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Introduction

The study of noise-induced constructive effects in nonlinear
dynamic systems has attracted considerable attention in the
last two decades. It was demonstrated that there is a ™reso-
nant∫ noise intensity, at which the response of the system to a
periodic force is maximally ordered, which is well-known as
stochastic resonance (SR),[1] and that the order of the noise-
driven system itself can have a maximum in the absence of pe-
riodic forcing, which is called coherent resonance (CR).[2] Sto-
chastic resonance and coherent resonance have been ob-
served in numerous experiments, and more and more atten-
tion has been paid to SR-like phenomena in biological systems,
from ion-channel gating and neuron spiking, to life-supporting
systems and human balance-control systems.[3] As stated by
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H‰nggi,[3] it would indeed seem strange if nature would not
have taken advantage of the benefits of ambient noises for
nonlinear transmission and/or amplification of feeble informa-
tion rather than ignoring it.

Very recently, a new and quite interesting SR-like phenomen-
on, system-size resonance, has gained much attention.[4±13] So
far, mainly two types of ™size resonance∫ behavior have been
reported. On one hand, it was demonstrated that the collective
behavior of an array of coupled noisy dynamical elements may
be the most ordered when the system size (here the number
of elements) has an optimal value.[4±6] In such a case, the noise
is external, and the system size plays a role in changing the
noise strength that is subjected to the mean field. For exam-
ple, system-size stochastic resonance was found in an ensem-
ble of coupled noisy bistable elements subjected to a small pe-
riodic force,[4] and system-size coherent resonance was demon-
strated in a one-dimensional lattice of diffusively coupled excit-
able neurons in the absence of an external signal.[5] On the
other hand, for chemical oscillating reactions taking place in
small systems, stochastic oscillations can be observed and
there is an optimal system size at which such stochastic oscilla-
tions show the best performance.[7±13] In such small systems,
the molecule numbers of the reactants are often low and the
internal noise resulting from the stochastic reaction events can
not be ignored; it is generally accepted that the strength of
the internal noise scales as 1/

ffiffiffi
V

p
, where V is proportional to

the system size. There have been a few quite interesting find-
ings of this type. It was reported that ion-channel clusters of
optimal sizes can enhance the encoding of a subthreshold
stimulus.[7±8] Shuai and Jung demonstrated that optimal intra-
cellular calcium signaling appears at a certain size or distribu-
tion of the ion-channel clusters.[9±11] In recent studies, using the
Brusselator model, we have shown that the internal noise can
induce stochastic oscillations in the region close to the deter-
ministic oscillatory dynamics, and an optimal system size exists
for such stochastic oscillations; this is characterized by a clear
maximum in the signal-to-noise ratio (SNR) as a function of
system size V.[12] Similar results were also obtained in a circadi-
an-clock system,[13] which may have interesting implications for
biological rhythms and signaling processes.

Herein, we have investigated how the cell size would influ-
ence the intracellular calcium signaling process. We have used
the model for intracellular calcium oscillation in hepatocytes,
which was proposed by Hˆfer.[14] To account for the internal
noise, we have used the chemical Langevin equations pro-
posed recently by Gillespie.[15] Unlike previous studies,[9±11] we
do not consider the channel noise involving the calcium re-
lease from intracellular calcium stores, but those from the sto-
chastic reaction events in the whole cell. In addition, we find
that the SNR of the stochastic calcium oscillation, which is
absent in the deterministic dynamics, shows double maxima as
a function of the cell size, which may be called system-size bi-
resonance. Interestingly, we find that one of the optimal sizes
matches rather well with the real cell size, and such a match is
rather robust to external stimulus. We show that such a bireso-
nance phenomenon is quite relevant to the deterministic bifur-
cation features of the system.

