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We have studied the influence of internal noise on a circadian clock system using stochastic
simulation methods and chemical Langevin equations. It is found that internal noise can induce
circadian oscillations, when the corresponding deterministic system does not oscillate. The
performance of the noise induced circadian oscillation undergoes a maximum with the variation of
the internal noise level, showing the occurrence of internal noise stochastic resonance. Since the
magnitude of the internal noise is changed via the variation of the system size, these phenomena also
demonstrate a kind of system size resonance. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1624053#

I. INTRODUCTION

In the last two decades, the constructive roles of noise
and disorder in nonlinear systems have been extensively
studied.1 Among them the most well known phenomenon is
stochastic resonance~SR!,2 which demonstrates that noise
can help a nonlinear system to detect and amplify weak ex-
ternal signals. The fingerprint of SR is that there exists an
optimal noise level where the signal-to-noise ratio~SNR! of
the output signal reaches a maximum. Since it was originally
proposed by Benzi and collaborators in 1980’s to account for
the periodically recurrent ice ages,3 SR has gained ever-
growing attention in a variety of scientific fields. Although
SR originally involves three components, say, the bistable
system, external signal, and external white noise, it has been
widely extended to various situations. For example, the sys-
tem may be monostable, excitable, oscillatory, threshold-
free, or nondynamical; the external signal can be aperiodic or
even chaotic; and the external noise can be white or colored,
etc.4 In addition, the external signal may not be necessary if
the system is tuned near a bifurcation point between a stable
node and a limit cycle. In such cases, noise can induce co-
herent oscillation, the strength of which also undergoes a
maximum when the noise intensity is changed, showing SR-
like behavior known as coherent resonance5 or internal sig-
nal stochastic resonance.6 Very recently, more and more at-
tention has been paid to SR-like phenomena in biological
systems, from ion channel gating and neuron spiking, to life
supporting system and human balance control systems.7 As
stated by Ha¨nggi, it would indeed seem strange to us if na-
ture would not have taken advantage of the benefits of am-
bient noises for nonlinear transmission and/or amplification
of feeble information rather than ignoring it.

However, most of the studies so far only account for
externalnoise. Usually, the system’s dynamics is described

by a deterministic differential equation and then a noise term
is added to the equation directly, additively or multiplica-
tively. The properties of the external noise, such as its inten-
sity or correlation time/length, depend only on the environ-
ment and have no relevance to the system’s dynamic features
or the system size. However, in chemical reaction systems
there is another source of noise resulting from the random
fluctuations of the stochastic chemical reaction events, the
internal noise. Such internal noises depend on the reaction
details as well as the system size. It is generally accepted that
the magnitude of the internal noise scales inversely with the
system sizeV. In the macroscopic limit whenV is infinite,
the internal noise can be ignored and the system’s dynamics
is described by a deterministic equation if noad hocexternal
noise is present. However, for chemical reactions in small
systems, such as those biochemical reactions taking place in
living cells8 or catalytic reactions happening on nanoscale
crystal surfaces,9 the number of reacting molecules could be
low and the internal noise must be taken into account. There-
fore, an intriguing question is how the system’s dynamics is
affected by the internal noise. Specifically, we are wondering
whether or not the system’s dynamics shows some SR-like
behavior with the internal noise, which can be called internal
noise stochastic resonance~INSR!.

In the present paper, we have studied how the internal
noise affects the dynamics of a circadian clock system. A
wide range of living organisms uses circadian clocks to keep
internal sense of daily time and keep their behavior
accordingly.10 Most of these clocks use intracellular genetic
networks based on positive and negative regulatory ele-
ments, where the number of reactant molecules is often
low.11 Therefore, the question is how the circadian oscilla-
tions are influenced by the internal noise. Actually, many
efforts have been paid to this issue, but most works so far
assume that the internal noise is destructive and they mainly
focus on the robustness or resistance of circadian oscillations
to such internal noise. In Ref. 12, Gaspard performed a the-
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oretical study on the robustness of mesoscopic chemical
clocks, and he found that a minimum number of molecules is
required for the mesoscopic oscillations to remain correlated
in time. Barkai and Leibler argued that the sensitivity to
internal noise and the robustness to such uncertainties were
probably decisive factors in the evolution of circadian
clocks, and should be reflected in the underlying oscillation
mechanism.13–15 In our study, however, we find that internal
noise can also play constructive roles: internal noise can in-
duce circadian oscillations when the system parameters have
values that would not sustain oscillations in the deterministic
model. In addition, the noise-induced circadian oscillation
~NICO! shows the best performance at an optimal noise
level, demonstrating the occurrence of INSR in such a sys-
tem. Since the magnitude of the internal noise is changed via
the variation of the system size, the INSR also represents
itself as a kind ofsystem size resonance.

