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Universal trade-off between irreversibility and intrinsic timescale in thermal relaxation
with applications to thermodynamic inference

Ruicheng Bao®,’

»2* Chaoqun Du,! Zhiyu Cao,' and Zhonghuai Hou'*

' Department of Chemical Physics & Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
2Department of Physics, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

® (Received 5 August 2024; revised 25 August 2025; accepted 2 October 2025; published 20 October 2025)

We establish a general lower bound for the entropy production rate (EPR) based on the Kullback-Leibler
divergence and the logarithmic-Sobolev constant that characterizes the timescale of relaxation. This bound can
be considered as an enhanced second law of thermodynamics. When applied to thermal relaxation, it reveals a
universal trade-off relation between the dissipation rate and the intrinsic relaxation timescale. From this relation,
a thermodynamic upper bound on the relaxation time between two given states emerges, acting as an inverse
speed limit over the entire time region. We also obtain a quantum version of this upper bound, which is always
tighter than its classical counterpart, incorporating an additional term due to decoherence. Remarkably, we
further demonstrate that the trade-off relation remains valid for any generally non-Markovian coarse-grained
relaxation dynamics, highlighting its significant applications in thermodynamic inference. This trade-off relation
is a new tool in inferring EPRs in molecular dynamics simulations and practical experiments.
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I. INTRODUCTION

The past 20 years have seen extraordinary progress in
nonequilibrium statistical physics of small systems with
non-negligible fluctuations. Significant advances include the
celebrated fluctuation theorems [1-12] containing all infor-
mation of the stochastic entropy production (EP), the speed
limit in quantum and classical systems [13-20], some refined
versions of the second law of thermodynamics [21-28] and
the recently proposed thermodynamic uncertainty relations
[29-39]. Thermodynamic irreversibility, typically quantified
by EP, is key to most of the important theorems and relations
mentioned above. As a central concept in modern thermody-
namics, it plays a pivotal role across various fields, including
the optimization of heat engines, the design and operation
of nanomachines, and the understanding of biological sys-
tem functions. The thermodynamic irreversibility in transient
processes, which are common in nature and inherently out-
of-equilibrium, has not been studied as extensively as that in
stationary processes [40].

Our main focus here is on a crucial and nontrivial class of
transient processes known as thermal relaxation. This funda-
mental class of physical processes is ubiquitous in the real
world and has numerous applications across various fields
[41]. Interestingly, thermal relaxation phenomena are com-
plex and varied even under Markov approximations. Typical
examples are dynamical phase transitions [41,42], anoma-
lous relaxation like the Mpemba effect [43] and asymmetric
relaxation from different directions [40,44,45]. One of the
central quantities in thermal relaxation is its timescale of
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convergence, which has been intensively studied. A well-
developed theory on that is the spectral gap theory, which says
that the relaxation timescale is typically characterized by the
spectral gap of the generator of dynamics in the large time
regime. Around the spectral gap, some important frameworks
on metastability [46-50] and the Mpemba effect [43,44,51—
59] have been established, which mainly focus on the large
time limit. However, there are much fewer works concentrat-
ing on the entire time region of relaxation processes [60]. In
particular, general principles that constrain the behaviors of
instantaneous irreversibility [entropy production rate (EPR)]
and the relaxation timescale, applicable at any time during
relaxation processes, remain to be investigated.

In this study, we propose a general lower bound for
irreversibility based on Kullback-Leibler (KL) divergence
[61] and logarithmic-Sobolev (LS) constant [62], which is
strengthened compared to the standard second law of ther-
modynamics. The general bound is then applied to thermal
relaxation, revealing a trade-off relation between the intrin-
sic timescale and EPR that is valid throughout the entire
relaxation process, not just in the large-time region. A ther-
modynamic upper bound on the transformation time between
any pair of given states during thermal relaxation follows
from the trade-off, which we term the inverse speed limit.
More importantly, we theoretically and numerically show that
our trade-off relation holds even for generally non-Markovian
coarse-grained dynamics, significantly broadening the appli-
cability of the relation. It can aid in the design of real-world
rapid relaxation processes, which are desirable in numerous
situations [56].

A key distinction between our findings and previous results
is that we provide an experimentally feasible lower bound
for the instantaneous EPR. This contrasts with prior related
results, which mainly focus on lower bounds for the EP over a
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time interval during relaxation [13,19,25], thus representing a
different aspect of nonequilibrium phenomena [63]. Addition-
ally, the intrinsic timescale considered here is a property of the
underlying dynamics, characterized by the spectral properties
of the dynamical generator and independent of the initial and
final distributions of the system. In comparison, timescales in-
corporated in previous findings, such as speed limits, depend
on those distributions.

The trade-off relation for coarse-grained dynamics is
fundamentally new and serves as a valuable tool for thermo-
dynamic inference, a crucial task in nonequilibrium statistical
physics [64]. We apply this coarse-grained trade-off to in-
fer the EPR in relaxation processes of complex systems,
where only coarse-grained observations are feasible, typi-
cal in experimental settings. This lower bound complements
previous thermodynamic inference results, which are primar-
ily limited to stationary processes [65—73]. Although some
studies have focused on nonstationary dynamics [74-78],
these methods often require substantial trajectory data, com-
plex procedures, and assume Markovianity, making them
impractical for non-Markovian coarse-grained dynamics. In
contrast, our methodology is applicable to highly coarse-
grained dynamics with very few coarse-grained states, without
requiring trajectory data, relying solely on the statistics of
coarse-grained states, which are easier to obtain in prac-
tice. We demonstrate our method with coarse-grained data
from molecular-dynamics simulations, where transitions or
currents are undetectable and heat dissipation cannot be mea-
sured directly. This demonstration highlights the potential
applicability of the trade-off relation for inferring EPR in real
experiments.

