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Abstract

We have constructed a mesoscopic stochastic model for a synthetic gene network, and studied how the internal noise would influ-

ence the genetic oscillations of such a system. We find that the internal noise can play rather constructive roles via a mechanism of

internal noise stochastic resonance, i.e., the stochastic genetic oscillations can show best performance at an optimal internal noise

level. Since the magnitude of the internal noise is determined by the system size, this phenomenon also demonstrates a kind of sys-

tem size resonance.

� 2004 Elsevier B.V. All rights reserved.
1. Introduction

It is well known that many regulatory molecules act

at rather low concentration in the processes of gene

expression, leading to large random fluctuations on the

reaction rates of the processes [1,2]. Since Arkin and
co-workers [3] realized that the reactions underlying

gene expression occur in abrupt stochastic bursts rather

than successive deterministic manner, it has been real-

ized that in various systems the intrinsic noise of gene

expression is inherent and should be paid considerable

attention [4]. Experimentally, the phenotypic noise in a

single gene was differentially measured, which was the

first direct experimental evidence of the biochemical ori-
gin of phenotypic noise [5]. Furthermore, the intrinsic

noise of an autoregulatory genetic module was predicted

and measured using an integrated approach [6]. Espe-

cially, experiments on eukaryotic gene expression

showed that increased noise in the transcription of a reg-

ulatory protein leads to increased cell–cell variability in

the target gene output, and the noise from transcription

can be modulated at the translational level, highlighting
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a key difference between eukaryotic and prokaryotic

source of noise [7]. Theoretically, the effects of molecular

fluctuations were shown to be prominent and can not be

ignored in models of transcriptional regulation [8,9], cir-

cadian rhythm [10,11] and signal cascades [12]. It was

also found that the fluctuations in the concentrations
of regulatory proteins can propagate through a genetic

cascade [13], which can be used to facilitate the predic-

tion of noise characteristics in networks of arbitrary

connectivity. Meanwhile, the intrinsic and extrinsic con-

tribution to noise in gene expression was investigated

using a theoretical model, which enable us to study these

two types of noise respectively [14].

Up to now, most of the studies accounting for the
intrinsic noise in gene expression focus on how to mea-

sure, characterize and explain the intrinsic noise experi-

mentally or theoretically, and how the system shows

robustness to intrinsic noise by feedback loops or redun-

dancy on viewing the noise as a nuisance. However,

some recent studies have explored the roles of noise in

the dynamics of gene expression, i.e., intrinsic noise

may induce oscillations which are not present in the
deterministic model [15], or induce bifurcations which

have no counterpart in the deterministic description

[16]. More importantly, in some reverse engineering ap-

proaches, some regulatory mechanisms may exploit
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intrinsic noise to randomize outcomes, where variability

is advantageous [2]. In this way, the intrinsic noise can

be used to control a toggle switch [17–19], or a repress-

ilator, in which three gene products inhibit the transcrip-

tion of each other in a cyclic way [20].

Especially, among the studies where the intrinsic
noise systematically facilitates the system properties, it

was found that in a cellular control system intrinsic

noise may enhance the sensitivity of intracellular regula-

tion by stochastic focusing (SF) [12], and that in a genet-

ic control circuit the fluctuations in repressor or

corepressor numbers can improve the control of gene

expression [21]. In addition, it was found that optimal

internal noise effect exists in some sub-cellular system.
Shuai and Jung [22,23] demonstrated that optimal intra-

cellular calcium signaling appears at a certain size or dis-

tribution of the ion channel clusters. In previous studies,

we have also found the constructive roles of internal

noise or optimal system size effects in circadian clock

system [24] and calcium signaling system [25]. Very re-

cently, constructive effects of molecular fluctuations in

a circadian rhythm system have also been studied [26].
Therefore, a straightforward question is: Is there any

constructive roles of internal noise or optimal system

size in mesoscopic gene expression process?