II. MODEL DESCRIPTION

The model used in the present paper incorporates the
transcription of the gene involved in the biochemical clock
and transport of the mRNA~M! into the cytosol where it is
translated into clock proteins (PC) and degraded. The pro-
tein can be degraded or transported into the nucleus (PN)
where it exerts a negative regulation on the expression of its
gene. Such negative regulation forms the core mechanism of
the oscillation behavior. If the internal noise is ignored, the
time evolution of the three species is governed by the fol-
lowing deterministic kinetic equations:16,17

d@M #

dt
5ns

k1
n

k1
n1@PN#n2nm

@M #

km1@M #
,

d@PC#

dt
5ks@M #2nd

@PC#

kd1@PC#
2k1@PC#1k2@PN#,

d@PN#

dt
5k1@PC#2k2@PN#. ~1!

In these equations, the variables@M#, @PC#, and@PN# denote
the concentrations of the clock gene mRNA and of the cyto-
solic and nuclear forms of the clock protein, respectively.
The descriptions of the parameters and their values are listed
in Table I. We choose the transcription ratens as the control
parameter.

To account for the internal noise, such a deterministic
description is no longer valid. Basically, one can describe the
reaction system as a birth-death stochastic process governed
by a chemical master equation, which describes the time
evolution of the probability of having a given number of
molecules of the three species.18 Generally, there is no pro-
cedure to solve this master equation analytically, but it pro-
vides the starting point for numerical simulations. A widely
used simulation algorithm was introduced by Gillespie in
1977,19 which stochastically determines what is the next re-
action step and when it will happen according to the transi-
tion rate of each reaction process. This simulation method is
exactbecause it exactly accounts for the stochastic nature of
the reaction events. For the current model, the six reaction
steps and corresponding transition rates are shown in Table II
~note that the transition rates are proportional to the system
sizeV).

Although the exact simulation method has been widely
used to study the properties and effects of internal noise in a
variety of systems, it is very time consuming and hardly
applicable if the system size is large, which limits its use
when a broad range of system size must be considered. To
solve this problem, Gillespie developed recently at-leap
method20 that randomly determines how many steps will take
place for each reaction channel in the next ‘‘macroinfinitesi-
mal’’ time intervalt. It was proved that thet-leap method is
a rather good approximation of the exact one when the sys-
tem size is large. Therefore, it is convenient for us to use the

TABLE I. Parameter descriptions and values used in Eq.~1!.

Parameter Description Value

ns Transcription rate of the clock gene Control
parameter

kl Threshold beyond which the nuclear protein
repress the transcription of its gene 0.2 nM

n Hill coefficient characterizing the repression 4
nm Maximum rate of mRNA degradation 0.3 nM h21

km Michaelis constant related to mRNA degradation 0.2 nM
ks Translation rate of mRNA to protein 2.0 h21

nsd Maximum rate of protein degradation 1.5 nM h21

kd Michaelis constant related to protein degradation 0.1 nM
k1 Transport rate of protein into the nucleus 0.2 h21

k2 Transport rate of protein out of the nucleus 0.2 h21

TABLE II. Reaction steps and corresponding transition rates involved in the model.

Reaction step Description Transition rate

G→M1G Transcription of the clock gene W15a1•V5
nskl

n

kl
n1@PN#n •V

M→ mRNA degradation W25a2•V5nm

@M#

km1@M#
•V

M→PC1M Translation of mRNA into protein W35a3•V5ks@M #•V

PC→ Degradation of cytosolic protein W45a4•V5nd

@PC#

kd1@PC#
•V

PC→PN Transport of protein into the nucleus W55a5•V5k1@PC#•V
PN→PC Transport of protein out of the necleus W65a6•V5k2@PN#•V
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exact method for small systems andt-leap method for large
ones during our stochastic simulation if a large range of sys-
tem size must be accounted for.

