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Abstract

A variety of cell types respond to extracellular hormonal signals by repetitive intracellular calcium spikes. Here, by constructing a

mesoscopic stochastic model for intracellular calcium oscillations in hepatocytes, we have investigated the influence of internal noise

on the detection of sub-threshold hormonal signals using chemical Langevin equation (CLE) and Poisson approximation. It is found

that stochastic calcium spikes appear when the internal noise is considered, and the regularity of the spike train undergoes a max-

imum with the variation of the internal noise level, indicating the occurrence of internal noise stochastic resonance (INSR). Since the

magnitude of the internal noise is changed via the variation of the system size, the INSR also represents itself a kind of system size

resonance.

� 2004 Published by Elsevier B.V.
1. Introduction

The constructive roles of noise in nonlinear systems
have gained much attention in the last two decades. It

was demonstrated that there exists a �resonant� noise
intensity at which the response of the system to an

external periodic force is maximally ordered, which is

well-known as stochastic resonance (SR). Since it was

put forward in the 1980s [1], it has been studied in a

variety of systems from physics [2], chemistry [3] to

biology [4–10]. An important application of SR in bio-
logical systems is its ability to enhance the detection of

weak signals, which has been studied experimentally

and theoretically in many systems, e.g., the mechanore-

ceptive system in crayfish [4], human tactile sensation

[5–7], human brain system [8], neuron system [9], hair
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bundle system [10], and so on. It was shown that there

existed an optimal level of noise which results in the

maximum enhancement, whereas further increase or
decrease of the noise intensity only degrades the detect-

ability or information contents.

Nevertheless, most studies so far account for ad hoc

external noise. The system�s dynamics is often described

by a macroscopic deterministic equation, and noise

items are added to the equation either directly or via

the perturbation of parameters. One may control the

intensity and the properties of the external noise at
our own will, without caring about the system�s own

dynamics. However, for chemical reactions taking place

in small scale systems, one must pay much attention to

the internal noise which results from the random fluctu-

ations of the stochastic reaction events. It is generally

accepted that the strength of the internal noise scales

as 1=
ffiffiffiffi
X

p
, where X is the system size. Therefore, for mac-

roscopic systems where X is infinite, the internal noise
can be ignored. But for cellular or sub-cellular reaction

systems where the number of reaction molecules is often
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low [11–14], internal noise must be taken into account.

Recently, the important effects of internal noise in chem-

ical oscillation reaction systems have gained growing

attention. For example, Shuai and Jung [15,16] have

demonstrated that optimal intracellular calcium signal-

ing appears at a certain size or distribution of the ion
channel clusters. Ion channel clusters of optimal sizes

can enhance the encoding of a sub-threshold stimulus

[17,18]. In recent studies, using the Brusselator model

[19] and a circadian clock system [20], we have also

shown that stochastic oscillations occurred when the

internal noise is considered in the region close to the

deterministic oscillatory dynamics and an optimal sys-

tem size exists, characterized by a clear maximum in
the signal-to-noise ratio (SNR) as a function of system

size.

Endocrine system is one of the most major systems in

the exchange of biological information. In the endocrine

system, information is specifically transmitted via the

blood stream. The specificity of signaling arises from

the biochemical structure of the hormones and their

respective receptors. The cellular response upon extra-
cellular hormonal stimulation is mediated by a number

of different intracellular second messenger pathways.

The Ca2+-phosphatidylinositol (PI) signaling pathway

plays a major role in transmembrane signaling in a large

number of cell types [21]. In this pathway, a variety of

cell types can detect the extracellular hormonal signal

through repetitive intracellular calcium spikes, and then

encode information to specifically regulate distinct cellu-
lar functions, such as the activation of protein kinases

[22], the activation of genes [23], and so on. In the last

decades, the response of hepatocytes to hormonal stim-

ulus by intracellular calcium spikes has been numerically

studied experimentally [24] and theoretically [25–27].