In the present Letter, we investigate the effect of inter-

nal noise on a synthetic gene network model [27], which

is at the basic level of life system [28]. Dissected from

naturally occurring networks to implement particular

functions, synthetic gene networks reduce the complex-
ity within naturally occurring networks, such that theo-

retical studies are possible to help exploring the

evolutionary design principles of their native biological

settings [29,30]. The validity of synthetic gene networks

has been further supported by recent experimental pro-

gress [17–20,31]. In this work, we first construct a meso-

scopic stochastic model for a synthetic gene network,

and then demonstrate that internal noise is advanta-
geous to the system performance in that the stochastic

genetic oscillations can show best performance at an

optimal internal noise level by a mechanism of internal

noise stochastic resonance (INSR). Finally we show that

such an INSR indicates some kind of system size

resonance.
2. Model description

The genetic oscillator model proposed by Hasty et al.

on 2002 [27] consists of two plasmids with the same pro-

moter. On plasmid 1, the promoter controls the cI gene

and thus regulates the expression of the CI protein. On

plasmid 2, the promoter controls the lac gene, and thus

regulates the production of the Lac protein. Interesting
dynamics in the numbers of CI and Lac proteins arises

due to the influence of two of the binding configurations
on the transcriptional rate: (i) when a CI dimer is bound

to OR2 and when OR3* is vacant, the promoter is

turned �on�, that is, its gene is transcribed at an amplified

rate, and (ii) when a Lac tetramer is bound to OR3, the

promoter is turned �off�, that means its gene is not tran-

scribed. See [27] for more details.
The detailed list of reaction processes can be found in

[27]. If quasi-steady-state assumption is taken into ac-

count, there are eight main reaction processes as listed

in Table 1. Here, x and y denote the concentrations of

CI protein and Lac protein, while X and Y represent

the total numbers of CI protein and Lac protein, respec-

tively. M1 and M2 represent the copy numbers of cI and

lac gene, respectively. Di denotes the promoter region of
plasmid type i, where i = 1, 2. kt, kx and ky are rate con-

stants of the processes of protein formation, degrada-

tion of CI protein and Lac protein, respectively. a
represents the degree to which transcription rate is in-

creased when a CI dimer is bound to OR2, and r is

the affinity for a CI dimer binding to OR2 relative to

binding at OR1. We choose the degradation rate con-

stant of Lac protein ky as control parameter.
If internal noise is not taken into account, the dynam-

ics of the system is described by the following determin-

istic equation as in [27]

dx
dt

¼ kt �M1 �
1þ x2 þ arx4

ð1þ x2 þ rx4Þð1þ y4Þ � kx � x

¼ a1 þ a2 þ a3 � a4;

dy
dt

¼ kt �M2 �
1þ x2 þ arx4

ð1þ x2 þ rx4Þð1þ y4Þ � ky � y

¼ a5 þ a6 þ a7 � a8:

ð1Þ

However, due to the finiteness of system size, the
internal noise must be taken into account. Therefore,

such a deterministic description is no longer valid. Intu-

itionally, one can describe such reaction system as a

birth–death stochastic process governed by a chemical

master equation. Generally, there is no practical proce-

dure to solve chemical master equation analytically, but

it still provides the basis for numerical simulation. One

of the widely used simulation algorithm is exact stochas-
tic simulation method introduced by Gillespie in 1977

[32], which stochastically determines what is the next

reaction step and when it will happen according to the

transition probability of each reaction event. This simu-

lation method exactly accounts for the internal noise.

For the present model, the eight reaction steps and cor-

responding transition rates are listed in Table 1; one

should note that the transition rates are proportional
to the system size V. Although the exact stochastic sim-

ulation method has been widely used to study the effects

of internal noise in many systems, it is too time-consum-

ing when the system size is large. Recently, Gillespie

developed the s-leap method [33] that randomly deter-



Table 1

Reaction steps and corresponding transition rates involved in the model

Reaction steps Description Transition rates

D1 ! D1 + X Generation of CI protein from cI gene W 1 ¼ a1 � V ¼ kt �M1 � 1
ð1þx2þrx4Þð1þy4Þ � V

D1X2 ! D1X2 + X W 2 ¼ a2 � V ¼ kt �M1 � x2
ð1þx2þrx4Þð1þy4Þ � V

D1X2X2 ! D1X2X2 + X W 3 ¼ a3 � V ¼ kt �M1 � arx4
ð1þx2þrx4Þð1þy4Þ � V

X ! Degradation of CI protein W4 = a4 Æ V = kx Æ x Æ V = kx Æ X
D1 ! D1 + Y Generation of Lac protein from lac gene W 5 ¼ a5 � V ¼ kt �M2 � 1