Model

Calcium often acts as a second messenger in living cells, to
regulate multiple cellular functions. There is a vast amount of
literature devoted to the mathematical modeling of the intra-
cellular calcium oscillations and waves observed in the experi-
ments. Most of these models are deterministic and the sto-
chastic effects due to the random channel dynamics or small
cell size are neglected. However, the observation of localized
stochastic Ca2+ puffs or sparks, and variations in the ampli-
tudes and widths of the calcium oscillations suggest that inter-
nal noise must be taken into account.[16] Actually, as mentioned
above, the stochastic nature of the Ca2+ channel dynamics, in-
volved in the release of Ca2+ from calcium stores to the cyto-
sol, has already drawn much attention. But to our knowledge,
the stochastic effects resulting from the small cell size has not
been studied yet.

According to the Hˆfer model, the calcium signaling dynam-
ics in a single cell involve the interplay of calcium fluxes from
and into the endoplasmic reticulum (ER) and across the plasma
membrane (not considering the fluxes from and into other
possible compartments such as mitochondria). By denoting
the population numbers of free calcium ions in the cytosol as
X and that in the whole cell by Z, the reactions in the cell can
be grouped into four ™elementary∫ processes involving the
change of X or Z by 1.[17] These processes and their reaction
rates are defined in Table 1, where V is the volume of the cyto-

solic compartment of the cell, and x=X/V, z=Z/V denote the
concentrations of the reactants. P is the concentration of inositol
trisphosphate (IP3) in the cell, which denotes the level of the ag-
onist simulation and is chosen to be the control parameter.

In the case V!¥, the internal noise can be ignored and the
time evolution of the reactant concentrations can be described
by the following deterministic Equations (1):

dx
dt

¼ ða1�a2Þ
V

ð1aÞ

dz
dt

¼ ða3�a4Þ
V

ð1bÞ

Table 1. Stochastic processes and corresponding rates for intracellular Ca2+

dynamics.

Stochastic Processes Reaction Rates

X!X+1 a1=V1

�
n0+nc

P
k0þP+

akr ðx,PÞ
b z

�
, where

kr(x,P)=k1

�
d2ðd1þPÞPx

ðdpþPÞðdaþxÞ½d2ðd1þPÞþxðd3þPÞ	

�
3+k2

X!X�1 a2=V1

�
n4

x2

k2
4þx2 +

akr ðx,PÞ
b (1+b)x+an3

x2

k2
3þx2

�

Z!Z+1 a3=V1

�
n+nc

P
k0þP

�

Z!Z�1 a4=V1nc
x2

k2
4þx2

Note: Parameter values are a=2.0, b=0.2, 1=0.02 mm�1, n0=0.2mms�1,
nc=4.0mms�1, n3=9.0mms�1, n4=3.6mms�1, k0=4.0mm, k3=0.12mm, k4=

0.12mm, d1=0.3mm, d2=0.4mm, d3=0.2mm, dp=0.2mm, da=0.4mm, k1=

40.0 s�1, k2=0.02 s�1. See Ref.[17] for more details.
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With the variation of the control parameter P, this determin-
istic equation undergoes a Hopf bifurcation at P
1.45 mm,
above which calcium oscillations appear and below which only
stable steady state can be observed. Figure 1 displays the bi-

furcation diagram for Equation (1) in the vicinity of P=
1.45 mm, where the solid lines give the maxima and minima of
the oscillations (left axis), and the dash line shows the corre-
sponding frequency of the oscillation (right axis). One notes
that the diagram can be divided into three regions. In
region 1, no deterministic oscillation exists. In region 2, oscilla-
tion appears but the amplitude is quite small and increases
gradually with the increment of P. In region 3, the oscillation is
spike-like with large and nearly constant amplitude. Corre-
spondingly, the oscillation frequency first decreases in region 2
and then keeps nearly constant in region 3. Notice there is a
sharp inflexion at P
1.47mm. One will see that such a bifurca-
tion character maybe the very reason of the system-size bireso-
nance phenomenon, as shown below.