However, to our knowledge, the influence of internal

noise on the detection of hormonal signals has not been

studied yet.
In the present Letter, we have constructed a meso-

scopic stochastic model for intracellular calcium oscil-

lations in hepatocytes to investigate the influence of

internal noise on the detection of sub-threshold hor-

monal signals using chemical Langevin equation

(CLE) and stochastic simulations via poissonian

dynamics. By numerically simulations, we find that,

when the extracellular hormonal signal is sub-threshold
to fire calcium spikes, stochastic calcium spikes appear

when the internal noise is considered, and the regular-

ity of the spike train undergoes a maximum with the

variation of the internal noise level, indicating the

occurrence of internal noise stochastic resonance

(INSR). Since the magnitude of the internal noise is

changed via the variation of the system size, the INSR

also represents itself a kind of system size resonance.
Therefore, instead of trying to resist the internal molec-

ular noise, living cells may have learned to exploit it to
enhance the ability to detect weak hormonal signals. It

is also interesting to note that the optimal size is close

to the volume of cytosolic compartment of the real liv-

ing cells.
2. Model description

The model discussed in the present Letter is based on

the receptor-controlled model for intracellular calcium

oscillations in hepatocytes proposed by Cuthbertson

and Chay [25,28]. If the internal noise is ignored, the

model can be summarized by the following equations

[25]:

d½Ga �GTP�
dt

¼kg½Ga �GDP� � 4kp½Ga �GTP�4½PLC�

� hg½Ga �GTP�;
d½DAG�

dt
¼kd ½PLC�� � hd ½DAG� þ ld ;

d½Ca2þ�i
dt

¼q kc
½IP3�3

K3
S þ ½IP3�3

� hc Ca2þ
� �

i
þ lc

( )
;

d½PLC��
dt

¼kp½Ga �GTP�4½PLC� � hp½PLC��;

ð1Þ

in which, [Ga � GTP], [DAG], [Ca2+]i, [PLC*],

[Ga � GDP], [IP3] and [PLC] are the concentrations of

Ga � GTP (G-protein a-subunit bound to GTP), DAG

(diacylglycerol), Ca2þi (intracellular calcium), PLC*

(activated form of Phospholipase), Ga � GDP (G-pro-
tein a-subunit bound to GDP), IP3 (inositol (1,4,5)-tri-

phosphate) and PLC (Phospholipase), respectively.

[Ga � GDP] is related to [Ga � GTP] by the relation

½Ga �GDP� ¼ G0 � ½Ga �GTP� � 4½PLC�� ð2Þ
and [PLC] is related to [PLC*] by

½PLC� ¼ P 0 � ½PLC��; ð3Þ

where G0 is the total concentration of the g-proteins and

P0 is the total concentration of PLC. kg is assumed to be

proportional to the agonist concentration, i.e., the con-

centration of the extracellular hormones. The three ki-

netic parameters kp, hp and kd are assumed to take the

following forms:

kn ¼ k0n
½DAG�2

K2
D þ ½DAG�2

; ð4Þ

where kn = kp, hp or kd. See [25] for the more detailed

descriptions of the model and parameter values.

However, for a typical living cell system, such a deter-

ministic description is no longer valid due to the exis-

tence of considerable internal noise. To investigate the
influence of internal noise, generally, one can describe



Fig. 1. Simple description about how the intracellular calcium oscillations generate when certain hormones bind to their receptors in the plasma

membrane of non-excitable cells. Here, PLC for phospholipase C, IP3 for Inositol (1,4,5)-trisphosphate, DAG for diacylglycerol, and ER for the

endoplasmic reticulum.
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the reaction system as a birth-death stochastic process

governed by a chemical master equation. But there is

no procedure to solve this master equation analytically.