The exact method and thet-leap method have provided
a direct way to study the effect of internal noise, however,
they are still not quite efficient. Furthermore, such direct
stochastic simulation methods cannot afford us a clear per-
spective on the origin and magnitude of the internal noise in
the system. Very recently, Gillespie found that if a macroin-
finitesimal time scale exists in the system, its dynamics can
be well approximated by a chemical Langevin equation
~CLE!.21 Such a CLE clearly shows how the internal noise
involved in the chemical reactions is related to the parameter
values and the system size, as well as the state variables that
evolve with time. Specifically, the CLE for the current model
reads

d@M #

dt
5~a12a2!1

1

AV
@Aa1j1~ t !2Aa2j2~ t !#,

d@PC#

dt
5~a32a42a51a6!1

1

AV
@Aa3j3~ t !2Aa4j4~ t !

2Aa5j5~ t !1Aa6j6~ t !#,

d@PN#

dt
5~a52a6!1

1

AV
@Aa5j5~ t !2Aa6j6~ t !#. ~2!

Here ai 51,...,6 are the transition rates per volume shown in
Table II, and j i 51,...,6(t) are Gaussian white noises with
^j i(t)50& and^j i(t)j j (t8)&5d i j d(t2t8). In the absence of
the second terms in the brackets at the right side, the earlier
equations are the same as the deterministic ones~1!. There-
fore, these terms actually denote the internal noises. It is
clear that the magnitude of the internal noises scales as
1/AV, and they depend not only on the control parameters
but also on the concentrations of@M#, @PC#, and@PN#.

To address the influence of internal noise on the system’s
dynamics, we need to scan the magnitude of the internal
noise over a relatively wide range. In addition, we also need
to keep the corresponding deterministic kinetics unchanged,
so that what we obtain is purely the effect of internal noise.
Although we may change the internal noise via the variation
of a certain control parameter as shown in Eq.~2!, this would
also change the deterministic kinetics in Eq.~1!. But the
deterministic kinetics does not depend on the system sizeV.
Therefore, in the present work, the magnitude of the internal
noise will be changed via the change ofV.

In the following parts, we will mainly use the CLE as
our stochastic model for numerical simulation. The exact
simulation method and thet-leap method are also used to
show consistency if necessary. The results of the stochastic
models will also be compared with the deterministic ones to
show the effects of internal noise.

III. RESULTS AND DISCUSSION

To investigate the effect of internal noise, it is useful to
study the corresponding deterministic kinetics as compari-
son. To do this, we perform numerical calculation of Eq.~1!

using explicit Eular method with time step 0.005. With the
variation of the control parameterns , the system undergoes
a supercritical Hopf bifurcation~HB! at ns'0.257 from a
stable steady state to a stable limit cycle. The period of the
oscillation near the HB point is about 26 h, which decreases
slowly whenns increases. The maximum and minimum val-
ues of @M# are plotted in Fig. 1. The HB point divides the
nearby parameter space into two regions: the steady state
region ~SS region! to the left side and the oscillation region
~OSC region! to the right side.

In Ref. 16, the influence of internal noise deep inside the
OSC region had been studied. The conclusion is that if the
system size is too small, the oscillations will be no longer
correlated in time. Therefore, internal noise always plays a
destructive role in this region. However, as stated by the
authors there, such a conclusion fails when the system is
tuned near the Hopf bifurcation point. One should note that it
is always near the critical points where noise can play con-
structive roles. Therefore, much more attention should be
paid to the region close to the HB.

In the present work, we focus on the effect of internal
noise whenns is tuned very close to the HB point but inside
the SS region. When the system size is very large and the
deterministic kinetics applies, the system would not sustain
oscillation. However, if the system size is small, simulations
via the exact method, thet-leap method or the CLE method,
all show ‘‘stochastic’’ oscillations. Such stochastic oscillation
is distinct from random noise in that there is a clear peak in
its power spectrum. Since these oscillations are induced by
the internal noise, one may call them NICO. To compare
with the deterministic kinetics, we have also plotted the
range of the NICO of@M# for V5104 in Fig. 1. Obviously,
the HB point defined in the deterministic kinetics now dis-
appears. In other words, when the system size is small, one
cannot qualitatively distinguish the SS region from the OSC
region from the time behavior only.

The phenomenon of NICO implies some kind of reso-
nance effect. If the system size is very large and the internal
noise is ignorable, there is no oscillation in the SS region.

