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New characterization of disorder taming spatiotemporal chaos
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Abstract

In the present Letter, we introduce a new method to quantify the effect of disorder on spatiotemporal chaos [Nature 378
(1995) 465]. Base on the autocorrelation function, we define a parameter to measure the effect of disorder. The results are
intriguing and similar to the results obtained by J. Lindner et al. [Phys. Lett. A 231 (1997) 164]. Using this order parameter, the
effect of disorder on spatiotemporal chaos in different conditions has also been discussed.
 2003 Elsevier Science B.V. All rights reserved.
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Recently, order induced by noise and disorder in
nonlinear systems has become a topic of great inter-
est, due to its theoretical significance and practical ap-
plications. Intriguing examples include stochastic res-
onance [1], taming spatiotemporal chaos by disorder
[2], disorder-enhanced synchronization [3,4], etc.

Because the real systems always have some natural
or ineluctable spread in features, so it is very important
to study the disorder coupling systems. After demon-
strating the effect of disorder taming spatiotemporal
chaos [2], J. Lindner et al. introduced a way to quantify
the effect of disorder on spatiotemporal chaos based
on the system’s largest Lyapunov exponent [5]. In this
Letter, we will introduce a new method, and get simi-
lar results.
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Here we use the same simple example as in Ref. [2].
Considering a array of forced, damped, pendulum
governed by the equation

ml2nθ̈n + γ θ̇n = −mgln sinθn + τ ′ + τ sinωt

(1)+ κ(θn+1 + θn−1 − 2θn),

wheren = 1,2, . . . ,N (in our numerically investigat-
ing, we letN = 128), and the boundary condition is
free (θ0 = θ1 andθN = θN+1). For simplicity, the para-
meters used are the gravitational accelerationg = 1.0,
mass of the pendulumm = 1.0, lengthln = 1.0, d.c.
torqueτ ′ = 0.7155, a.c. torqueτ = 0.4, the angular
frequencyω = 0.25, and the dampingγ = 0.75, κ is
the coupling between the two oscillators. We numer-
ically integrate Eq. (1) using a fourth-order Runge–
Kutta technique with a time stepdt = 0.001.

One may find that the isolated pendulum is chaotic
for the default lengthl = 1.0, which is characterized
by a positive Lyapunov exponent. Forl > 1.0, the
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Fig. 1. Spatiotemporal evolution of an array of 128 pendulums corresponding to different disorder amplitudeσ . Time passes from the left to
right. The colors (visible on-line) code the angular velocities of each pendulum. (a)σ = 0.0, (b)σ = 0.3, (c)σ = 0.6.

pendulum executes a libration in which it oscillates
about its equilibrium position without overturning,
i.e., the angelθ never exceeds 2π . On the other hand
for l < 1.0, the pendulum executes a whirling where
the combined torques rotates the pendulum over the
top and the angelθ past 2π . An isolated pendulum of
default lengthl = 1.0 displays a chaotic sequence of
whirling and libration.

To compare with the results obtained by J. Lindner
[5], we also disorder the system in three different
types: random disorder, alternate binary disorder, and
linear disorder. The random disorder means that the
length of pendulums is a uniform distribution[1 −
σ,1+σ ]. The alternate binary disorder means that the
pendulum lengths alternate between a short 1− σ and
a long 1+ σ . The linear disorder means the lengths
increase linearly form 1− σ to 1+ σ . In all case, the
average length of the pendulum is equal to one, in the
chaotic region.

Fig. 1 describes the continuous spatiotemporal evo-
lution of an array of 128 pendulums. Time passes from
the left to right. The colors code the angular velocities
of each pendulum. We omit the transient at the begin-
ning of the evolution. Fig. 1(a) is an example of the
evolution of a regular array without disorder(σ = 0).
Spatiotemporal chaos can be observed. If we apply
one type of disorder on the array, we can see inter-
esting results, which are depicted in other panels of
Fig. 1 (here we use random disorder as an example).
Fig. 1(b) shows one example after introducing disor-
der of ±30% that means the pendulums lengths are
uniformly distributed in the interval[0.7,1.3]. There
appears a relatively simple but nontrivial pattern after
a short transient (not shown). It is periodic in space
and time. If increasing the degree of disorder more,
some segments are still periodic, and some segments
lose regularity. It is shown in Fig. 1(c), in which±60%
disorder is introduced.
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Fig. 2. Time series of the sixtieth pendulum ((a), (b), (c)) and the corresponding autocorrelation function timec(τ ) ((d), (e), (f)) with different
disorder amplitude. (a), (d)σ = 0.0; (b), (e)σ = 0.3; (c), (f) σ = 0.6.

To characterize the behavior induced by disorder,
we introduce a new quantity. It is based on the
normalized autocorrelation functionci(τ ), defined by

ci(τ ) =
〈 ˜̇θi(t)

˜̇θ i(t + τ )
〉

〈 ˜̇θ i
2〉 ,

where θ̇i (t) is the angular velocity of theith pendu-

lum, τ is the time delay, anḋ̃θ i(t) = θ̇i(t) − 〈θ̇i〉. The
characteristic correlation time is then evaluated as

τi,c = 1

T

∫

T

c2
i (τ ) dτ,

following Pikovsky et al. [6]. In the present case of
limited and discrete sampling,τc is evaluated by

τi,c = 1

N�t

N∑
k=1

c2
i (τk)�t,

whereτc = k�t with �t being the sampling time, and
N is the longest delay-time increment�t .