One of the widely used simulation algorithm is exact sto-

chastic simulation method proposed by Gillespie [29],

which stochastically determines what is the next reaction

step and when it will happen according to the transition

rate of each reaction process. In accordance with Gilles-
pie�s method, we introduce the number of intracellular

calcium ions in the cytosol as Z and correspondingly

the population number X of Ga � GTP, Y of DAG

and W of PLC*, respectively, such that the concentra-

tions of the reactants are obtained as

½Ga �GTP� ¼ X
X ; ½DAG� ¼ Y

X ; ½Ca2þ�i ¼ Z
X ; ½PLC�� ¼ W

X
(note that X is the volume of cytosolic compartment of

the cell). Then, using the similar procedure as in [30], the
reactions in the cell can be grouped into ten elementary

processes for the current model. See Fig. 1 for a simple

description of the processes, and Table 1 for the corre-

sponding transition rates. Note that the transition rates

are proportional to the system size X.
Table 1

Stochastic transition processes and corresponding rates

Transition processes Description

(1) X! X + 1 The increase of [Ga � GTP] due to the con

(2) X! X � 4 W! W + 1 PLC* is formed when 4 mol of [Ga � GTP

(3) X! X � 1 A loss of [Ga � GTP] due to the hydrolysis

(4) Y! Y + 1 The production of DAG from PIP2 by the

(5) Y! Y + 1 A �leak� process which keeps DAG at the b

(6) Y! Y � 1 The loss of DAG due to other chemical rea

(7) Z! Z + 1 The increase of [Ca2+]i due to the release o

endoplasmic reticulum (ER) triggered by IP

(8) Z! Z + 1 A �leak� process which keeps the cell at the

the absence of external stimuli

(9) Z! Z � 1 The loss of [Ca2+]i due to the Ca2+-ATPase

(10) W!W � 1 The loss of PLC* due to the hydrolysis of
Although the direct stochastic simulation method is

exact, it is too time-consuming when the system size is

large. To overcome this problem, an alternative meth-

od to study the internal noise was proposed by Gilles-

pie, which reads chemical Langevin equation (CLE)

[31]. It was proved that the CLE is a rather good

approximation if a �macro-infinitesimal� time scale ex-

ists in the system, and in our previous studies [19,20],
we have shown that it is convenient to use CLE to

study the influence of internal noise in a systematic

way, at least in a qualitatively manner. Not long ago,

another method was also put forward, which is �the
Poisson approximation� [32]. Such approximation was

shown to be a more adequate tool to handle systems

with large and small populations indistinctly, and for

smaller system sizes, the Poisson method is more
appropriate. So, when the system size is not large en-

ough, the Poisson approximation is necessary to vali-

date the accuracy of the obtained results from CLE.

According to Gillespie, the CLE for the current model

reads:
Transition rates

version of [Ga � GDP] to [Ga � GTP] a1 = X Æ kg [Ga � GDP]

] is combined with PLC a2 = X Æ kp [Ga � GTP]4[PLC]

to [Ga � GDP] a3 = X Æ hg [Ga � GTP]

action of PLC* a4 = X Æ kd [PLC*]
asal level a5 = X Æ ld
ctions a6 = X Æ hd [DAG]

f Ca2+ from the

3

a7 ¼ X � qkc ½IP3 �3

K3
Sþ½IP3�3

basal level of Ca2+ in a8 = X Æ qlc

pumps a9 = X Æ qhc [Ca
2+]i

the complex back to [Ga � GDP] a10 = X Æ hp [PLC*]
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Fig. 2. (a) Pulsatile hormonal stimulus kg as a function of time t. (b)

Corresponding intracellular calcium response to the stimulus obtained

via Eqs. (1)–(4). (c) Corresponding intracellular calcium response to

the stimulus obtained via Eq. (5) for X = 100 lm3.
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d½Ga �GTP�
dt

¼ 1

X
½ða1 � 4a2 � a3Þ þ

ffiffiffiffiffi
a1

p
n1ðtÞ

� 4
ffiffiffiffiffi
a2

p
n2ðtÞ �

ffiffiffiffiffi
a3

p
n3ðtÞ�;

d½DAG�
dt

¼ 1

X
½ða4 þ a5 � a6Þ þ

ffiffiffiffiffi
a4

p
n4ðtÞ þ

ffiffiffiffiffi
a5

p
n5ðtÞ

� ffiffiffiffiffi
a6

p
n6ðtÞ�;

d½Ca2þ�i
dt

¼ 1

X
½ða7 þ a8 � a9Þ þ

ffiffiffiffiffi
a7

p
n7ðtÞ þ

ffiffiffiffiffi
a8

p
n8ðtÞ

� ffiffiffiffiffi
a9

p
n9ðtÞ�;

d½PLC��
dt

¼ 1

X
½ða2 � a10Þ þ

ffiffiffiffiffi
a2

p
n2ðtÞ �

ffiffiffiffiffiffi
a10

p
n10ðtÞ�;

ð5Þ
where ni = 1, . . ., 10(t) are Gaussian white noises with

Æni(t)æ = 0 and Æni(t)nj(t 0)æ = dijd(t � t 0). Because the reac-

tion rates ai are proportional to X, the internal noise

item in the CLE scales as 1=
ffiffiffiffi
X

p
.

