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Optimal network size for Hodgkin–Huxley neurons
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Abstract

The collective behavior of an array of coupled Hodgkin–Huxley neurons, which are subject to subthreshold sig
external noise, is investigated by numerical methods. It is found that the network size, the number of Hodgkin–Huxley
in the network, has an optimal value, at which the collective behavior shows the best performance. The value of the
network size goes up when the coupling strength increases. Such a nontrivial dependence on the network size is not found i
only consider the response of an individual neuron in the network.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Hodgkin–Huxleymodel, a standard model of a ne
ron, is described by the Hodgkin–Huxley equatio
(HHE) [1], which are the standard mathematical to
in study dynamical behavior of biologically realist
neurons. In the last two decades, great attention
been paid to the constructive effects of noise (exte
or internal) on this nonlinear dynamic system, eith
isolated or coupled together[2–7]. A lot of interest-
ing phenomena have been found, such as stoch
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resonance (SR)[2,3], which shows that the respon
of a stochastic generalization of the HHE to a pe
odic forcing can exhibit a resonance-like depende
on the noise intensity, coherence resonance (CR
autonomous SR[4,5], where the system may have
maximal regularity in the present of noise even wi
out external signal, and noise induced synchroniza
between an applied current stimulus and the spike
namics of a cluster of ion channels[6], and noise
induced synchronization between coupled Hodgk
Huxley neurons[7], and so on. Some effects amo
those mentioned above have been observed in
merous experiments, and they may be very imp
tant for the signal processing in neuron system
vivo. The study of the Hodgkin–Huxley model is st
.
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going on, and new phenomenon is expected to
found.

Very recently, a new and quite interesting S
like phenomenon, system size resonance, has ga
much attention[2,8–16]. So far, mainly two types o
‘size resonance’ have been reported. On one hand
chemical oscillating reactions taking place in sm
scale systems, stochastic oscillations can be obse
and there is an optimal system size such that the sto
chastic oscillations show best performance[2,8–13].
For example, it was reported that ion-channel cl
ters of optimal sizes can enhance the encoding
subthreshold stimulus[2,10], and optimal intracellu-
lar calcium signaling appears at a certain size or
tribution of the ion-channel clusters[11,12]. On the
other hand, Pikovsky et al. showed that in an array
coupled noise-driven bistable systems subjected t
external periodic forcing, an optimal response is
tained when the number of elements in the system
an optimal value[14]. Similar effects have also bee
reported in Refs.[15,16]. This effect was explaine
by reduction to the usual phenomena of stochastic
coherence resonances with an effective noise inten
depending on the number of coupled elements.
authors of Ref.[14] speculate that one possible fie
of application of this system size resonance is the n
ronal dynamics, in which the neuronal connections
the coupling strengths between neurons can be tu
in order to achieve maximum sensitivity to extern
signals.

Motivated by the biological applications sugges
in [14], we expect that this kind of system size re
onance can also be observed in coupled Hodgk
Huxley neurons. Thus in the present Letter, we c
sider the collective dynamic behavior of an array
linearly coupled Hodgkin–Huxley neurons, each sub
jected to uncorrelated external noise. We show tha
an optimal network size, the number of neurons,
collective behavior of the system has a maximal ord
The effect of coupling strength has also been inve
gated.

2. Model and results

In this Letter, we consider an ensemble of Hod
kin–Huxley neurons, which are coupled into a on
dimensional regular network. The dynamics of t
system can be described by,

C
dVi

dt
= −gNam

3
i hi(Vi − VNa) − gKn4

i (Vi − VK)

− gL(Vi − VL) + I + Dξi(t)

+ ε(Vi−1 + Vi+1 − 2Vi),

ṁi = αmi (Vi)(1− mi) − βmi (Vi)mi,

ḣi = αhi (Vi)(1− hi) − βhi (Vi)hi ,

(1)ṅi = αni (Vi)(1− ni) − βni (Vi)ni , 1 � i � N,

whereVi(t) is the transmembrane potential ofith neu-
ron, of which the temporal evolution is governed
the first differential equation of(1). mi , hi , and ni

are corresponding gating variables (probabilities)gov-
erned by two-state, “opening–closing” dynamics,
shown in the last three equations of(1). The experi-
mentally determined voltage transition rates are gi
explicitly by the expressions