II. A GENERAL LOWER BOUND FOR EPR

We are considering a system with N states coupled to a
heat bath with inverse temperature g = 1/(kgT ), though the
generalization of our results to multiple heat baths is straight-
forward. The dynamics of the probability of the system being
in state i at time ¢, p;(¢), is described by a master equation

N

d
api(t) = Z[kij(f)[?j(t) —kji(t)pi(t)], (D

J=1

where k;;(t) denotes the transition rate from state j to state
i at time f. The master equation can be rewritten in a more
compact matrix form as %p(t) = L()p(t), where p(t) =
[p1(0), p2(t), ..., pnO]T and L;j(t) = kij(t) — 8;; >, kii(t)
is the stochastic matrix (strictly speaking, £ is an operator)
at time . The stochastic matrix changes over time due to
external protocols. In this work, we focus on both cases
where the detailed balance condition k;; (1) ]’ = k;j;(t)m] holds
for all pairs of i, j at any time ¢, and when it does not,
where 7/ is the (instantaneous) stationary distribution at time
¢ for state i. We denote m, = [n!, ..., 74]", in which =,
is defined as the stationary state, and it will be reached if
the stochastic matrix is frozen at time ¢. When the detailed
balance condition holds, &, will be an (instantaneous) equi-
librium state p;? whose entries are p;4 = e PE/Z, with
E;(t) being the instantaneous energy of state i at time 7, and
Z is the normalization constant. The KL divergence, which

quantifies the difference between two probability distribu-
tions, is defined as D[p®||p’]1 =Y, p¢ In(p?/p?). For any
continuous-time Markov processes obeying the master equa-
tion (1) with an instantaneous equilibrium distribution p;* at
time ¢, we demonstrate that

d N .
T PPNl < —42sOD[pOIIPE], ()

where Apg(7) is a positive real number determined by L(z).
Further, without a detailed balance condition, we still have a
similar inequality &D[p(7)||m]l-= < —2ALs(®)D[p(t)||m],
where a factor 1/2 is multiplied on the right-hand side.
Before proceeding, we denote (f, g, =, f g:fyr,- the inner
product induced by the stationary distribution & (may be
instantaneous).

The positive real number A g(¢) in Eq. (2) is the LS con-
stant [62] corresponding to the stochastic matrix £(t), whose
definition is

Re(—Lf, f)x
Ent(f)
where Ent(f) is an entropy-like quantity defined as Ent(f) =

, 3

)‘LS = inf
Ent(f)#0

112 . . .
vaz | 1l In( <,|;f’f|> )m; and f is any function in the state space
of the system.

According to the stochastic thermodynamics, the average

EP rate ¢ (¢) at time ¢ in this system is (kp is set to be 1) [79]
kij(t)p;(t)

6(t) =Y kij(t)p;(t)In k(i)

ij

“

If the stochastic matrix satisfies the detailed balance condi-
tion (i.e., the Markov process in focus is reversible), o (¢) is
related to the KL divergence between the current distribution
and the instantaneous equilibrium distribution p;! as ¢ (¢) =
—3.D[p(0)||p;1|:= [80,81]. Combining this with Eq. (2)
leads to

6(t) = 4rs()D[p@)||p]. o)

This general lower bound for the EPR at any given time
is our first main result. The bound will always be positive
unless the system is in an equilibrium state, since Apg(?) is
always positive [62], which makes it generally stronger than
the conventional second law. It also shows that the possible
EPR increases as the system deviates further from the instan-
taneous equilibrium state.

In the absence of the detailed balance condition, a similar
lower bound for the nonadiabatic EPR (also named as Hatano-
Sasa EP) can be obtained as

6™ (t) = 2ALs(@)DIp(@)l|m:], (6)

where the definition of o¢"(¢) is given by
6" ()= - ;pit)In ”;T—(f) and the relation J™(t) =
—0:D[p(t)||7 1] = has been used [82]. Since the total
EP rate satisfies o&(t) > 6™(t), the bound can still
serve as a stronger second law, i.e., o(f) = o"™(t) >
2hs()DIp(@)||m:] = 0.

In what follows, we focus on an important application
of our lower bounds in thermal relaxation processes, where
the stochastic matrix £ becomes time-independent and Arg
is a constant uniquely determined by L. Nonetheless, we
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FIG. 1. Illustration of the trade-off relation and the lower bound for entropy production in a two-state mode. Here, we set 8 = 1/(kgT) = 1.
(a) The two-state model coupled to a heat reservoir with temperature 7. (b) The trade-off relation between the EPR & (¢) at r = 0 and the
relaxation timescale 1/(2A.s) for relaxation processes with different AE, where the distance to equilibrium o/, = D[p(¢)||p*] is fixed to be
0.5. (c) and (d) We demonstrate Egs. (8) and (9) for this model, in which AE = 5.0 and the initial distribution is chosen to be (p,, ps) =

(0.99, 0.01).

also present another application of Eq. (5) in a system with
time-dependent dynamics, where the stochastic matrix is pe-
riodically switching [83,84]. In that example, we show that
our lower bound can help in recovering part of the “hidden”
EPR [85] of an effective equilibrium state.

III. TRADE-OFF RELATION
FOR THERMAL RELAXATION

In thermal relaxation, )»(LF is related to the intrinsic
timescale 70, = inf, {sup; | ZZ22=" T < 1/e}, which
characterizes the slowest (dominant) mode of relaxation and
is independent of the initial and final distributions. t°, satisfies
T > 1/(2ALs).

Operationally, A; s can be measured via another expression:
—t

21n D[p()l|p*a]’
Here, 7., is the measurable relaxation timescale. This may
require more statistical data for precise measurement but is

more adaptable to non-Markovian coarse-grained dynamics.
For both definitions, Eq. (5) leads to

1 Ll
=T ~
2)¥LS rel

(7

o0 = (1— e 2/%)D[pO)|p™], >0, (8)

and

a ()t = 2D[p(1)||p™]. 9)

Here, p(¢) is the distribution at time ¢, p® is the equilibrium
distribution of £ and the entropy production reads oy ] =
Jo 0(®)dt = D[p(0)[|p*4] — D[p(7)||p*]. Equations (8) and
(9) reveal close connections between EP (rate) and intrinsic

relaxation timescale, which is our second main result. These
two inequalities hold for any # > 0 (r > 0), and they are
saturated at the large time limit#, T — oo. Equation (8) also
saturates at the small time limit ¢ — 0 when both sides equal
zero. Equation (9) rigorously shows that the minimal possible
dissipation rate in thermal relaxation increases as the distance
from equilibrium grows, a fact that was not explicitly known
before. Previously, it was only proven that the accumulated
EP from time O to ¢ in an irreversible process can be lower
bounded by the KL divergence from the state at ¢ to the
equilibrium state [63,86,87].

To illustrate the results, we take a two-state model, which
may be used to model a single spin or a qubit, as an example.
As shown in Fig. 1(a), the model system is comprised of an
up state u with energy E, and an down state d with energy
E,, and it is coupled to a heat bath with temperature 7. The
energy difference between two states is AE = E, — E; > 0.
The transition rates from u to d and from d to u are given
by kyq = eP2E /(1 4+ ePAE) and ky_,, = 1/(1 + ePAF), re-
spectively. Under this setting, the stationary distribution will
be an equilibrium one [p,, ps1T = [1/(1 4+ eP2E), ePAE /(1 +
eP2E)]T. The LS constant in this case can be exactly com-

nh(£4E . .
puted as [62] Ars = @ Z(A 7 ) In Fig. 1(b), a trade-off relation

between . = 1/(2Ars) and o (¢) is demonstrated when
D[p()||p*] is fixed. Figures 1(c) and 1(d) shows that two
relations (8) and (9) are valid for any time.Additionally, we
obtain another bound related to the spectral gap A, of L as

G (1) = 4CrDIp@)||p*], (10)
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where C = (1 — 2x,)/In(1 — 7, /m,). The relation between
EP and spectral gap is of broad interest [88-91]. Equa-
tion (C6) is a complementary relation to previous results on
stationary EP.