In the following parts, we will mainly use Eq. (5) as

our stochastic model for numerical simulation to study

the influence of internal noise on the detection of sub-

threshold hormonal signals. The Poisson approximation

is also used to show consistency if necessary.
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Fig. 3. The time series of intracellular calcium concentration for

different system size X: (a) X = 4000 lm3, (b) X = 200 lm3, (c)

X = 50 lm3.
3. Simulation and results

It has been demonstrated that, under in vivo condi-

tions, most hormones are secreted in a burst-like or pul-

satile manner [33], i.e., the concentration of extracellular

hormonal signal kg is a function of time t. Recently, a

few studies have been performed under pulsatile hor-

monal stimulus, for example, the discovery of locking

rhythms between the extracellular hormonal stimulus
and intracellular calcium response [25]; external noise

enhanced hormonal signal transduction [26], coding effi-

ciency and information rates in transmembrane signal-

ing [27], etc. Therefore, we will focus on the influence

of internal noise on the detection of pulsatile hormonal

stimulus.

As in [25], we use a square wave pulse to represent the

time-varying extracellular hormonal signal. Eq. (5) was
solved by Eular method with a time step dt = 0.01 s.

The system is stimulated periodically by the hormonal

pulse, which has a base of bs, a height of hs and a dura-

tion of dr. the interval between subsequent pulses is SS.

Here, the signal we used has a typical value in [24],

bs = 0.005 s�1, hs = 0.013 s�1, dr = 10 s and SS = 40 s,

i.e.,

kgðtÞ ¼
hs ¼ 0:013 for ð40j 6 t < 40jþ 10Þ;
bs ¼ 0:005 for ð40jþ 10 6 t < 40jþ 40Þ;

�
ðj ¼ 0; 1; 2; 3; . . . ;NÞ;

as represented in Fig. 2a. This hormonal signal is sub-

threshold to fire intracellular calcium spikes alone (the
threshold to fire calcium spikes is hs = 0.015 s�1; note

that the threshold depends on the values of bs, dr and

SS) such that the cell is at a stable state (Fig. 2b). How-
ever, when appropriate internal noise is considered, con-

tinuous calcium spikes appear, such that the cell system

can detect the weak hormonal signal, and then encode

information to specifically regulate distinct cellular func-

tions. Part of the calcium spike train corresponding to

the system size X = 100 lm3 is plotted in Fig. 2c.

Now, we consider how the intracellular calcium

spikes depend on the level of internal noise. Assuming
that the system size is large, i.e., the internal noise is

too weak, and there would be very few occasional cal-

cium spikes. On the contrary, if the system size is small,

although the spike firing becomes more frequently, the

internal noise is large and smears the regularity of the

calcium spike train. Consequently, for an intermediate

system size, i.e., internal noise level, the calcium spike

train is the most regular (Fig. 3).
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To measure the relative regularity of the calcium

spike train quantitatively, we introduce a coefficient of

variation (R), which is defined as the mean value of

the spike interval T normalized to the mean root,

namely, R ¼ hT iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hT 2i�hT i2

p [34]. Note that a spike occurs

when the intracellular calcium concentration crosses a

certain threshold value from below, and it turns out that

the threshold value can vary in a wide range without

altering the resulting spiking dynamics (the threshold
we define here is 400 nM). The measure R has been fre-

quently used to quantify the regularity of stochastic

spike trains and it could be of biological significance be-

cause it is related to the time precision of information

processing. A larger value of R means more closeness

of the spike train to a periodic one, where R is obviously

1.