FIG. 1. Bifurcation diagram for the deterministic equation~squares!. The
Hopf bifurcation value is about 0.257. For comparison, the range of the
stochastic oscillation forV5104 obtained from the chemical Langevin equa-
tion is also displayed~circles!.
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When the system size is too small, the internal noise is so
large that the NICO will be overwhelmed. Hence, for some
intermediate system size and internal noise level, NICO is
the most pronounced. In Fig. 2, the power spectrums for the
stochastic oscillations of@M# are plotted for three different
system sizes. The control parameter isns50.25 which is
slightly less than the HB value. The smoothed curves are
obtained by nearest averaging over 50 points from the origi-
nal ones. The time series used to calculate the power spec-
trum contains 16 384 data points with an average time inter-
val 0.5. A Welch window function is used during the
estimation of the power spectrum.22 Clear peaks appear in
the power spectrum, which implies that the time series con-
tains periodic information. When the system size decreases
from 108 to 100, both the signal level and noise background
increase at the peak. For an intermediate system sizeV
5104, the peak is the most pronounced among the three.

To measure the relative performance of the stochastic
oscillations quantitatively, we define an effective SNR asb
5R/(Dv/vp), wherevp is the frequency at the peak,Dv is
the width betweenvp and the frequencyv1 satisfyingv1

.vp and P(v1)5P(vp)/e, here P(•) denotes the power
spectrum density ~PSD! for a given frequency; R
5P(vp)/P(v2), where P(v2) is the smallest PSD value
betweenP(0) andP(vp). See also the caption of Fig. 2 for
more details. The dependence ofb on system size forns

50.25 is plotted in Fig. 3~a!. A clear maximum is present for
system sizeV;104, which demonstrates the existence of a
resonance region. Since this resonance effect is purely in-
duced by the internal noise, we thus simply call it INSR.

In Fig. 3~a!, good qualitative agreement among the CLE
method, the exact simulation method and thet-leap method
is apparent. Specifically, the CLE method and thet-leap
method show excellent quantitative agreements forV>104.
These agreements imply that it’s convenient to use the CLE
to study the qualitative effects of internal noise in a system-

atic way. Using the CLE, we have also studied how the INSR
behavior depends on the value of the control parameter. This
is shown in Fig. 3~b!. When the control parameterns comes
closer to the HB point, the ISNR curve becomes higher. For
ns nearly identical to the HB value, there is a plateau in the
curve. Forns slightly larger than the HB value, the peak
disappears and the SNR monotonically increases with the
increment of system size.

Such INSR phenomenon might be relevant to circadian
oscillations in two ways: First, since the internal noises are
unavoidable, circadian oscillations taking place in subcellu-
lar systems are intrinsically stochastic oscillations. Due to
the occurrence of NICO, circadian oscillations can be quite
robust to variation of control parameters. Second, instead of
trying to resist the internal noise, circadian clock systems

FIG. 2. Smoothed power spectrums for the stochastic oscillation of@M# for
three different system sizesV5100, 104, and 108, respectively. The control
parameter isns50.25. The curve forV5100 is obtained from the exact
simulation method, while the other two are obtained by thet-leap method.
The pointsA, B, andC in the PSD curve forV5108 demonstrate how to
calculate the effective SNR, i.e.,b5@P(B)/P(A)#3vB /(vC2vB), where
point C is located by the conditionP(C)5P(B)/e. Note that arbitrary unit
is used for the PSD.

FIG. 3. ~a! Dependence of the effective SNR on the system size forns

50.25. Solid circles: results from exact simulation method forV,104;
solid squares: results fromt-leap approximation method forV>104; open
circles: results obtained via chemical Langevin equation. All the data are
averaged over 20 independent runs.~b! The dependence of SNR on system
size for different choices of the control parameter. The results are obtained
by the CLE method.
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may also exploit it to induce and enhance the oscillation
performance via tuning of internal noise. It is also interesting
to note that the spontaneous action potential in neurons
shows the best time precision when the density of axon ion
channels reaches an optimal level,23 and the calcium signal-
ing processes in many cells also show maximum sensitivity
if the cluster size of the release channels is optimal.24 Such
behaviors imply that INSR might be a widely used mecha-
nism for living organisms to adapt and function.

IV. CONCLUSION

In conclusion, we have studied the influence of internal
noise on a circadian clock system using stochastic simulation
methods and chemical Langevin equations. It is found that
internal noise can induce circadian oscillations, when the
corresponding deterministic system does not oscillate. The
performance of the noise induced circadian oscillation under-
goes a maximum with the variation of the internal noise
level, which demonstrates the occurrence of internal noise
stochastic resonance. Since the magnitude of the internal
noise is changed via the change of system size, this phenom-
enon also represents itself as a kind of system size resonance.
These findings may imply the ubiquitous importance of in-
ternal noise in the functioning processes of living organisms.
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