We further show generalizations of the trade-off rela-
tion to discrete-time Markov processes and continuous-space
Markov processes.

IV. INVERSE SPEED LIMIT
A corollary of Eq. (9) is an inverse speed limit:

1 { D[p(0)|Ip*] }
T < ln )
4is | DIp(O)]|p*] — o10,7)

(1)

which gives the upper bound for the time 7 of the relaxation
from an initial distribution p(0) to a target distribution p(7).
Here, the EP o9 ;) for the state transformation from p(0) to
p(t) can be interpreted as the distance between these two
states, as it is monotonic in time during relaxation. Thus, the
maximal time that the system takes to relax through such a
distance oyo ] is given by the inverse speed limit (11). The
system should initially be farther from equilibrium so that
the transformation time 7 can be shorter. The upper bound
still holds when the detailed balance condition is not satisfied.
The only difference is that the EP should be replaced with the
nonadiabatic EP o™ and a factor 1/2 should be multiplied on
the right.

The above relation (11) can be generalized to open quan-
tum systems described by the Lindblad master equation. The
population in open quantum system is defined as P,(t) =
(n|p:|n), where p, is the density matrix and |n) is the nth
energy eigenstate. Then, one can show that an upper bound
on the transformation time 7 that is tighter than its classical
counterpart is given by

1 { DI[P(0)||Pg]
T < n
4ALs D[P(0)[|Pg] — (o10,.1 — AA)

}, (12)

with P(0) being the population vector at initial time, Ppg
being the population vector for Gibbs state, AA = A(0) —
A(t) 2 0, and A(¢) being the asymmetry defined as A(t) :=
D(p:||p%). Here, p! is the fully decohered version of p,. This
result implies that relaxation may be accelerated by quantum
coherence.

V. TRADE-OFF RELATION FOR ARBITRARY
COARSE-GRAINED DYNAMICS
AND THERMODYNAMIC INFERENCE

Measuring the EPR at the coarse-grained level is chal-
lenging due to experimental resolution limitations and the
large amount of data needed for convergence. Remarkably,
our trade-off relation can be generalized to arbitrarily coarse-
grained relaxation dynamics, allowing it to be further applied
to estimate EP when only coarse-grained observations are
feasible. The trade-off relation for coarse-grained dynamics
reads

2
6(t) 2 g PIPOIIPH], 13)

rel

where P(t) and P are the probability distributions
1.cG 2] —t
rel - W
timescale measured at

definition tlgiCG =

states, and
relaxation
level (another

for coarse-grained

is the measurable
the coarse-grained

inf; {sup;, ||w —I|l, < 1/e} works when there is
timescale separation). The lower bound (13) is our third
main result. Physically, we have that t$° < 7, because
equilibrium of microscopic dynamics implies the convergence
of macroscopic coarse-grained dynamics, but not vice versa.
These inequalities must hold when <P ~ 7,1, which is a
criterion of good coarse-graining [92]. The coarse-grained
version of Eq. (6) similarly holds. Note that even when
there is timescale separation and t<P ~ Ty, the resulting
coarse-grained dynamics can still be non-Markovian [93].
We also provide theoretical justification for the validity of
the bound in general cases, where rrS]G can be much smaller
than ;. We prove a stronger lower bound without assuming
a timescale separation and argue that it gives the desired
experimentally feasible bound. To our knowledge, there are
no similar results like (13) that can infer the EPR in arbitrarily
coarse-grained relaxation dynamics without knowing the
model details.

We use a system consisting of many interacting Brownian
particles under an external harmonic field (which may be
produced using an optical trap) as an example to illustrate
the power of our bound [Fig. 2(a)]. This example illustrates
its applicability in molecular-dynamics simulations and high-
lights its potential for practical experimental applications.
Even if we know the details of the dynamics, we still need
much more data to measure the EPR (initial positions of
each particle) without our method. In contrast, our method
only requires very coarse-grained data to provide an esti-
mation, with no prior knowledge of the model details. We
define a coarse-grained state as the state where a randomly
picked particle from the system is in a given spatial re-
gion. Then the coarse-grained distribution P(¢) becomes the
spatial distribution of particle number density in different
regions of the space, which is experimentally feasible. For
instance, if the total space is divided into two regions A
and B, P(¢) = ({na)/n, (ng)/n), where (n;) (i = A, B) is the
average particle number in region i, and n is the total particle
number. We remark that the novel coarse-grained mapping
employed here differs from the conventional many-to-one
mappings in previous literature. We refer to this experimen-
tally beneficial mapping as random coarse-graining (see [94]
for more details). The true EPR and the lower bound are
shown in Fig. 2(b). Our bound could reproduce over 20% of
the real EPR, which is significant considering that the data
we use to obtain the bound are very coarse-grained (four
coarse-grained states, compared to the state space spanned
by 100 Brownian particles in continuous space). As the de-
gree of coarse-graining decreases, the lower bound will be
closer to the real value, according to the inverse scaling
law by Yu and Tu [95]. Note that this example lacks mea-
surable transitions, currents, or trajectories, which precludes
the application of any existing thermodynamic inference
methods.
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FIG. 2. Application of the coarse-grained trade-off relation to molecular-dynamics simulation. (a) The two-dimensional interacting
Brownian particles model. The total particle number is chosen to be 100. The interacting potential is the spring potential, with a strength
of k = 0.01. The stiffness of the external harmonic potential field is £ = 0.1. The initial distribution is such that every particle is in one of the
four spatial regions divided artificially. (b) The comparison between the true EPR (EPR, the dashed black line) obtained from an approximate

analytical expression, and our lower bound (the red line).

VI. DISCUSSION

In this work, we propose a general lower bound for EP
related to the LS constant and KL divergence. We utilize it
to identify a trade-off between intrinsic timescale and EPR
in thermal relaxation. A consequence of this trade-off is an
inverse speed limit for transforming states during thermal
relaxation, providing a thermodynamic upper bound for the
transformation time. It indicates that a system is unlikely to
remain in a metastable state beyond a certain time threshold.
The inverse speed limit can be extended to open quantum
systems, where an additional contribution from decoherence
emerges.