αmi (Vi) = 0.1(Vi + 40)

1− exp[−(Vi + 40)/10] ,
βmi (Vi) = 4 exp

[−(Vi + 65)/18
]
,

αhi (Vi) = 0.07 exp
[−(Vi + 65)/20

]
,

βhi (Vi) = {
1+ exp

[−(Vi + 35)/10
]}−1

,

αni (Vi) = 0.01(Vi + 55)

1− exp[−(Vi + 55)/10] ,
(2)βni (Vi) = 0.125 exp

[−(Vi + 65)/80
]
.

C = 1 µF/cm2 denotes the membrane capacitance
unit area;gNa = 120 mS/cm2 andgK = 36 mS/cm2

are maximum conductance of the sodium and po
sium channel per unit area,respectively; and the con
stantgL = 0.3 mS/cm2 stands for the maximum leak
age conductance per unit area which is associated
the remaining ion channels. Moreover,VNa = 50 mV,
VK = −77 mV andVL = −54.4 mV are the rever
sal potentials associated with sodium, potassium,
leakage conductance, respectively.I represents a per
odic stimulus current delivered externally to the ne
ron, which readsI = 6.0 + sin(0.3t) in the presen
Letter.N is the number of the system’s elements,ε is
the coupling strength,D is the noise strength of th
external Gaussian white noiseξi(t) with zero mean
value and unit variance.Periodic boundary condition
are adopted in our numerical simulations. To study
collective response of the coupled system, we in
duce the average transmembrane potentialVout(t) =



M. Wang et al. / Physics Letters A 334 (2005) 93–97 95

:

es.

a-
d

he

s

s.

u-
nce
ise,
n in
ith
f

t of

in-
ach

ore

u-

In this

the
her
her-
-

Fig. 1. The spike trains of the outputVout of a sin-
gle Hodgkin–Huxley neuron for different noise strengths
(a) log(D) = 1.0, (b) log(D) = 0.2, (c) log(D) = −0.5. With
the noise strengthD increasing, the number of the spikes increas

1
N

∑N
i=1 Vi(t) as the signal output. Numerical integr

tion of Eq.(1) is carried out by explicit Euler metho
with a time step 0.001 s.

For a single Hodgkin–Huxley neuron (N = 1),
Ref. [17] already discussed the bifurcation in t
Hodgkin–Huxley neuron to a constantI in the absence
of noise (D = 0), from which we know that there i
only a globally stable fixed point forI < Ic = 6.2.
For I larger thanIc, one observes potential spike
Therefore the periodic stimulusI = 6.0 + sin(0.3t)

is a subthreshold signal for the Hodgkin–Huxley ne
ron to trigger a large-amplitude spike in the abse
of noise. However, in the presence of external no
noise-induced spikes can be observed as show
Fig. 1, and the number of the spikes increases w
the increment ofD. To characterize the regularity o
the spike train, we have calculated the coefficien
varianceR, which is defined as follow,

(3)R =
√〈T 2〉 − 〈T 〉2

〈T 〉
here〈T 〉 and〈T 2〉 are the mean and mean-squared
terspike intervals, respectively, and a spike occurs e
time Vout crosses 0 mV form below. Note thatR rep-
resents a measure of the spike coherence. The m
ordered is the spike train, the smallerR is obtained.
For a purely periodic signal,R equals zero.

Let us now study the effects ofN and D on the
array of coupled Hodgkin–Huxley neurons by calc
lating the spike coherenceR of the spike train ofVout.
The results forε = 2.0 are depicted inFig. 2. In
(a)

(b)

Fig. 2. (a) The spike coherenceR versusD for given N . (b) The
spike coherenceR versusN for given D. (a) and (b) display the
stochastic resonance and system size resonance, respectively.
picture, the coupling strength isε = 2.0.