ð1þx2þrx4Þð1þy4Þ � V
D1X2 ! D1X2 + Y W 6 ¼ a6 � V ¼ kt �M2 � x2

ð1þx2þrx4Þð1þy4Þ � V
D1X2X2 ! D1X2X2 + Y W 7 ¼ a7 � V ¼ kt �M2 � arx4

ð1þx2þrx4Þð1þy4Þ � V

Y! Degradation of Lac protein W8 = a8 Æ V = ky Æ y Æ V = ky Æ Y

Parameter values that remain unchanged during simulation: kx = 2.625, M1 = 50, M2 = 1, a = 11, r = 2.
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mines how many steps will take place for each reaction

channel in the next �macro-infinitesimal� time interval s.
It has been proved that the s-leap method is a rather

good approximation of the exact method when the sys-

tem size is large. Therefore, it is advisable for us to use

the exact stochastic simulation method when the system

size is small enough and employ the s-leap method when

the system size is too large for the exact stochastic sim-
ulation method.

In addition, a further alternative method to study the

internal noise is chemical Langevin (CL) method, which

was also proposed by Gillespie [34]. It was proved that

the chemical Langevin equation (CLE) is a rather good

approximation if a �macro-infinitesimal� time scale exists

in the system. From the form of CLE one can easily see

that the internal noise is related to the system size and
the parameter values, as well as the state variables that

evolve with time scale. To further facilitate the simula-

tion and show robustness of our results, we have also

performed studies based on the CLE. For the present

model, the CLE reads

dx
dt

¼ a1 þ a2 þ a3 � a4 þ
1
ffiffiffiffi

V
p ð ffiffiffiffiffi

a1
p � n1ðtÞ þ

ffiffiffiffiffi

a2
p � n2ðtÞ

þ ffiffiffiffiffi

a3
p � n3ðtÞ �

ffiffiffiffiffi

a4
p � n4ðtÞÞ;

dy
dt

¼ a5 þ a6 þ a7 � a8 þ
1
ffiffiffiffi

V
p ð ffiffiffiffiffi

a5
p � n5ðtÞ þ

ffiffiffiffiffi

a6
p � n6ðtÞ

þ ffiffiffiffiffi

a7
p � n7ðtÞ �

ffiffiffiffiffi

a8
p � n8ðtÞÞ:

ð2Þ
Here, a1–a8 are the transition rates per volume listed in

Table 1, and n1–n8 is Gaussian white noise with zero

mean Æni(t)æ = 0 and correlation of Æni(t) Æ nj(t 0)æ =
dij Æ d(t � t 0). Without the second terms in the brackets

at the right side, the CLE (2) is equivalent with the

deterministic Eq. (1). Therefore, these terms actually de-

note the internal noise. It is quite clear that the

magnitude of the internal noise is proportional to

1=
ffiffiffiffi

V
p

, and they depend not only on the control param-

eter but also on the concentrations of CI and Lac

protein.
3. Results and discussion

It is already well known that noise often plays con-

structive roles near the bifurcation points. We perform

numerical calculation of Eq. (1) using explicit Euler

method with time step 0.001 min and parameters as

listed in Table 1 and find that there exist a supercritical

Hopf bifurcation points at about ky = 0.087 and a sub-
critical one at about ky = 0.177 in this model. Our

numerical simulation will be exerted near the subcritical

Hopf bifurcation point at about ky = 0.177.

In the present work, we focus on the effect of internal

noise when ky is tuned very close to the Hopf bifurcation

point but still inside the steady-state region. If the sys-

tem stays inside the steady-state region and we do not

account for the internal noise, the system would not
oscillate. But if the internal noise is taken into account,

simulation results via the exact stochastic simulation

method, the s-leap method or the CLE, all show sto-

chastic oscillations as displayed in Fig. 1(a). Such sto-

chastic oscillations do not solely contain random noisy

information, for there are clear peaks in their power

spectrums (Fig. 1(b)).

The stochastic oscillation due to internal noise im-
plies some kind of resonance effect. There is no oscilla-

tion in the steady-state region when the internal noise

is not taken into account. On the contrary, if the system

size is too small, the internal noise becomes so large that

sustained oscillation would be overwhelmed by random

noise. Therefore, for some intermediate system size and

corresponding internal noise level, the stochastic oscilla-

tion due to internal noise would be most pronounced. In
Fig. 1(b), one can see the power spectrums for the sto-

chastic oscillation of CI protein concentration of three

different system sizes. The control parameter is

ky = 0.178, which is slightly larger than the right Hopf

bifurcation point. The smoothed curves are obtained

by nearest averaging over 50 points from the original

ones. The time series used to calculate the power spec-

trum contains 16,384 data points with an average time
interval 0.5 min. A Welch window function is used



Fig. 1. (a) The stochastic oscillation of CI concentration for three

different system sizes V = 102, 105 and 109, respectively. The control

parameter isky = 0.178. The curve for V = 100 are obtained from exact

stochastic simulation method, while the other two are obtained by

s-leap method. (b) Corresponding smoothed power spectrums for the

time series in (a), respectively.

