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We have studied the collective behavior of calcium signaling in a linear array of coupled cells, taking into
account the influence of internal noise. For a single cell, the performance of the stochastic calcium oscillations
shows two maxima as a function of the cell size, indicating the occurrence of system size bi-resonance. When the
cells are coupled together, we find that the increase of the coupling strength or the number of cells can
considerably enhance the first peak, but decrease the second one. The occurrence of the bi-resonance and the
distinct dependence on the coupling are shown to be relevant with regard to the system’s deterministic bifurcation
features.

1 Introduction

The constructive role of noise in nonlinear systems, especially
stochastic resonance (SR), has drawn great research interest in
the last two decades.1,2 Recently, a new type of SR-like phenom-
enon, system size resonance (SSR), has gained growing atten-
tion.3–12 So far, mainly two types of ‘size resonance’ behavior
have been reported. On one hand, Pikovsky et al. reported that
in an array of coupled noisy bistable systems subjected to an
external periodic forcing, an optimal response is obtained when
the system size, here is the number of elements in the system, has
an optimal value.3 In such a case, the system size plays a role in
changing the external noise intensity subjected to the mean field.
In the absence of an external signal, system-size coherent
resonance (CR) can be found in a one-dimensional lattice of
diffusively coupled excitable neurons.4,5 On the other hand, it
has been demonstrated that for chemical oscillation reactions
taking place in small-scale systems, stochastic oscillations can be
observed and there exists an optimal system size such that the
stochastic oscillations show the best performances. For instance,
ion channel clusters of optimal sizes can enhance the encoding of
a sub-threshold stimulus,6–8 and optimal intracellular calcium
signaling appears at a certain size or distribution of the ion
channel clusters.9,10 Using a circadian clock model and the
Brusselator model, our group have found that internal noise
can lead to stochastic oscillations in the region close to the
deterministic oscillatory dynamics, and an optimal system size
exists for such stochastic oscillations.11,12 One notes the first type
is mainly a result of coupling and the noise is mainly external,
while the second type is a result of the interplay between the
internal noise and the systems’ nonlinear dynamics.

It is well known that intracellular calcium (Ca21) is one of
the most important second messengers in the cytosol of living
cells. Cytosolic calcium oscillations play a vital role as a
communication mechanism between distinct parts of the cell
or between adjacent cells in the tissue. Many processes, such as
intracellular and intercellular signaling processes, muscle con-
traction, cell fertilization, gene expression, and so on, are all
controlled by the oscillatory regime of the cytosolic calcium
concentration. There is a vast literature contributed to the
mathematical modeling of calcium oscillations,13 and most of

these models are deterministic and do not account for any
stochastic effects. However, the biochemical reactions involved
in the calcium oscillation take place inside a single cell and the
number of reactant molecules could be low, which will lead to
considerable internal noise. Therefore, it is an important
problem as to how the internal noise would influence calcium
signaling in cell systems.
In fact, the role of internal noise for intracellular calcium

signaling has gained much attention recently. For example, the
groups of Jung and Hänggi reported that optimal channel
noise can play rather constructive roles for intracellular cal-
cium signaling.6–10 In a recent study, using a model for
intracellular calcium signaling in hepatocyte cells, we showed
that internal noise can induce stochastic calcium oscillations in
a parameter regime which is subthreshold to deterministic
oscillatory dynamics, and the performance of the stochastic
calcium oscillation can show two maxima with the variation of
the cell size, indicating the occurrence of system size bi-
resonance (SSBR).14

Here, in the present paper, we have studied how internal
noise would influence calcium signaling in a one-dimensional
chain of coupled cells. In real systems, cells are often coupled
together to accomplish cellular functions.13 Therefore, after
knowing something about the behavior of a single cell, it is
naturally the next step to study coupled cell systems. Specifi-
cally, for the purpose of the present work, we are wondering
whether the SSBR behavior observed in a single cell also exists
in coupled systems, and if so, how it is affected by the coupling
strength and the number of cells. Consequently, we find that
SSBR behavior also exists when the collective behavior of the
system is considered, and with the increase of the coupling
strength or the number of cells, the first maxima can be
obviously enhanced, while the second one is suppressed. The
relevance of such a phenomenon with the system’s determinis-
tic bifurcation features is discussed.