Our trade-off relation strikingly holds for arbitrary coarse-
grained dynamics, allowing it to be applied to estimate
entropy production irrespective of model details in molec-
ular dynamics and real experiments. It remains effective
even when there are only two coarse-grained states in relax-
ation dynamics and no observable current, which stands in
sharp contrast to previous results. Our current study opens
up several avenues for future research. Interestingly, similar
trade-off relations exist for steady state dissipation rate, a
counterintuitive finding that warrants further exploration in
a forthcoming paper. Another promising direction would be
to investigate these trade-off relations in nonlinear chemical
reaction networks. Additionally, while our focus has been on
the dominant timescale, it would be valuable to analyze the
role of other timescales, aside from the dominant one.
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APPENDIX A: DETAILED DERIVATION OF EQ. (2)
IN THE MAIN TEXT

Without loss of generality, we assume transition rates k;;
satisfy the normalization condition ) _, k;; = 1 throughout this
section (here, we temporarily let k;; be the escape rate from i,
in contrast with the main text). Releasing the constraint, the
only difference is a multiplicative factor ) _, k;;, which will not
affect the derivations here. Under the condition, the stochastic
matrix £(¢) in the main text can be written as K(¢) — I, where
Kij(t) = k;j(t) and I is the identity matrix. Then for any
function f, the operator K satisfies (K f); = Zj kijf;. Recall
that the inner product induced by the stationary distribution is
defined as

(f.8)x =Y _ figlmi. (A1)

Based on this inner product, one can further define an adjoint
operator L* of L as (f, Lg)r = (L*f, g) for any function f
and g. Likewise, another adjoint operator K* of K is given by
(f,Kg)x = (K*f, g)». Consequently, one can readily check
that the operator K* satisfies (K*f); = >, k;; f;. These rela-
tions will be useful in the derivations below. For more details,
see Ref. [96]. Moreover, one can define the LS constant with
respectto L; = (L + £*)/2, the symmetrized version of £, as

RC(—Ef, f)rr
Ent(f)
= i <_£Sf7 f)rr
Ent()20 EBnt(f)

Note that £* = L so that £; = £ when the detailed balance
condition holds. We drop ¢ dependence in the following for
notation’s brevity.

)‘-LS = 1
Ent(f)#0

(A2)
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Lemma Al
1
(—Lf, N)a =5 D 1= filkymj, (A3)
ij
where |A| = VAAT.
Proof. Notice that Re(—L*f, f)x = Re{(I —

K e = (s flx =Re(K*f, f)x,

side of Eq. (A3) can be rewritten as

1
3 D Ui = [Pk
i.j

and the right-hand

1 .
=5 2 UAP + 1157 = 2Re(fif )k (A4)
ij
P ki 2 P Y kg
B 2
—Re Y kijfif |7 (AS)

iJ

P43 1 £ .
DR I e Sk it a0
J

=<f’f)7r

where in the third line, the identities }; k;;m; = 7; and
Zi kij =1 have been used. Therefore, Re(—L*f, f), =
(f f)r = Re(K*f, flx = L3 1fi = filPhijm).

Further, with the detailed balance condition k;;7; = kj;m;
holding, one can similarly show that

—Re(K*f, f)x. (A7)

Re(—Lf, &) Z(ﬁ I — gk (A8)

Note that f can be a complex function and fiT denote the
complex conjugate of f;.

Lemma A2. For a system with detailed balance condition
(r = p®), any function f in the state space of the system
satisfies

(—L*Inf, [z = H=LNF.  )a (A9)

Additionally, in the absence of detailed balance condition, a
weaker inequality

LI, fr = 2L x

(A10)

holds.
Proof: For any a, b > 0,

(557) - )
[ wmeU

i

llna—Inb
=-— (A11)
4 a-b>b
thus the inequality below is fulfilled:
(a —b)[Ina — Inb] > 4(a — Vb). (A12)

Then using Lemma Al and Eq. (A8), the inequality

(=L*Inf, fir = H—=L*VF,/f)x is immediately derived.

For any a, b > 0, there is another inequality

2(a — b)
b

due to the concavity of the function Inx?. Multiplying both
sides by b leads to

P (Ina* —Inb*) <

Ina> —Inb* < (A13)

2b(a — b). (Al4)

Then letting f; = b and (K In f); = Ina?, one obtains
FIEK* =D f1i 2/ fi(VeK T — /),
<2Vl =DV,

(A15)

where the inequality

(Ve ), = Vel b <y Th(Ve i) = K*/f
7

has been used (the inequality is from the convexity of the
function v/e* and the Jensen inequality). Notice that —L* =
I — K*, thus Eq. (A15) is equal to

(=L In f); firr; > 2[(—£*>m,ﬁim,

which directly yields (—£*In £, f)z = 2{(=L*V/F. VFx-

Proof of the Eq. (2) in the main text. Equ1pped W1th
Lemmas Al and A2, we can prove the inequality (3) (with
detailed balance) as follows:

(A16)

d
_D[p(t)| |-":r]|r=t

=% [ } pil) (A17)
Pi(f)i[pi(f)}m (AIS)
l mf dt| !
_ _Zl p,(t)[ p(t)] ! (A19)
T i
_ —<ln p() _[,Iﬁ> (A20)
T T [,
= —(Inf@), —Lf®))x (A21)
=—(=L"Inf@), f1))x (A22)
< (=L FDN T (a23)
= —4Re(—L\/ f{@), v f{))r < —4ALs(t)Ent(y/f (1))
(A24)
~ p,(t) Pi(f) 2 l
N /p(t /p(t
(A25)
= =4 s(0)DIp@)||7,]. (A26)

It should be noted that, since f(¢) = ’%) is a real func-

_‘C*fv f>7'r = <fv _£f>7r = <_‘Cfv f):r’ we get

tion and
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that (—L*f, f)x = Re(—=L*f, f)r = Re(—Lf, f)r, which
has been used in the third to last line. Without de-
tailed balance, Eq. (A23) should be substituted with
—2(=L*/f(t), /f (1)), Where the only difference is a mul-
tiplicative constant 1/2.

The discussions above can be naturally generalized to the
system coupled to multiple heat baths, in which the stochastic
matrix consists of contributions from each independent baths
as L(t) =), LV(t), with LV(¢) being the stochastic matrix
related to the vth bath. With multiple heat baths, the nonadi-
abatic entropy production rate can still be associated with the
KL divergence as

——iD[ @[]l
=& p T lle=t-

(A27)

nag N pi(t)
GM(r) = Xijp,(t)ln o

Notably, 6™(t) is only a function of the coarse-grained tran-
sition rates k;;(r) =), k}’j (t), which is not pertinent to the
individual contribution from the vth heat bath. Therefore, the
general bound (6) in the main text can be directly generalized
to the system coupled to multiple heat baths as

o (1) =2 6™(t) 2 2as(@)D[p(1)]|m;]. (A28)

As mentioned in the main text, the total EPR can be decom-
posed into two parts: one part is the nonadiabatic entropy
production, and another part (housekeeping or adiabatic EP
rate) reads

b ) kY (!
") =D kjOp;@)In e

Vi

(A29)

It can be seen from this expression that only if the transitions
induced by every heat bath all satisfy the detailed balance
condition, i.e., ki"j(t)n} = k;i(t)ni’ for any v, will the house-
keeping part vanish (so that 7, = p;"). In this case, 6(t) =
¢"(1) = 4as (DI p].

