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The study of noise-induced constructive effects in nonlinear
dynamic systems, especially stochastic resonance (SR)-like phe-
nomena, has attracted great research interest.[1, 2] Very recently,
the frontier of this interest has shifted to a new and quite in-
teresting SR-like phenomenon, system size resonance.[3–13] On
the one hand, it was demonstrated that the collective behavior
of an array of coupled noisy dynamic elements may be the
most ordered when the system size—here the number of ele-
ments is N—has an optimal value.[3–5] In such a case, the noise
is external, and the system size N plays a role in changing the
effective noise strength that is subjected to the mean field. For
example, system-size stochastic resonance was found in an en-
semble of coupled noisy bistable elements subjected to a
small periodic force,[3] and system-size coherent resonance was
demonstrated in a one-dimensional lattice of diffusively cou-
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pled excitable neurons in the absence of an external signal.[4]

On the other hand, for oscillating chemical reactions taking
place in small-scale systems, stochastic oscillations can be ob-
served and there is an optimal system size at which such sto-
chastic oscillations show the best performance.[6–12] In such
small systems, the numbers of the reactant molecules are
often low and the internal noise resulting from the stochastic
reaction events must be considered. It was reported that ion-
channel clusters of optimal sizes can enhance the encoding of
a subthreshold stimulus,[6–7] and optimal intracellular calcium
signaling appears at a certain size or distribution of the ion-
channel clusters.[8–10] In recent studies, by using a circadian-
clock model and the Brusselator model, we have shown that
the internal noise can induce stochastic oscillations in the
region close to the deterministic oscillatory dynamics, and an
optimal system size V exists for such stochastic oscillations,
which are characterized by a clear maximum in the signal-
to-noise ratio (SNR).[11,12] Similar results were also obtained for
intracellular calcium signaling processes, where a stochastic,
internal system-size resonance of calcium oscillations was
found for a noise strength that matches the cell size of a
real living cell.[13] To outline, a chain of N coupled noisy dynam-
ic elements may show system-size N resonance, and a meso-
scopic chemical oscillator of size V can show system-size V res-
onance. Note that the first one only accounts for external
noise so far, and the second one results from the internal
noise.
An interesting question arises: For coupled small-scale dy-

namic systems, can two such kinds of “size resonance” coexist?
To answer this, we have studied the collective dynamical be-
havior of an array of N coupled Hodgkin–Huxley (HH) neu-
rons,[14] with each neuron a membrane patch size S. We not
only consider the effects of internal channel noise (hence the
patch size), but also those of the number of elements. Interest-
ingly, we find that for a given number of neurons, N, there is
an optimal patch size, S, where the collective behavior has a
maximum order, and for a given patch size S, there is also an
optimal value of N at which the collective behavior shows the
best performance. Therefore, for the coupled HH neurons con-
sidered here, there is a kind of double-system-size resonance.
According to the well-known HH neuron model, the ion cur-

rent across the biological membrane is carried mainly by the
motion of sodium (Na+) and potassium (K+) ions through se-
lective and voltage-gated ion channels embedded across the
membrane. In addition, there is a leakage current present that
is associated with other ions. Consequently, in the presence of
an external stimulus. I(t), the temporal evolution of the trans-
membrane potential V(t) for a single neuron is governed by
the differential Equation (1),

C
dV
dt

¼ �gNam
3hðV�VNaÞ�gKn

4ðV�VKÞ�gLðV�VLÞ þ IðtÞ ð1Þ

where gNa=120, gK=36, and gL=0.3 mScm�2 denote, respec-
tively, the maximal conductance of the sodium, potassium, and
other remaining ion channels per unit area, C=1 mFcm�2 is
the membrane capacitance per unit area, and VNa=50, VK=

�77, and VL=�54.4 mV are the reversal potentials associated
with sodium, potassium, and leakage conductance, respective-
ly.
According to Hodgkin and Huxley, the conductance of a po-

tassium channel is gated by four independent and identical
gates, of which the probability of opening is denoted by n.
Therefore, the term n4 in Equation (1) denotes the probability
for a potassium channel to remain open. Similarly, sodium
channels are assumed to be gated by three identical gates
with an opening probability m and one additional different
gate with an opening probability h, such that the probability
for a sodium channel to remain open is m3h. To take into ac-
count the internal channel noise, the stochastic gating varia-
bles m, h, and n obey the following Langevin equations
[Eqs. (2a–c)]:[15]