2 Model

The model used here is proposed by Höfer to account for the
intracellular Ca21 oscillation in hepatocyte cells.15 In a single
cell, the Ca21 signaling dynamics involves the interplay of
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Ca21 fluxes from and into the endoplasmic reticulum (ER) and
across the plasma membrane. Denoting the population number
of Ca21 in the cytosol by X and that in the whole cell by Z, the
reactions in the cell can be grouped into four elementary
processes involving the change of X or Z by 1.16 The processes
and the corresponding reaction rates aj ¼ 1,. . .,4 (x,z) are
given by:

X ! X þ 1; a1ðx; zÞ

¼ Vr n0 þ nc
P

k0 þ P
þ akrðx;PÞ

b
z

� �
ð1aÞ

X ! X � 1; a2ðx; zÞ

¼ Vr n4
x2

k24 þ x2
þ akrðx; pÞ

b
ð1þ bÞxþ an3

x2

k23 þ x2

� �

ð1bÞ

Z ! Z þ 1; a3ðx; zÞ ¼ Vr n0 þ n0
P

k0 þ P

� �
ð1cÞ

Z ! Z � 1; a4ðx; zÞ ¼ Vrn4
x2

k24 þ x2
ð1dÞ

where

krðx;PÞ ¼ k1
d2ðd1 þ PÞPx

ðdp þ PÞðda þ xÞ½d2ðd1 þ PÞ þ xðd3 þ PÞ�

� �3
þk2

Note that aj ¼ 1,. . .,4(x,z) are simply written as aj ¼ 1,. . .4 in the
following eqns. (2) and (3), V is the volume of the cytosolic
compartment of the cell which is proportional to the cell size,
and x ¼ X/V, z ¼ Z/V are the concentrations of X and Z,
respectively. P is the concentration of inositol triphosphate
(IP3) in the cell, which denotes the level of the agonist simula-
tion and is chosen to be the control parameter. See the caption
of Fig. 1 for other parameter values. If the internal noise is
ignored, the calcium dynamics inside a single cell can be
described by the following deterministic equations,

dx

dt
¼ ða1 � a2Þ=V ;

dz

dt
¼ ða3 � a4Þ=V ð2Þ

With the variation of the control parameter P, eqn. (2)
undergoes a Hopf Bifurcation (HB) at P E 1.45 mM, above
which Ca21 oscillations appear and below which only stable
steady state can be observed as shown in Fig. 1.
However, for a real living cell whose size is small, such a

deterministic model is no longer strictly valid due to the
existence of considerable internal noise. Instead, a mesoscopic
stochastic model must be used. An applicable method is the
chemical Langevin equation (CLE) proposed by Gillespie,17

which is derived from the chemical master equation governing
the time evolution of the probability of having given numbers
of reacting species X and Z. The CLE gives us clear informa-
tion about how the internal noise depends on the system size as
well as the reaction dynamics. Specifically, the CLE for the
current system inside a single cell reads:

�x ¼ 1

V
ða1 � a2 þ

ffiffiffiffiffi
a1
p

z1ðtÞ �
ffiffiffiffiffi
a2
p

z2ðtÞÞ; ð3aÞ

�z ¼ 1

V
ða3 � a4 þ

ffiffiffiffiffi
a3
p

z3ðtÞ �
ffiffiffiffiffi
a4
p

z4ðtÞÞ; ð3bÞ

where zi¼1,. . .,4(t) are Gaussian white noises with hzi(t)zi(t0)i ¼
dijd(t � t0) and hzi(t)i ¼ 0. Since all the reaction rates aj¼1,. . .,4

are proportional to the system size V as illustrated in eqn. (1),
the strength of the internal noise terms in the CLE (3) scales as
1
� ffiffiffiffi

V
p

. According to eqn. (3), in the assumed limit V - N

corresponding to the macroscopic system, the internal noise
can be ignored and one recovers the deterministic dynamics
given by eqn. (2). For a typical cell for which the size V is small,
however, the internal noise terms may become crucial. Keeping
in mind that external noise often plays interesting roles near
some kinds of critical points, we will also tune the system near
the HB point. In order to study the pure effects of the internal
noise, we will keep all other parameters fixed and change the
size V only.