However, for a typical living cell with V
103mm3, such a de-
terministic description is not strictly valid due to the existence
of considerable internal noise. Basically, one should describe
the reaction system as a birth±death stochastic process gov-
erned by a chemical master equation, which describes the
time evolution of the probability of having a given number of
X and Z. There is no general procedure to solve this master
equation analytically, but it provides the starting point for nu-
merical simulations. Under certain circumstances, it is also rea-
sonable to approximate the reaction processes by a chemical
Langevin equation (CLE). In our previous study, we have
shown that it is convenient to use the CLE to study the effect
of the internal noise caused by the small system size.[12] Ac-
cording to Gillespie, the CLE for the current model reads
[Equations (2)]:

dx
dt

¼ 1
V

�
ða1�a2Þ þ

ffiffiffiffiffi
a1

p
x1ðtÞ�

ffiffiffiffiffi
a2

p
x2ðtÞ

�
ð2aÞ

dz
dt

¼ 1
V

�
ða3�a4Þ þ

ffiffiffiffiffi
a3

p
x3ðtÞ�

ffiffiffiffiffi
a4

p
x4ðtÞ

�
ð2bÞ

where xi=1º4(t) are Gaussian white noises with hxi(t)i=0 and
hxi(t)xj(t’)i=dijd(t�t’). Note the reaction rates ai are proportion-
al to V, such that the internal noise items in the CLE scales as
1/

ffiffiffi
V

p
. In the following, we will use the CLE to study the effects

of the system size V.

Results and Discussion

We numerically integrate Equation (2) using the standard pro-
cedure for stochastic differential equations with a time step of
0.01 s.[18] In regions 2 and 3, where deterministic oscillations
exist, the effect of internal noise is destructive, that is, it makes
the deterministic oscillation noisy, leads to phase diffusion, and
reduces the correlation time of the oscillation.[19] Therefore, we
tune the control parameter P in region 1 but close to the Hopf
bifurcation (HB) point, where the deterministic system does
not sustain oscillation. Often, in such subthreshold cases, noise
can play interesting and constructive roles.

For a given subthreshold parameter P<Pc=1.45, the behav-
ior of Equation (2) depends strongly on the system size V. If V
is large enough, the effects of internal noise is negligible and
the system show ™deterministic∫ behavior, that is, no oscillation
can be observed. When V decreases, however, ™stochastic∫ os-
cillations can be found in this region. Such stochastic oscilla-
tions are quite distinct from random noise in that there is a
clear peak in its power spectrum. If V is too small, internal
noise dominates and no pronouncing peak can be found in
the power spectrum. Therefore, unlike in regions 2 and 3, the
dynamic behavior in region 1 is quite interesting: on one
hand, the existence of internal noise can lead to stochastic os-
cillation which is absent in the deterministic system; on the
other hand, there are optimal values of V where the stochastic
oscillations show the best performance, that is, where system-
size resonance occurs.

To quantitatively measure the relative performance of the
stochastic oscillations, it is convenient to define an effective
signal-to-noise ratio (SNR) as in ref. [13] . Then we can draw the
dependence of the SNR on the system size V to demonstrate
the system-size resonance. When we do this for P=1.3, rather
interestingly, we find two clear maxima in the SNR±V curve, as
shown in Figure 2. Based on the discussion in the last para-
graph, this is a kind of system-size biresonance (SSBR).

The stochastic oscillations corresponding to the two peaks
are of different nature. In Figure 3, the time behaviors for V=
103 and 106 are shown. For V=103, where the first peak lo-
cates, the stochastic oscillation is spikelike with a low frequen-
cy. But for V=106, the stochastic oscillation is of small ampli-
tude and larger frequency. The corresponding power spec-
trums for these stochastic oscillations are shown in Figure 3 c,
where the curves are already smoothed by a nearest averaging
over 50 points of the original data. The time series used to cal-
culate the power spectrums contains 16 384 data points with
time interval 1 s. The dependence of the frequencies of the
stochastic oscillations, obtained by the principle peak in the
power spectrum, is also shown in Figure 2 (right axis). There-
fore, it seems that larger internal noise for smaller V tends to
drive the system into the deterministic region 3 and induce

Figure 1. Bifurcation diagram for the deterministic model.The solid squares
denote the maximum and minimum of the deterministic oscillation range (left
axis), and the stars correspond to frequency (right axis). It is shown that the pa-
rameter space of P= IP3 concentration is divided into three distinct regions.
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spike-like stochastic oscillations, while smaller internal noise for
larger V can only induce stochastic oscillations with a small
amplitude, like those in region 2. Hence, it is the distinct bifur-
cation feature of the system that leads to this kind of bireso-
nance phenomenon.