The dependence of R on system size is plotted in Fig.
4. A clear maximum is present for system size

X � 200 lm3, which demonstrates the existence of a res-

onance effect. We have also performed stochastic simu-

lations using poissonian dynamics. Good agreement

among the CLE method and the Poisson approximation

is apparent, which implies that the CLE method is con-

venient to study the effect of internal noise and the

robustness of the present results. From the CLE, one
notes that the internal noise item is proportional to

1=
ffiffiffiffi
X

p
if all other parameters are fixed. Therefore, an

optimal system size implies an optimal level of internal

noise. This constructive role of internal noise recalls

one the well-known phenomenon of stochastic reso-

nance (SR). We call this phenomenon internal noise sto-

chastic resonance (INSR). Since the magnitude of the

internal noise is changed via the variation of the system
size, the INSR also represents itself a kind of system size

resonance. It is also interesting to note that this size is
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Fig. 4. Coefficient of variation R as a function of system size X: �,
CLE results; n, Poisson approximation. Parameters are bs = 0.005 s�1,

hs = 0.013 s�1, dr = 10 s, SS = 40 s. The solid lines are drawn to guide

the eye.
close to the volume of cytosolic compartment of the real

living cells [30].

Using the CLE, we have also studied how the INSR

curve depends on the amplitude of the pulsatile hor-

monal signal (i.e. hs), which is shown in Fig. 5. We find

that when the hormonal signal becomes weaker, both
the maximum coefficient of variation R and the optimal

system size become smaller.

Such INSR phenomenon might be relevant to hor-

monal signal detecting processes in two ways. On one

hand, due to the existence of unavoidable internal noise,

stochastic calcium spikes appear, indicating that a much

wider range of hormonal signals can be detected

through intracellular calcium oscillations. On the other

hand, instead of trying to resist the internal molecular

noise, living cell systems may have learned to exploit it

to enhance the calcium oscillation performance, so as

to enhance intensively the ability to detect weak hor-

monal signals via the mechanism of INSR. It is also

interesting to note that the optimal size is close to the

volume of cytosolic compartment of the real living cells.

What is more, previous studies have shown that the cal-
cium signaling sensitivity [15] and capability [16] in

many cells show the maximum if the channel cluster size

is optimal, and the spontaneous action potential in neu-

rons shows the best time precision when the density of

axon ion channels reaches an optimal level [35]. Such

behaviors imply that INSR might be a widely used

mechanism for living organisms to adapt and function.

Other works should be done about this topic, for
example, when the pulsatile hormonal signal varies with

different base of bs, duration of dr or interval between

subsequent pulses of SS, what changes will take place

about internal noise enhanced hormonal signal detecting

processes? We will discuss in the future.
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Fig. 5. The dependence of R on system size X with different amplitudes

of hormonal stimulus. Parameters are bs = 0.005 s�1, dr = 10 s,

SS = 40 s, hs = 0.013 s�1 (n); 0.012 s
�1 (�); 0.011 s�1 (%). The solid

lines are shown to guide the eye.
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4. Conclusion

To summarize, we have constructed a mesoscopic

stochastic model for intracellular calcium oscillations

in hepatocytes to study the influence of internal noise

on the detection of sub-threshold hormonal signal
mainly using chemical Langevin equation (CLE). It is

found that stochastic calcium spikes appear when the

internal noise is considered, and the regularity of cal-

cium spike train undergoes a maximum with the varia-

tion of internal noise level, indicating the occurrence

of internal noise stochastic resonance (INSR). Therefore,

instead of trying to resist the internal molecular noise,

living cells may have learned to exploit it to detect a
much wider range of extracellular hormonal signals

through intracellular calcium oscillations and enhance

intensively the ability to detect weak hormonal signals

via the mechanism of INSR, and then encode informa-

tion to specifically regulate distinct cellular functions.

It is interesting to note that the optimal size is close to

the volume of cytosolic compartment of the real living

cells. Since the internal noise in living cell systems can
not be ignored and the systems may often encounter

sub-threshold stimuli, our findings might have interest-

ing implications for signal detecting processes in living

systems.
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