Fig. 2(a), we show how the spike coherenceR depends
on the noise intensity for fixed network sizeN = 1,9,
and 17. All the curves show that spike coherenceR

has a minimum for a certain noise strengthD, namely,
there is an optimal external noise level at which
collective behavior is the most ordered. On the ot
hand, we have also investigated how the spike co
ence changes with the network size when the noise in
tensity is fixed. For instance, the results for log(D) =
0.5, log(D) = 0.7 and log(D) = 0.9, are displayed in
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Fig. 3. The spike coherence as a function ofN andD for different coupling strength: (a)ε = 2.0, (b)ε = 4.0, and (c)ε = 6.0.
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Fig. 2(b). Clearly, the spike train is the most regu
when the network sizeN has an optimal value, demon
strating the existence of system size resonance. To
a global view, we have scan the network sizeN and
noise strengthD simultaneously over a relatively wid
parameter range, keeping other parameters unchange
The results are shown inFig. 3(a) for ε = 2.0. We
see a clear ‘optimal island’ in theN–D parameter
plane where the value ofR reaches the bottom of
valley, indicating that the collective behavior beco
even better ordered when both the network size
the external noise have optimal values, i.e.,optimal
number of neurons subjected to optimal external noise
works the best for their collective information process-
ing.

To further demonstrate this behavior, we have a
investigated the effect of the coupling strength, and
results are also shown inFig. 3. ForFig. 3(b) and (c),
the coupling strength readε = 4.0 andε = 6.0, re-
spectively. For different coupling strength we obtain
similar results, except that the island’s position sh
along the direction of the increasing network sizeN

and the coupling strength.
In addition, we find that the existence of an o

timal network size, i.e., the system size resonan
depends on the choice of dynamical behavior unde
vestigation. In the present Letter, we have focused
t

the collective dynamics defined by the average tra
membrane potential, as those done in the study
system size resonance of coupled bistable or excit
elements. However, such a nontrivial dependence
the network size does not occur if we only consid
the dynamics of an individual neuron in the netwo
We have also calculated the averaged spike coher
〈R〉 = 1

N

∑N
i=1 Ri , hereRi is the coefficient of vari-

ance of theith individual neuron. The results are d
played inFig. 4, where the parameters are same
those inFig. 2. As shown inFig. 4(a), an optimal noise
strength still exists for a given network size. But
Fig. 4(b), one does not see minima in theR–N curves,
indicating that the there is no optimal network s
at which the individual neuron’s behavior has ma
mal order.Fig. 4(c) depicts the spike coherence a
function of network size and external noise. No op
mal island exists in this case. Therefore, only when
consider the network as a whole, can one find the r
nance with the network size. The main reason for
difference between a single neuron in the network
the network as a whole in that the neurons do not sp
synchronously. Of course, when the coupling stren
is very strong, the network will reach a complete sy
chronized state, such that the response of an indivi
neuron and the whole network may behave the s
with the change of the network size[18].
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Fig. 4. The averaged spike coherence〈R〉, which is defined as〈R〉 = 1
N

∑N
i=1 Ri . (a) 〈R〉 versusD for different given network size:N = 1,9,

and 17. (b)〈R〉 versusN for different given external noise strength: log(D) = 0.5,0.7, and 0.9. (c)〈R〉 as a function ofN andD.
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3. Conclusion

In conclusion, we have studied the collective d
namics of Hodgkin–Huxley neurons on regular on
dimensional network by numerical simulation me
ods. We find that the collective behavior of the syst
is the most regular when the network size, here is
number of the neurons in the network, has an opti
value. The effect of the coupling strength has also bee
investigated, and the existence of an optimal networ
size is robust. The value of the optimal network s
becomes larger when the coupling strength increa
In addition, we find that such an optimal network s
does not exist if we investigate the response of an i
vidual neuron in the network rather than the collect
dynamics. Hence, optimal number of neurons wo
the best for their collective information processin
Since many real neuronal systems may be coupled
network and response to the external single as a wh
our study may be useful to understand how the n
ronal network works in praxis.
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