APPENDIX B: AN APPLICATION OF EQ. (3)
TO TIME-DEPENDENT DYNAMICS

In this Appendix, we are interested in an example consid-
ered in Refs. [83,84], where the transition matrix is under
periodic oscillations. This setting has actual applications in
biological and chemical systems. As a result, the dynamics
is governed by a time-dependent stochastic matrix: ;—tp(t) =
L(t)p(t), where

L) — Ly te2nt,2n+ 1)1]
W=\, tel@n+ Dr.n+2)r]"

Here, £, and L, are time-independent stochastic matrices
satisfying the detailed balance condition, and 7 is the period
of oscillation. The LS constants of £; and £, are denoted as
Ars, and Apso, respectively. The system under this setting
will finally converge to a periodic stationary state in which
pt)=pi+r1).

In the fast oscillation limit T — 0, it has been demon-
strated that the periodic stationary state reduces to an effective
equilibrium state p* corresponding to an effective stochastic

ne N. (Bl)

matrix

Ly+ L,

Leff =
2 )

(B2)

Eeﬁpeff =0. (B3)

The effective LS constant corresponding to the effective
stochastic matrix is given by

)\eff _ inf Re<_£efffs f)r[
B 7 Em(n#0  Ent(f)
. ¢ Re(— (L1 + L2)f, f)x

= 2 B0 Ent(/)
infhn )20~ + infin )0 “parbll
- 2
_ ALs1 + ALS,Z. B9
2

Then, applying our first main result Eq. (7) to the situation
when the system has reached the effective equilibrium yields
that

6(t) = 2(s1 + Aus2)D[p||p]. (BS)

since the system is in the effective equilibrium state and the
effective LS constant is given by (Ars + Ars2)/2. Note that
the instantaneous equilibrium distribution p;? at time ¢ will be
one of the equilibrium distributions p}* or p5* corresponding
to £y or L,, which are not matched with the effective equi-
librium state. As a consequence, D[p||p;] > 0 so that the
lower bound given by Eq. (B5) is positive. For a very large
time ¢ 3> 7, one can further bound the entropy production
010,11 during the interval [0, #] asymptotically from below as

o101 2 (251 D[P |pS] + 22Ls2D[p"| [P5Y])t. (B6)

This is interesting because the system in an effective equilib-
rium state may not be distinguished from a real equilibrium
state in a coarse grained level, e.g., in the experimental ob-
servations level, which may lead to the wrong conclusion
that there is no EP. However, our positive bound can recover
at least part of the “hidden” EP (rate), which is notably
stronger than the conventional second law of thermodynam-
ics. We should emphasize that even when the system is not
periodically switching, but randomly switching between two
configurations £; and £, at a constant Poisson rate r, the
above result can still apply in the fast switching limit » — oo,
when the system is still in an effective equilibrium state cor-
responding to £°f.

Our bound is not limited to the fast oscillation limit, when
the period 7 is finite, our lower bound can still be applied and
probably give a positive value. For example, assuming ¢ > 7
and £(0) = L, one can utilize Eq. (6) to obtain a positive
lower bound for oy ;) in this case:

o001 = [1 — e 517 1D[p(0)||p7 |
+ 1= e 20D [p(o)|pz],  (B7)

Ldt

where p(t) = Teh p(0), T is the time-ordering.
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APPENDIX C: PROPERTIES OF THE LS CONSTANT AND
ITS RELATION TO THE SPECTRAL GAP

The LS constant characterizes the intrinsic relaxation
timescale (mixing time) as [96]
1 4 + loglog[1/m,
< 1 < +g—g[/]’ (C1)
2ALs
where 7, = min; 77; and the relaxation time 7, is defined as
> p(tlp;(0) = 6;;) < l}’
T , e
(C2)

with the L, norm being defined as ||f||» =/ {f, ) =
V2 _;1fil*m; and I being the unit vector. Another definition

of the relaxation time is given by

rrd:inf{t>0:su -1

i

t
=—lim ——,
2hLs =00 2In D[p(1)||p*]

which seems require more statistical data to produce a precise
value. The advantage of the above definition of t, is that it
can be applied to any non-Markovian coarse-grained dynam-
ics without assuming timescale separation. By contrast, the
initial definition T = inf{r > 0 : sup; | Z12O=0
%} can only be effective for fine-grained Markov dynamics
and the coarse-grained relaxation dynamics whose KL di-
vergence from the equilibrium state decays exponentially in
the large time limit. To assure exponential decay in the large
time limit, a clear timescale separation is required. Without
timescale separation, the maximization over the initial dis-
tribution on coarse-grained level cannot uniquely determine
the relaxation timescale t rl , because different mlcroscoplc
distributions within coarse-grained states will affect TS0

When the unique stationary distribution 7 is an equilibrium
distribution p®, the upper bound of 7, can be enhanced by
a factor 1/2. There are similar inequalities for 7. using the
spectral gap A, when detailed balance condition holds, i.e.,

1 2 4 log[1/m,]
)»_ < Trel X T
g 8

Further, there is a hierarchical relation between the spectral

gap A, and LS constant Apg [62]:

(C3)

Trel =

Ag 1-—-2m,
= Z2AMs 2 ———————
2 In[(1 — 7,)/m.]
A > =2, 0 (C4)
>max|{ ————2,,0¢.
¢ In[(1 — ;) /7] ¢

The spectral gap A, is the second largest eigenvalue of —Lj,
and it has a similar definition to A; g as

Re(—Lf, f)x
(fs Fln

_ inp 5L LS fi (C5)
BTV
Note that when the detailed balance condition holds, £, = £
so that A, becomes the second largest eigenvalue of — £ in this
case.
Consequently, A s may characterize the relaxation
timescale better compared with the spectral gap A, due

Ag= in
(f.f)x#0

to the hierarchical relation above (the inequality from g is
tighter than the inequality from A,).

Due to the close connection between Apg and the spectral
gap A, which is usually easier to determined, one can obtain
another useful bound related to A, as

(1) = 4Ch,0;. (C6)

ot’

where C = (1 — 2m,)/ In(1 — 7, /7,). This bound uncovers a
connection between the thermodynamic irreversibility and the
spectrum of the dynamical generator in thermal relaxation.