_m ¼ amðVÞð1�mÞ�bmðVÞmþ xmðtÞ ð2aÞ

_h ¼ ahðVÞð1�hÞ�bhðVÞhþ xhðtÞ ð2bÞ

_n ¼ anðVÞð1�nÞ�bnðVÞnþ xnðtÞ ð2cÞ

where xi=m,n,h(t) are Gaussian white noise with hxi(t)i=0,
hxi(t)xj(t’)ii¼6 j=0, and hxi(t)xi(t’)i=Did(t�t’). Di=m,n,h denote the
effective intensity of the internal channel noises, which are in-
versely proportional to the total number of sodium or potassi-
um channels in the membrane patch as follows [Eqs. (3a–c)] ,

Dm ¼ 2
NNa

ambm

am þ bm

ð3aÞ

Dh ¼
2
NNa

ahbh

ah þ bh

ð3bÞ

Dn ¼
2
NK

anbn

an þ bn

ð3cÞ

Here the experimentally determined voltage transition rates
are given explicitly by the expressions Equations (4a–f):[10]

amðVÞ ¼
0:1ðV þ 40Þ
1�e½

�ðVþ40Þ
10 


ð4aÞ

bmðVÞ ¼ 4e½
�ðVþ65Þ

18 
 ð4bÞ

ahðVÞ ¼ 0:07e½
�ðVþ65Þ

20 
 ð4cÞ

bhðVÞ ¼ f1þ e½
�ðVþ35Þ

10 
g�1 ð4dÞ

anðVÞ ¼
0:01ðV þ 55Þ
1�e½

�ðVþ55Þ
10 


ð4eÞ

bnðVÞ ¼ 0:125e½
�ðVþ65Þ

80 
 ð4fÞ

NNa and NK are the total numbers of sodium and potassium
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channels present in a given patch of membrane, respectively.
By assuming that the density of ion channels on the mem-
brane patch is homogeneous, NNa and NK are determined by
using the membrane patch area S via NNa=1NaS and NK=1KS,
where 1Na=60 and 1K=18 mm�2 are the corresponding ion-
channel densities. Note that the intensity of the internal noises
denoted by Equations (3) is inversely proportional to the mem-
brane patch size S, which will be used as the parameter for
system size in the following parts.
Now the dynamics of an array of coupled HH neurons can

be described by Equations (5a) and (5b),

C
dVi

dt
¼ �gNam

3
i hiðVi�VNaÞ�gKn

4
i ðVi�VKÞ�gLðVi�VLÞ

þI þ eðVi�1 þ Viþ1�2ViÞ
ð5aÞ

where

_xi ¼ axi ðViÞð1�xiÞ�bxi ðViÞxi þ xxi ðtÞ ð5bÞ

where x=m,n,h and 1
 i
N. Here N is the number of neurons
and e is the coupling strength. Numerical integration of Equa-
tion (5) is carried out by an explicit Euler method with a time
step of 0.001 ms. Periodic boundary conditions are used and
the parameter values for all the neurons are identical except
for the noise terms xxi ðtÞ. We take a periodic stimulus of the
form I= sin(0.3t). The collective behavior of the array is defined

as the average membrane potential VoutðtÞ ¼ 1
N

PN

i¼1
ViðtÞ.

We first considered the dynamics of a single neuron (N=1).
Actually, the influence of channel noise on a single neuron has
been widely studied, and the main conclusion is that the inter-
nal channel noise can be functionally important for neuron dy-
namics.[6,7,16–18] Specifically, HInggi’s group demonstrated the
occurrence of internal noise stochastic resonance as well as co-
herent resonance in a single neuron, such that the spiking ac-
tivity for a neuron was optimized when the membrane patch
had an optimal size.[7] Similar results have also been obtained
in our present work, and we outline the main points here for
consistency. If the membrane patch size S is too large, the in-
ternal noise is weak, so that the membrane potential only
shows small-amplitude oscillations with very few occasional
firing spikes, as displayed in Figure 1a. If S is too small, al-
though the spike firing becomes more frequently, the internal
noise is large and smears the regularity of the spike train (Fig-
ure 1c). Consequently, for an intermediate membrane patch
size, the spike train is the most regular (Figure 1b). Therefore,
there is an optimal patch size at which the neuron shows the
best spiking activity. To quantitatively characterize the regulari-
ty of the spike train, we have calculated the coefficient of var-
iance, which is defined as the mean square root of the spike
interval T normalized to its mean value, namely,
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hT2i�hTi2

p
=hTi. Note that a spike occurs when the state

variable Vout(t) crosses a certain threshold value from below,
and it turns out that the threshold value can vary in a wide
range without altering the resulting spiking dynamics. The
dependence of R on the patch size S is plotted in Figure 2
(left panel, circles), which shows a clear minimum around