3 Results and discussion

For completeness, we will first outline the behavior of a single
cell (N ¼ 1). We tune the control parameter P ¼ 1.3 mM, which
is below but close to the HB point, such that the system stays in
a steady state according to the deterministic eqn. (2). As stated
above, however, the system’s dynamical behavior must be
described by eqn. (3) and thus depends strongly on the cell
size V. In Fig. 2, we have plotted five typical time series of x for
different cell sizes, V ¼ 100, 1000, 105, 106 and 108 mm3,
respectively. If V is too small (V r 100), internal noise
dominates and the temporal behavior is rather random
although some spikes can be observed. If V is large enough
(V 4 108), the internal noise is too small to induce the Ca21

oscillation, and the system only slightly fluctuates around the
steady state defined by the deterministic equation. However,
for some intermediate cell sizes, such as for V ¼ 1000 and 106,
stochastic oscillations can be observed apparently. One notes
that oscillation is of relaxation type with large and nearly
constant amplitude for V B 1000, and of small amplitude for
V B 106.
To characterize the relative regularity of the stochastic

calcium oscillations, we have calculated the power spectrum
density (PSD) of the time series x(t) to determine the effective
signal-to-noise ratio (SNR). The SNR is defined as the peak
height in the PSD divided by its relative width and has already
been widely used in the literature. We have used a time series
containing 16384 data points to calculate the PSD values.
Please see refs. 11, 12 and 14 for more details of the definition
and calculation of the SNR. The SNR shows two maxima as V
is varied, as depicted in Fig. 3, indicating the occurrence of
system size bi-resonance (SSBR). Accordingly, the frequencies
of the stochastic oscillations are also shown. Note that the

Fig. 1 Bifurcation diagram for the deterministic model (2). The solid
squares denote the maximum and minimum of the deterministic
oscillation range (left axis), and the stars correspond to the frequency
(right axis). The parameter space is divided into three distinct regions:
(I) Steady state region (P o 1.45 mM); (II) Small oscillation region
(1.45 o P o 1.47 mM); (III) Relaxation oscillation region (P 4 1.47
mM). The structural characteristics of a cell are a ¼ 2.0, r ¼ 0.02 mm�1,
b ¼ 0.2; v0 ¼ 0.2 is a background Ca21 leakage, vc ¼ 4.0 is the max rate
of IP3 induced Ca21 influx, v3 ¼ 9.0 the max rate of ER uptake of
Ca21, v4 ¼ 3.6 the max rate of calcium efflux (units: mM s�1); Other
parameters are k0 ¼ 4.0, k3 ¼ 0.12, k4 ¼ 0.12, d1 ¼ 0.3, d2 ¼ 0.4, d3 ¼
0.2, dp ¼ 0.2, da¼ 0.4 (units: mM); k1¼ 40.0 s�1, k2¼ 0.02 s�1. See refs.
15 and 16 for more details.
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SNR values are averaged over 20 independent runs here for
N ¼ 1 and in the following parts for the coupled system.

The occurrence of SSBR may be very relevant to the
deterministic bifurcation features displayed in Fig. 1. With
the variation of the control parameter P, the bifurcation
diagram can be divided into three distinct regions. In region
(I) (P o HB � 1.45 mM), there are no deterministic oscilla-
tions. In region (II) (1.45 o P o 1.47 mM), deterministic
oscillations of small amplitude appear. In region (III) (P 4
1.47 mM), the oscillations are of relaxation type with large
amplitude and small frequency. Therefore, when the system lies
in region (I) as we have done in the present work, a small noise
may ‘drive’ the system into region (II) and induce stochastic
oscillations of small amplitude, while large noise can induce the
stochastic relaxation oscillations of large amplitude like those
in region (III). Both types of stochastic oscillations may show
coherent resonances with the noise intensity, hence resulting in
the bi-resonance in different noise ranges.

We now turn to a chain of N cells coupled through mass
diffusion of calcium via gap-junctions.15,16 The dynamics of the

coupled system reads:

xi ¼
1

V
ða1 � a2Þ þ

ffiffiffiffiffi
a1
p

z1ðtÞ �
ffiffiffiffiffi
a1
p

z1ðtÞð Þ½ �
þ Cðxiþ1 þ xi�1 � 2xiÞ ð4aÞ

zi ¼
1

V
ða3 � a4Þ þ

ffiffiffiffiffi
a3
p

z3ðtÞ �
ffiffiffiffiffi
a4
p

z4ðtÞð Þ½ �
þ Cðxiþ1 þ xi�1 � 2xiÞ ð4bÞ

Here, aj¼1,. . .,4 to the right side simply denote aj¼1,. . .,4(xi,zi),
which are the rates in the ith cell. Note here the diffusion of
calcium results in the identical changes in the number of X and
Z,15,16 and C denotes the coupling strength.
To describe the collective response of the coupled oscillators,

we introduce the average cytosolic calcium concentration as

XðtÞ ¼ 1

N

XN
i¼1

xiðtÞ:

We numerically integrate eqn. (4) using the standard proce-
dure for stochastic differential equations with the time step
0.01 s. For each parameter set, the power spectrum of X(t) and
the corresponding SNR are calculated. As noted above, the
final SNR values are obtained via averaging over 20 indepen-
dent runs.
First, we consider how the collective behavior of the system

depends on the chain length N. The parameters are fixed at
P ¼ 1.3 mM and C ¼ 0.04, and the internal noise intensity is
adjusted via the change of V. The plots of SNR vs. V for
different chain length N are given in Fig. 4(a). Interestingly, the
two peaks observed in a single cell show rather different

Fig. 2 Five typical time series of x(t) with different cell sizes V forN ¼
1. From top to down, V ¼ 102, 103, 105, 106 and 108 mm3, respectively.
For V ¼ 103, the stochastic oscillation is of relaxation type with large
amplitude, and for V ¼ 106, the oscillation amplitude is very small.