To get more insight into the mechanism of the SSBR, we
have also studied how the peak height (Figure 4 a) and peak
position (Figure 4 b) change with the control parameter P. With
the increase of P, the heights of both peaks increase monotoni-
cally. We note that before P
1.32, the first peak is always
higher than the second one. Therefore in a quite wide parame-
ter region, where the deterministic dynamics does not show
oscillations, small-sized cells can respond to external stimulus
with spike oscillations. On the other hand, as shown in Fig-

ure 4 b, the position of the second peak increases obviously
with P, but the first peak remains nearly constant at V
103. It
is interesting to note that this size is of the same order as the
living cells in vivo, and the stochastic oscillations correspond-
ing to the first peak is of a spike type, which is the most popu-
lar form of intracellular calcium signaling.

How the SSBR behavior can have implications for living cel-
lular functions is still an open question. At the current stage,
three points may be addressed. On one hand, the existence of
stochastic oscillations indicates that intracellular calcium oscil-
lations can sustain in a much more parameter range than
those predicted by the deterministic model, that is, it shows
strong robustness to external stimulations which should be of
benefit for their proper functions. On the other hand, due to
the fact that the first resonance occurs at nearly constant cell
size V~103, and this size is of the same order of real living cells
in vivo, could we imagine that the kinetic coefficients of the
mechanism have evolved to be optimal for the size of a cell?
Finally, the specific relationship of the biresonance behavior
with the deterministic bifurcation features indicate that any
model of calcium signaling should take careful account into
the internal noise, as well as external noise. We hope that our
study can open more perspectives in the future works.

Conclusions

To summarize, we have studied the influence of cell size on in-
tracellular calcium oscillations in hepatocytes using chemical
Langevin equations. We show that, in the region where deter-
ministic oscillations do not exist, stochastic oscillations can be
induced by the internal noise that results from the small
system size. Interestingly, the performance of such stochastic
oscillations undergoes two peaks with the variation of the
system size V, showing the occurrence of system-size bireso-
nance. The stochastic oscillations corresponding to these two
peaks have different natures, namely, one is of large amplitude
with small frequency and the other small amplitude with large

Figure 2. The SNR (left axis) and the corresponding principle frequency (right
axis) of the stochastic oscillations for P=1.3, obtained by numerical simula-
tions of Equation (2). The clear double peaks in the SNR curve indicate the oc-
currence of system-size biresonance. From the frequency values, we see the sto-
chastic oscillations regarding the two peaks have different natures.

Figure 3. The stochastic oscillations for two typical system size for P=1.3. a)
V=103, stochastic spikes are observed. b) V=106, the system shows small am-
plitude stochastic oscillation. c) Power spectrum densities (PSD) for the stochas-
tic oscillations shown in (a) and (b). It is observed that there is a clear peak in
the PSD for both time series, and the principle frequency is different.

Figure 4. The dependence of the heights (a) and positions (b) for the resonance
peaks 1 and 2 on the IP3 level. For peak 2, both the height and position move
to larger values when the control parameter approaches the Hopf bifurcation.
For peak 1, the peak position remains nearly constant.
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frequency, which is relevant to the deterministic bifurcation
features. More importantly, we find that the position of the
first peak, where stochastic spike-oscillations are observed, re-
mains nearly constant at V
103 for a wide range of external
stimulation levels. This robustness might have quite interesting
implications for calcium signaling processes in vivo.
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