APPENDIX D: THEORETICAL JUSTIFICATIONS
OF THE COARSE-GRAINED RESULTS (11)

1. The case when there is timescale separation
and the coarse-graining is appropriate

In this case, we can rigorously prove that the trade-off rela-
tion for coarse-grained dynamics, i.e., Eq. (11) in the main text
is valid by using the data-processing inequality (or log-sum
inequality). The data-processing inequality reads

D[p(x®)|lg(x)] = D[p(»)Ilg(»)],

where y = f(x) is an arbitrary function of x. This follows
from the chain rule of KL divergence, i.e.,

Dlp(x, mllg(x, y)]1 =DIpQ|x)llg(ylx)] + DIp(x)|lg(x)]

= D[p(x|y)llgx|y)] + DIp(llg(y)].
(D2)

(D1)

The term D[p(y|x)||g(ylx)] = 0 because p(y|lx) = g(ylx) =
1 only when y= f(x) and p(y|x) = q(y|x) =0 other-
wise. D[p(x|y)|lg(x]y)] = 0 and the equality holds when
y = f(x) is a one-to-one mapping. Thus, D[p(x)||g(x)] >
D(p)|lg(»)]. Choosing y = Y, ¢;14,, where the universal set
X =A+A+---+A,,leads to

(x € A;)

DIp(x)llg(x)] > Z plx e Apn ZEE20 -

D[P||Q],
20 Ay [Pl11Q]

(D3)

where P; = p(x € A;) is the probability that the system is
in coarse-grained state i. Due to the arbitrariness of the
set A;, this prove that the KL divergence between always
decreases under any conceivable state coarse-graining. There-
fore, D[p(1)[|p*] = DIP(t)||P*] and

. 2 eq 2 eq
o(t) 2 —DIlpO|Ip™] = —DIP®)|IP] (D4)
Trel rel
CG & . . .
whenever 7,e; ~ t<° (when TIL‘I > %), which is a cri-

terion of good coarse-graining mapping. In other words, the
breakdown of the above inequality is a strong witness of
inappropriate coarse-graining procedure (but we argue that
this equality holds for general coarse-graining).

2. General coarse-grained dynamics

In general, we only know that the probability distribution
of microscopic dynamics evolves according to the master
eqqation %p,»(t) = Zij kij®)pj — I.cj,'(t)p,- gnd each coarse-
grained state consists of many microscopic states. In this
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setting, the coarse-grained dynamics can be described by an
effective master equation,
d
—Put) =Y koS )Py — ks ()P D5
< Pult) anmno o (1) (DS)

where the time-dependent coarse-grained transition rate

kSS(t) reads
Ko@) =" kiipi(jln),

iem jen

(Do)

pi(t)
L e . . L
system being in microscopic state j at time ¢ given that it is in

the coarse-grained state n. The dynamics under this effective
master equation is in general non-Markovian because transi-
tion rates here are dependent on the probability distribution of
microscopic states.

If the detailed balance condition k;; () qu = k;;(t)p;* holds
in the fine-grained level, in the coarse-grained level we still
have that kSC(1)PyY = kSS(1)P,! for any pair of coarse-
grained states m, n. If this is not the case, the coarse-grained
dynamics can be nonequilibrium even when the original fine-
grained dynamics is in equilibrium, which is not physical.
With detailed balance condition, one can write that
eq

d . P
_— cq — . i
dtD[P(t)IIP lle=r = Ei Pi(t)In PO

where p;(j|n) = is the conditional probability of the

kS )P;(t)

— CG )
= ;ki SS(6)Pj(t)In KSOP©

pllca)
pUcc)

= Kcg Z p(lcg) In

[¢]

p()

<KY phIn ==

X,: p(l)
kij@®)p;)

om0

= kij(t)p;(t)In
iJ

(D7)
Here, Kcg and K are dynamical activities in the coarse-
grained and fine-grained level, quantifying the mean time
between two consecutive jumps in different level. [, I denote
microscopic transitions and their time-reversal transitions, and
lcg, Icg are their coarse-grained counterparts. In the second
line, the detailed balance condition has been used. The last
inequality is due to data-processing inequality. ASS(7) for
the coarse-grained dynamics can be defined using the time-

dependent generator £°©. In addition, the inequality

d
— 3 PPOIP e > LS ODIP @) P]

is valid, because the proof of the inequality only relies on the
mathematical form of the master equation. AES (¢) still quan-
tifies the largest relaxation timescale at time 7. Combining the
above two inequalities, we deduce that the inequality

6 (t) = 4r55 (DIP@)]|P] (D9)

holds for coarse-grained relaxation dynamics. Equation (D9)
is a stronger lower bound than the Eq. (12) in the main text.

(D8)

Defining A{{ = min,{A{§ (1)}, we then conclude that t$° =

inf {sup; | ZEZAD=0L 1) < 1/e) (the definition works

only when there is a timescale separation in fine-grained dy-
namics) is lower bounded as

CG 1

T =2 —==, D10
rel ZAES ( )

so that we can replace A5 (1) with % for every ¢ in Eq. (D9).

G
Trel

For another definition of the coarse-grained relaxation
. CG _ . —t .
timescale, 7" = lim;_, DO We argue that it sat-

rel
CcG CG
<7 =

isfies ol

< T for any ¢. By definition, 7,

1
0
. 4 . -
llmtg,oo S DIPOIPE] g Trel = hmt*)oo T DI ONpe] due to
the data-processing inequality D[P(z)||P%] < D[p(t)||p*]
as shown in Appendix A. The first inequality also holds with
physical assumptions that

(1) lim, oo =—— exists and converges to 7C0
22.55()

rel *

(2) min, (ACG(1)} = lim, o0 25 (0).

Although the assumptions cannot be rigorously proven, the
physics that all faster relaxation modes vanish in the large
time limit strongly supports their validity. Consequently, we
obtain the desired lower bound, Eq. (12) in the main text,
which is experimentally feasible. Note that when the detailed
balance condition is broken, i.e., when the stationary state
is not an equilibrium state, the justification above does not
hold because the data-processing inequality cannot be applied.
However, if the coarse-graining mapping is appropriate (as
shown in Appendix A), the coarse-grained lower bound for
the nonadiabatic EPR still holds.

Additionally, it should be noted that the Markov jump pro-
cess can be obtained by faithfully discretizing the continuous
Fokker-Planck equations [97], which assures that our trade-off
relation holds for Langevin dynamics by taking the continuum
limits. Therefore, our results can be applied to molecular
dynamics simulations, where the underlying dynamics can be
described by Langevin equations.

APPENDIX E: ANALYTICAL CALCULATION OF THE EP
RATE FOR THE INTERACTING BROWNIAN
PARTICLES SYSTEM

Here, we derive an analytical expression for the EPR of a
single Brownian particle in a harmonic potential field. We then
use this single-particle expression to approximate the EPR of
the interacting Brownian particle system discussed in the main
text.