Then we defined an “order parameter” described
by τ (σ ) = [〈τi,c〉]. Here〈·〉 denotes averaging over all
the pendulums,[·] denotes averages over 100 differ-
ent disorder realizations with the sameσ . The more
orderly pendulum oscillating is, the more pronounced
its correlations time is. So the corresponding charac-
teristic correlation time is large. One can see from
Fig. 2 that the correlations are indeed much more pro-
nounced for moderate fraction of random connections.

Fig. 3(a) shows the dependence ofτ (σ ) on the dis-
order amplitudeσ when the random disorder is intro-
duced. Theτ (σ )–σ curve clearly shows the regularity
maximum atσopt. Hereσopt ≈ 0.3. This result is sim-
ilar with that in Ref. [5]. Fig. 3(b), 3(c) areτ (σ )–σ

curves corresponding to the other two types of dis-
order. When the alternate binary disorder is applied,
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Fig. 3. The dependence ofτ (σ ) on the disorder amplitudeσ when introducing (a) random disorder, (b) alternate binary disorder, (c) linear
disorder with coupling constantκ of 0.4 (square), 0.5 (circle), 0.6 (up triangle). Solid lines are drawn as a guide to the eye.

there also exists an optimal disorder amplitude, now
theσopt ≈ 0.5. When the linear disorder is applied, the
τ (σ )–σ curves have multi-peaks. We also check the
effect of disorder when the system has different cou-

pling constant. In all cases, changing the coupling con-
stant will not change the trend of theτ (σ )–σ curves.
However, changing the coupling constant has different
effects in different disorder cases. In the random disor-
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Fig. 4. The dependence ofτ (σ ) on the disorder amplitudeσ with noise intensityβ of 0.1 (square), 0.3 (diamond), 0.5 (up triangle), 0.7 (cross),
0.9 (down triangle). Solid lines are drawn as a guide to the eye.

der case, when using larger coupling constant, the op-
timal disorder amplitude is shifted to the higher value
and the correspondingτ (σ ) also has higher value, as
shown in Fig. 3(a). In the alternate binary disorder
case, increasing the coupling constant hardly change
the optimal disorder amplitude, larger coupling con-
stant makes theτ (σ )–σ curve more peaked, as shown
in Fig. 3(b), and do not change the maximum of the
curve. In the linear disorder case, increasing coupling
constant just makes theτ (σ ) slightly larger at the
peaks of the curve, as shown in Fig. 3(c).

To check the noise effect on the phenomenon of
disorder inducing regular, we rewrite the Eq. (1) in
following form:

ml2nθ̈n + γ θ̇n = −mgln sinθn + τ ′

+ τ sinωt + κ(θn+1 + θn−1 − 2θn)

(2)+ βnΓn(t),

whereΓ (t) is the noise term chosen from some dis-
tribution. We chooseΓ (t) as a Gaussian distribution,
such that〈Γn(t)〉 = 0, 〈Γm(t)Γn(t

′)〉 = δmnδ(t − t ′).
βn is noise intensity, here we letβn = β . The results
are shown in Fig. 4. One can see clearly that with in-
crement of noise intensity, the order parameterτ (σ )

will decrease. However, even with large noise inten-
sity, there are still a maximum on theτ (σ )–σ curve.
That means the effect of disorder on the coupled pen-
dulums is robust.

The chaotic region aroundl ≈ 1 has been carefully
examined. It has an extent of 0.998< l < 1.002 [7],
and it is indeed quite a narrow region. If the lengths
of the pendulums are disordered, shorter or longer
than average, some of the oscillators will be renovated
from their chaotic band, separately undergo periodic
motion, thus form periodic islands. The remaining
chaotic clusters are forced a locking to the external
drive by these periodic islands. It creates periodic
solutions to the equations of motions. It is one of
the possible mechanisms by which disorder may
stabilize a chaotic array. So applying different types
of disorder, different distributions of disorder, should
have different results. One can see it from Fig. 3. The
existence of an optimal disorder which maximum of
the “order parameter” of the array strengthens again
the qualitative analogy to the phenomenon of SR.

In this Letter, we use a new measurement to char-
acterize the effect of disorder on coupled system. Sim-
ilar with results in Ref. [5], we also observed that the
existence of an optimal disorder which let the sys-
tem spatiotemporal evolution most regular. We com-
pare results under different conditions, such as using
different disorder types, changing coupling constant.
We know that taming spatiotemporal chaos should still
be useful in mode-locking applications, such as super-
conducting Josephson arrays, semiconductor laser ar-
rays, etc., where any type of regular behavior is pre-
ferred to chaos. What is corresponding mechanism to
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different types of disorder? What will happen when
using different types of coupling? What are the effects
of disorder on the different complex coupling systems,
called complex networks [8]? How can we use this ad-
vantage to technological application? Further theoret-
ical and experimental work will be of great help to an-
swer these questions.
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