Fig. 3 The SNR (left axis) and the corresponding principal frequency
(right axis) of the stochastic oscillations for P ¼ 1.3 and N ¼ 1,
obtained by the CLE (eqn. (3)). The clear double peaks in the SNR
curve indicate the occurrence of system size bi-resonance. Note that the
stochastic oscillations regarding the two peaks have different natures
according to the frequency values. The error bars for the SNR are also
shown.

Fig. 4 (a) Plots of SNR versus the cell size V for different chain length
N ¼ 1, 5, 10, 20, respectively, for a fixed coupling strength C ¼ 0.04; (b)
The dependence of SNR on cell size V for different values of coupling
strength C ¼ 0, 0.01, 0.02, 0.04, 0.06, respectively, for a fixed chain
length N ¼ 20.
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dependences on N. While the first peak is significantly en-
hanced by the coupling, the second one is obviously sup-
pressed. We note that the enhancement of the first peak is
consistent with the well-known phenomena of array-enhanced
SR or CR,18,19 but the suppression of the second peak is not
reported before. Secondly, we fix the chain length N ¼ 20 and
study the effect of the coupling strength C. The results are
shown in Fig. 4(b), where the first peak is again considerably
enhanced with the increment of the C, and the second one is
also suppressed. If C is large enough for N ¼ 20, the second
peak will completely vanish.

In order to get a global view, we have studied how the
heights of the two peaks change with N and C. We introduce
Dh1,2 ¼ h1,2 � h0, to describe the peak heights, where h1,2 are
the SNR values of the two peaks, and h0 is the minimum SNR
value between the two peaks (see Fig. 4(a)). For a fixed
coupling strength, e.g., C ¼ 0.04, the height of the first peak
increases monotonically with the increment of N (Fig. 5(a)),
and the second peak decreases (Fig. 5(b)).

Why the two peaks have such different dependences on the
coupling is an open question. Intuitively, we think that their
distinct oscillation features, i.e., large relaxation oscillations
for the first peak and small amplitude oscillations for the
second one, might be the very reason. But a thorough under-
standing of this phenomenon deserves more detailed calcula-
tions and finally possible analytical works.

How can the findings of the present paper have implications
for living cellular functions is another interesting question. At
the current stage, three points may be addressed. On one hand,
the existence of stochastic oscillations indicates that intracel-
lular calcium oscillations can sustain in a much greater para-
meter range than those predicted by the deterministic model,

i.e., it shows strong robustness to external stimulations which
should be of benefit for their proper functions. On the other
hand, due to the fact that the first resonance occurs at nearly
constant cell size V B 103, and this size is of the same order as
that of real living cells in vivo,15,16 it seems that the kinetic
coefficients of the mechanism have evolved to be optimal for
the size of a cell. And finally, we find that the stochastic
calcium oscillations show much stronger regularity when the
cells are coupled together than separated alone, suggesting that
intercellular communications should have played rather im-
portant roles in collective cellular functions.

4 Conclusion

In summary, we have studied the influence of internal noise on
the calcium signaling in an array of coupled hepatocyte cells.
For a single cell, internal noise can play rather constructive
roles through the mechanism of system size bi-resonance, i.e.,
internal noise can induce stochastic calcium oscillations in a
region subthreshold to deterministic oscillatory dynamics, and
the SNR of the stochastic oscillation bypass two maxima with
the variation of the cell size. It is interesting to note that the
first maximum matches the real cell size in vivo, suggesting that
the cell system might work at an optimal size. Furthermore, we
find that the two peaks show rather different behavior when the
cells are coupled together, i.e., while the first resonance peak
can be considerably enhanced by the coupling, the second one
is suppressed. We think that the distinct deterministic bifurca-
tion features of the system should have some inherent relevance
with such a phenomenon. We hope our findings could find
some interesting applications for calcium signaling in real
systems, and can also open more perspectives in the study of
internal noise in biological systems.
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