Considering a single Brownian particle under a harmonic
field U (x) = k||x — a||*>/2 in 2-dimensional space, where k
is the stiffness and a = (ay, a,) is the center of the field.
The corresponding Langevin function readsx = —uVU (x) +
V2DE(1). The probability distribution of the position x =
(x, y) of the particle evolves according to the Fokker-Planck
equation

w = uld.(k(x — ay) — Td,)

+ 0y (k(y — ay) — T9)Ipi(x, ), (ED)

with u being the mobility and satisfying u = D/kgT . Multi-
plying both sides with x (or y) and then integrating both sides
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FIG. 3. The coarse-grained trade-off relations for the interacting Brownian particles system with more coarse-grained states: (a) The lower
bound is calculated by dividing the space uniformly into 16 regions (16 states). (b) The lower bound is calculated by dividing the space

uniformly into 25 regions (25 states).

with respect to y (or x), leading to two decoupled equations for
the first moments as

di{x); = —pk({x); — ax)
di(y)r = —pk((y): — ay), (E2)

where the conservation of probability has been used. We let
a, = a, =0, i.e., the harmonic field is posed at the center of
the space. Then the moments at time ¢ are solved as

(x)r = (x)oe ™, (y); = (y)oe M. (E3)

If the initial distribution is Gaussian, the probability p, (x, y)
will keep Gaussian at any time, i.e.,

oo K (= P
Py =5 P 2T :
The EPR is
1
(1) = — / x|, ()| 2ps o), (E4)
uT

where the local mean velocity is defined as
v (x) = u(=VU(x) — TV In p,(x)). (ES)
Using the expressions for p,;(x) = p;(x, y) and (x);, (y);, we

obtain that the EPR for a single Brownian particle at time ¢ is

Dk* , .,

6(1) = ()3 + ()3)e ot (E6)

Since the interacting potential in our case is also harmonic,
and the interaction strength ¥ < k, we conclude that the total
EPR for N such Brownian particles at time ¢ is simply

NDk? — —

)~ o (00 + GR)e (E7)

where (x)3 = % > (x)d and (y)3 = % >, (k)3 This expres-
sion may slightly underestimate the true EP rate, which will
not affect the validity of our trade-off relation. It is clear
that the information of microscopic states is still needed to
calculate the EPR using this expression, even if the model
details are known in prior.

APPENDIX F: SIMULATION DETAILS AND FURTHER
NUMERICAL RESULTS

1. Calculating lower bounds for interacting brownian particles
with different levels of coarse-graining

The interaction potential is the spring potential, which
reads

i
sk (rij — re)?

Uin(rij) = {O

Here, the r. = 1.0 is the cutoff distance. x = 0.01 K€ k =
0.1, where k is the stiffness of the external field U(x) =
k||x —a||?>/2. The diffusion constant D = kg7 = 1.0. The
simulation box has a size of 50 x 50 with periodic boundary
conditions. In Fig. 3, we divide the two-dimensional box uni-
formly into 16 and 25 regions, in contrast with the 4 regions
in the main text. When the coarse-grained level increases (the
number of coarse-grained states increases), the lower bound
becomes closer to the real EPR.

rij <7
. (F1)

rij 2 Ie

2. Another example: Interacting active Brownian
particles system

We consider a more complex scenario involving interacting
active Brownian particles (see Fig. 4). The dynamics of this
system is described by the following overdamped Langevin
equations

i = DBIF; + n;v] + v2DE(1)
6; = /2D, (1), (F2)

where F; = — 3, VU(r;;) and v denotes the strength of
active force whose orientation is described by the unit vector
n; = (cos6;,sinb;). B = kBLT = 10.0. The strength of active
force is chosen to be v = 20.0. More simulation details can
be found in Ref. [98]. We define F; = F; + n;v. With de-
tailed knowledged of the model, the (non-adiabatic) EPR at
time ¢ is calculated approximately by numerically integrating

. ) . . .
o) = % t’+ " F ot 0 Fdt, where 8t is a small time step.
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FIG. 4. Demonstration of the coarse-grained trade-off relation in an interacting active particles system. There are 4096 active particles.
(a) A snapshot of the simulation, showing the system self-assembling into three coarse-grained states: the stripe state (green part), the trimer
state (red part), and the disorder state (blue part). (b) The evolution of the probability distributions of the three coarse-grained states during
relaxation. (c) The nonadiabatic EPR calculated from detailed knowledge (orange curve) and the coarse-grained lower bound (blue curve)

using only the statistics of the coarse-grained states.

This example demonstrates the limitation of our infer-
ence strategy, specifically that it can only provide a very
loose bound when the accessible dynamics are highly coarse-
grained. This remains an open question within the stochastic
thermodynamics community, as the reduction of EP due to
coarse-graining (information loss) is inevitable. If we apply
our lower bound to systems with more coarse-grained states,
we anticipate that the bound will more closely approximate
the true EPR, similar to the first example.

APPENDIX G: GENERALIZATION TO OPEN QUANTUM
SYSTEMS AND CONTINUOUS-SPACE
MARKOYV PROCESSES

1. Details of generalization to Markovian open
quantum systems

Here we show that, our main results can be generalized to
quantum Markov processes described by the Lindblad master
equations. In this setting, the dynamics of the density operator
o = p(t) of the system at time ¢ is given by p, = L(p,),
where

— Yoty
Li(p) = l[Ht,p]JrZi:[J,pJ,- 2{‘]1'-,19p} (G1)

is the Lindbladian. Here, H; is the Hamiltonian (can pos-
sibly be time-dependent) in a d—dimensional Hilbert space
H? and J; is the jth jump operator describing dissipation
effect due to the environment. To proceed, we assume that the
Lindbladian satisfies the quantum detailed balance condition

[99], in which case the density operator will finally converge
to a Gibbs state pg = lim, .« ' py = e P /Tr(e PH#) when
H is time-independent. The inner product should be rede-
fined as (A, B), = Tr(A"Bpg), the average over the Gibbs
state reads (A), = Tr(Apg) and the quantum KL divergence
is given by D(p||p’) = Tr(pInp — pIn p’). The EPR ¢, at
time ¢ in the open quantum systems can be separated to the
change rate of system entropy §; = Tr(o, In p;) and the heat
flow Bq = BTr(p:H;) as ¢; = §; — Bq. Like in the classical
case, g; has a direct connection with KL divergence that
oy = —0;D(p/|lpg) [100]. When H is time-dependent, o, =
—0,D(p/|1pg,z)i=r, Where pg . is the instantaneous Gibbs
state defined as £,(ppg ) = 0. Recently, it has been proved
that there always exist a positive constant « assuring that the
quantum LS inequality

