms [62] to generate dissipative
dynamics, such as the dissipative TFIM. Moreover, tensor
network methods offer promising avenues for extending
Trotterization to more complex open quantum systems
[60]. We first consider the case where the original
dynamics is absent [LðρÞ ¼ 0] to gain insight. In this
case, the generator corresponding to the reset channel
simply reads as

ρ̇ðtÞ ¼ R½ρðtÞ� ¼ r½ρδ − ρðtÞ�: ðC1Þ

Thus, a direct integration shows that applying the reset
channel for a time ts maps an initial state ρ0 to a final
state ρðtsÞ according to

ρðtsÞ ¼ eRts ½ρ0� ¼ pρ0 þ ð1 − pÞρδ; p ≔ e−rts ; ðC2Þ

that is, a reset channel with rate r ¼ − lnp=ts is
effectively equivalent to a state preparation protocol for ρδ,
with success probability 1 − p. p is a classical probability
generated beforehand. One simply flips a biased coin (or,
equivalently, performs any local measurement that yields
the desired classical randomness): with probability 1 − p
the system is driven into ρδ by any suitable operations
and with the probability p it is left untouched. Since there
are no restrictions on the preparation method, once ρδ is
locally preparable (e.g., a separable state), this operation
can be implemented purely with local operations, even
for many-body systems. Specifically, when ρδ ¼ I=d,
Eq. (C2) is a depolarizing channel, which can be directly
realized by a unitary 2-design [59,63] without flipping
a coin.

When L ≠ 0, we apply the Lie-Trotter formula [89]

eðLþRÞt ¼ lim
n→∞

�
eR

t
neL

t
n

�
n

ðC3Þ

to realize the protocol. With this formula, the reset protocol
during ½0; ts� can be approximated as

eðLþRÞts ½ρ0� ≈ ðeRδteLδtÞn½ρ0�; ðC4Þ

where δt ≔ ts=n ≪ 1. Using Eq. (C2), we have

eRδt½ρ� ≈ ð1 − psÞρþ psρδ; ðC5Þ

which can be interpreted as a state preparation mapping
from ρ to ρδ, with success probability ps ≔ rδt. Practically,
r is determined by ps and δt, whose values are set by
experimentalists.
Thus, the reset protocol may be achieved experimentally

by performing the aforementioned state preparation oper-
ations stroboscopically: at each discrete time point ti ¼
iδt; ði ¼ 1;…; nÞ within ½0; ts�, one applies the state prepa-
ration mapping from ρðtiÞ to ρδ with a given probability ps.
There are no constraints on the preparation time τprep for ρδ,
but on average it adds a cost of npsτprep to the tailored
relaxation timescale. Therefore, it is desirable to choose a
ρδ that can be prepared efficiently, e.g., the maximally
mixed state in our TFIM example. This state is convenient
to prepare: coupling to an infinite-temperature bath can
achieve it in OðlnNÞ time [90] with minimal resources in a
N-body system—typically negligible compared to the
system’s intrinsic relaxation time. Local control methods
could in principle realize it in constant time, though with
resources scaling with N.
This Trotterization-based method admits a natural inter-

pretation at the level of stochastic trajectories: for a
Poissonian reset process with rate r, the system is stochas-
tically reset to the target state with probability rδt, in each
small interval δt.
The approximation error is of order Oðt2s=nÞ [61,64,65].

Explicitly, we establish a rigorous upper bound [59]:

jjeðLþRÞts − ðeRδteLδtÞnjj ≤ t2s
2n

jj½L;R�jj; ðC6Þ

where jj · jj denotes any norm that is contractive under
Lindbladian evolution, such as the trace norm or the
diamond norm. This bound holds for arbitrary
Lindbladian L and R. In our specific case,

½L;R�ρ ≔ ½LR −RL�ρ ¼ rTrðρÞLðρδÞ; ðC7Þ

where Tr½LðρÞ� ¼ 0 is used. Hence, a large n is not required
when ts ≪ 1, rts ≪ 1 or ρδ is close to ρss. A small ts with
moderate r offers a practical regime that may yield
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substantial acceleration and simultaneously reduce the
required number of Trotter steps.
Additionally, higher-order approximations could be used

to reduce the error for fixed n. For instance, the second-

order Suzuki-Trotter formula eðLþRÞts ≈ ðeLδt=2eRδteLδt=2Þn
suppresses the error to Oðt3s=n2Þ [61,64].
Dephasing noise can accelerate the relaxation of the

TFIM—Here, we add dephasing noise along a single axis
(typically the z axis) to the TFIM. The corresponding

jump operators are LðϕÞ
i ¼ ffiffiffiffiffi

γϕ
p

σzi ; i ¼ 1;…; N. This
contributes to the total Lindbladian via an extra term

Lϕ½ρ� ¼ γϕ
XN
i¼1

ðσziρσzi − ρÞ; ðD1Þ

which could be interpreted as a partial and local reset
channel (only the z axis is affected, and only local one-
body jump operators are involved). As shown in Fig. 3,
the relaxation is accelerated significantly.

FIG. 3. Dephasing noise induces acceleration of relaxation in a
5-site TFIM. Parameters: (a) J ¼ 1.0; g ¼ 2.0; γ ¼ 0.5; β ¼ 0.1J;
ts ¼ 0.2τ2 (b) J ¼ 1.0; g ¼ 2.0; γ ¼ 0.5; β ¼ 0.1J; ts ¼ 0.8τ2.
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