Fig. 2. The dependency of SNR and frequency of the peak in PSD on

system size V for ky = 0.178, the above curves are SNR values. Open

circles: data obtained by exact stochastic simulation method for

V < 104, open diamond: results from t-leap method for VP 104, solid

square: data from CL method.

Fig. 3. The dependence of SNR on system size for different choices of

the control parameter. The results are obtained by CL method.
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during the estimation of the power spectrum. One can
see clear peaks in the power spectrum, which means that

the time series contains periodic information. It is clear

that when the system size increases from 100 to 109, both

the signal level and noise background decrease at the

peak. For an intermediate system size 105, the peak is

the most pronounced among them.

To measure the relative performance of the stochastic

oscillations quantitatively, we define an effective signal-
to-noise ratio (SNR) b. See [24] for details about the def-
inition and algorithm. The dependence of b on system

size V for ky = 0.178 is plotted in Fig. 2. One can see a

clear peak is present for system size V�104, which dem-

onstrate the existence of a resonance effect. Since the res-

onance effect is caused by the difference of internal noise,

we call it internal noise stochastic resonance (INSR) [35].

From Fig. 2 one can see good qualitative agreement
among the chemical Langevin method, the exact sto-

chastic simulation method and the s-leap method, either

in the agreement on the SNR values or the frequency at
which the peak appears. Such agreements imply that it is

convenient to use the CLE to study the qualitative ef-

fects of internal noise in a systematic way. Using the

CL method, we have also studied how the SR behavior
depends on the value of the control parameter. The re-

sults are shown in Fig. 3. When the control parameter

becomes closer to the Hopf bifurcation point, the SR

curve becomes higher. One can see the optimal system

sizes are always about 104. It is shown that for those

ky slightly larger than the Hopf bifurcation point, the

internal noise can play constructive role at a moderate

system size. For ky slightly smaller than the Hopf bifur-
cation point, the peak disappears and the SNR increases

monotonically with the increment of system size. In this

case, the internal noise due to small system size always

plays destructive roles.

Our simulation is exerted near the subcritical Hopf

bifurcation point of the system, where the system only
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shows a stable steady state when internal noise is not ac-

counted for. However, once the internal noise is taken

into account, periodic oscillation may be stimulated, so

the sustained oscillation can be observed and it contains

not only random signals of internal noise but also the

inherently system signal. Furthermore, the performance
of such sustained oscillation undergoes a maximum with

the increment of internal noise, which implies the occur-

rence of INSR. Previous studies on genetic regulatory

networks often view noise as a nuisance, so the regula-

tory mechanisms need to show robustness or resistance

to random noise. However, we show here that noise

can play constructive roles via INSR such that the regu-

latory mechanism may exploit the advantage of internal
noise. It was well known that many biological systems

can take advantage of the benefits of noise for nonlinear

transmission and amplification of feeble information,

and here we have expanded such advantageous roles to

the basic level of life system. In addition, from our results

one can see the performance of sustained oscillation is

optimal in V � 103–104. Since the optimal system size ex-

ists in the present model, the biological organism may
learn to adjust the kinetic parameters to make it work

at an optimal size. Since the process of gene expression

is of ubiquitous importance in circadian clock control

and metabolism, the INSR and optimal system size effect

are also remarkable. The next question is how biological

organisms use this advantage to play functional roles in

gene expression or other cellular process, further experi-

mental and theoretical work will be of great help to
answer this question.
4. Conclusion

In conclusion, we have constructed a mesoscopic sto-

chastic model for a synthetic gene network, and studied

the effect of internal noise on the genetic oscillations of
such a system. We find that the internal noise can play

rather constructive roles via a mechanism of internal

noise stochastic resonance, i.e., the stochastic genetic

oscillations can show best performance at an optimal

internal noise level. Since the magnitude of the internal

noise is determined by the system size, this phenomenon

also indicates a kind of system size resonance.
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