S=1.0 mm2. The measure R could be of biological significance
because it is related to the time precision of information proc-
essing and a smaller value of R means more closeness of the
spike train to a periodic one, where R is obviously zero.
We now turn to the collective behavior of N(>1)-coupled

neurons. The coupling strength was e=2.5 if not otherwise
specified. Again we measured the regularity of the array’s dy-
namics by use of the factor R. On the one hand, for given
number of elements, we find that R always undergoes a mini-
mum with the variation of the patch size S. For example, the
R~S curves for N=11 and 21 are also shown in Figure 2 (left).
Therefore, the collective behavior of the ensemble shows reso-
nance with the size of each element. On the other hand, for a
given patch size S, R also goes through a minimum when the
array size N changes, as depicted in Figure 2 (right). Therefore,
the system’s dynamics also show resonance with the network
size. We can say that the system shows “double-system-size res-
onance”.
To obtain a global view, we have performed detailed numer-

ical simulations with N and S, scanning a wide range of differ-

Figure 1. The membrane potential Vout(t) for a single neuron (N=1) with differ-
ent patch size S. a) log(S)=2.1, b) log(S)=0.3, c) log(S)=�1.25 (the unit of S is
mm2). A regular spike train is observed for the intermediate patch size. T1, T2,
and T3 in (a) give examples of the spike interval.

Figure 2. The dependence of R on the patch sizes S for given array size N (left),
and on N for given S (right). The coupling strength is e=2.5. Two types of “size
resonance” are observed.
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ent values. Consequently, we find a clear “optimal island”
inside the N~V parameter plane where the value of R reaches
the bottom of a valley, as displayed in Figure 3a for e=2.5. An
optimal number of coupled neurons with an optimal mem-
brane patch size shows the best collective spiking activity.
In real systems, the coupling strength is also an important

parameter, and the collective behavior of the coupled system
may strongly depend on the coupling strength. In Figure 3,
the influences of the coupling strength on the double-system-
size resonance are shown. Evidently, the qualitative behavior is
robust to the change of the coupling strength, although the
position of the optimal island shifts toward the direction of
larger values of N when e increases.
Such a double-system-size-resonance phenomenon may

have interesting implications for neuron dynamics in vivo. On
the one hand, internal channel noise must be taken into ac-
count for neuron dynamics since the membrane patch size is
small and the biochemical reactions associated with the chan-
nel gating processes are of a stochastic nature. A variety of im-
portant effects of channel noise in the dynamics of an isolated
neuron have been reported, including stochastic resonance,[2]

enhanced synchronization,[16] etc. On the other hand, it is
found that in the central nervous system of higher animals,
single neurons rarely matter and information is most likely to
be processed using populations of cells.[19] Therefore one
should study the collective behavior of coupled neurons rather
than a single neuron. In our present work, we find that for
such a coupled system, to reach the best collective behavior
(here the spiking activity), both the size of the element and
the network should have an optimal value. At the current
stage, we are not able to find examples of such observations
in the literature; however, we hope our work might open up
further perspectives in the study of such an issue.
In conclusion, we have studied the collective dynamics of an

array of coupled identical HH neurons, taking into account the
internal channel noise resulting from the stochastic gating

processes in the small membrane patch size. The ef-
fects of the patch size (hence internal noise) and the
array size (the number of neurons) on the spiking ac-
tivity of the averaged membrane potential are nu-
merically studied. It is found that two system-size
resonances occur, namely, the spiking behavior is the
most regular when each neuron has an optimal
patch size or the array size has an optimal value.
Consequently, if both the patch size and array size
have optimal values, the spiking will be at its highest
regularity. We show that such a phenomenon of
double-system-size resonance is robust to the varia-
tion of coupling strength. Our findings might find in-
teresting and important applications for information
processing in real neural systems.
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Figure 3. The contour plot of R as a function of N and S for different coupling strengths :
e=2.5, 3.75, 5.0, 6.25, 7.5, and 8.75. Note that the maximum values of N are different in
these pictures: Nmax=21 in the upper row and Nmax=31 in the lower row.
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