—(L(f)Inflz Z alfInf)z (G2)
holds [101] for any postive operator f € H satisfying (f), =
1, once the quantum detailed balance condition is satisfied.
Consequently, a straightforward calculation shows that

oy =— atD(pt”p,B,r)lt:r

Pp.t Pt x

>AQLs(r)<ﬁ1n i> ,
PB.t PB.1 | 5

=AqLs()D (]| pp.1), (G3)
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where

—(L(), In f)7
{(f1In f)z

is the quantum LS constant. Integrating both parts of Eq. (G3)
from O to ¢ results in D(po;||pg) < D(po] |,o,g)e’xQLS’. Then, an
inverse quantum speed limit can still be directly obtained as
in the classical case when H is time-independent:

1 ol
T g ln { 5 tot }’
AQLs Ot — 0(0,7]

where o19..) = [y 6:dt = D(pollpp) — D(pillpp) and o2 =
D(pollpg). The quantum LS constant can also be connected
with the relaxation time scale by using the Pinsker inequal-
ity (Tr|p — p'|)> < 2D(p||p’). In open quantum systems, the
distance between two density operator is commonly described
by the trace distance defined as D (p||p") = L1Tr|p — p/|.
Thus the relaxation time scale to the Gibbs state is naturally
characterized by the convergence rate of Dt.(o;||pg). Here,
we have that

Dr(pillpp) < /Dpillog)/2
</D(pollpg)/2e*es!12,

which implies that Aqrs is a characterization of relaxation
timescale in open quantum systems. In summary, the upper
bound of the transformation time 7 in relaxation of open
quantum systems depends both on the relaxation time scale
of the whole process and the initial energetic cost, similar to
the classical case.

In addition, we provide an alternative way to generalize our
results to open quantum systems when H is time-independent,
which is the generalization shown in the Eq. (10) of main
text. As is known, the Lindblad master equation can lead to
an equation of motion for the populations

P, (t) = (n|pi|n)

of the eigenstates |n) of the system Hamiltonian H; =
>, €xln)(n| (assuming that H, is nondegenerate) [100]. The
equation of motion is given by
dp, (1)
dr

)‘-QLS = >0 (G4)

in
f>0, (fiz=1

(G5)

(G6)

(G7)

=Y WanPu(t) = WonPa ()], (G8)

which is often referred to as the Pauli master equation. In
this equation, time-independent transition rates W,,,, from the
energy level €, to €, are given by

Wam = Z(Em - En)(n|Ji|m>2~

If the LS constant associated with the Markov generator W
(whose entries are W, = W,,,, — 8,m Z, Wi,) is Ars, one has
that

d
_aD[P(t)HPﬁ] 2 4ALsDIP(1)]|Pg] (G9)

DIP(v)||Pg] < e =T D[P(z)]|Pg], (G10)

where D[-||-] is the classical KL divergence and entries of
Pg are given by Pg, = (n|pgln). The quantum EP can be

decomposed as

dA(1)

d
o; = —0:D(pyllpp) = g PPWIIP] — ==, (GID)

where A(t) is the asymmetry defined as A(t) := D(p,|| p,d).
Here, p¢ is the fully decohered version of p;. It has been

shown that —% > 0, which quantifies the EPR from de-

stroying quantum coherence. Consequently, we have that

dA
o 2 4 sDIP(1)]|Pg] — d_it) 2 4rsDIP ()] 1Pgl, (G12)

and the EP
010,71 = DIP(0)[|Pg] — D[P (7)[|Pg] +A(0) — A(r) (G13)
during any interval [0, 7] is also bounded from below as
op0,71 = (1 — 674ALST)D[P(O)||P13] + AA, (G14)
with AA = A(0) — A(r) = 0. Thus, a quantum inverse speed

limit tighter than its classical counterpart is obtained as
1 { DIP(0)]|Pg]
T < n
4rs | DIP0)|Pg] — (o10,c) — AA)

}. (G15)

Whether the above relations hold true in the nonequi-
librium open quantum systems remains an interesting open
problem.

2. Generalization to continuous-space Markov processes

The Markov processes in continuous-space can be de-
scribed by the Fokker-Planck equation. Here, we would like to
discuss a system within a time-dependent conservative force
field U (x, t), where x € R” is a n-dimensional vector. The dy-
namics of the system is described by a Langevin equation (we
have set the mobility © = 1)

X(t) = F(x, 1) + V2DE(1), (G16)

where the force F(x,t) = —VU(x,t). The corresponding
Fokker-Planck equation reads

ap(x, 1) .
=—Vjx, 1),
o Jx, 1)

where the current j(x,1) = F(x,t)p(x,t) — DV p(x,t). The

Fokker-Planck equation has an instantaneous stationary solu-

tion pi' (x) o e V) with Boltzmann form at any time ¢.
According to Ref. [102], the LS inequality

(G17)

A . ‘

3 / ulnup® (x)dx < / |V.ul?p (x)dx (G18)
holds for any positive function u = u(x,t) satisfying
Ju(x,t)p" (x)dx = 1 and any stationary distribution p* (x) o
e PUM™ _if the following condition is fulfilled for the positive
constant A:

VU (x) > AL,

where I, is the n-dimensional identity matrix. For instance,
consider a one-dimensional Brownian particle confined in
a harmonic potential U (x) = %kxz. In this case, U"(x) =k,
such that the positive constant A is exactly equal to the stiff-
ness k of the potential.
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The EPR ¢ (¢) at time ¢ obtained from Eq. (G17) can be
expressed as the time-derivative of the KL divergence [103],
ie.,

d
——tD[p(x, )| )] l5=

d
2
[lvn[ze0]
pi(x)

px, t)dx > 0.
Notice that ¢ (¢) can be rewritten as

d(t)=4/ v

then applying the LS inequality (G18) to it yields

6 (t)

(G19)

2

PO D) ey,
i (x)

(G20)

plx, 1) p(x, 1)
pix)  pi(x)
= 22D[p(x. 1)||p}' ()]

Therefore, there is still a general lower bound o(¢) >
2AD[p(x,1)]| pl” (x)] for the continuous-space Markov process

o(r) =24 p (x)dx

(G21)

described by Eq. (G17), serving as a stronger second law of
thermodynamics.

Whether it is possible to find a general lower bound for the
local EPR using local version of the KL divergence or other
distance function is another interesting open question.

3. Generalization to discrete-time Markov processes

The nonadiabatic EP for such process during relaxation can
also be expressed by KL divergence as

o10.7) = Dlpol|m] — Dlp.||m]. (G22)

It can be proved that
Dip. lix] < (1 — a)"Dipylix], (G23)

leading to the result
of0,71 2 [1 = (1 — ag)"1DIpylI], (G24)

where the LS constant «; for the discrete-time case is defined
as

(a —KK*)f,f>}
Ent(f) '

oy = min{
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