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We consider system of globally coupled FitzHugh–Nagumo (FHN) models; each element is subjected to a
subthreshold periodic signal and independent Gaussian white noise. With the variation of the system size, the
spike train of the mean field of the system fires according to the period of the subthreshold external signal or to
the interior time scale of the FHN model. The influence of the coupling strength is also investigated. It only
influences the response of the mean field to external signal. If two external signals are injected to the system
simultaneously, the least-common-multiple periods or other common multiples may be selected by different
system sizes.

Constructive effects of noise in nonlinear dynamical systems
have been widely established in various systems. These effects
include stochastic resonance (SR)1 or coherence resonance
(CR),2 noise-enhanced phase locking,3 noise-induced transi-
tion,4 and noise-sustained patterns in spatially extended sys-
tems,5 to list just a few. SR is well-known for the resonant noise
amplitude at which the response of a system to a periodic signal
is maximally ordered, and CR refers to a situation where the
order of the response of an excitable system shows a maximum
at a certain optimal noise amplitude in the absence of external
signals. Of particular interest is the phenomenon of SR or CR
in neural systems6 that have been demonstrated in several
experiments. The response to stimuli of the sensory neurons
in the tailfans of crayfish,7 in the cercal system of crickets,8 and
in rat skin9 shows typical SR signature: the signal-to-noise
ratio (SNR) increases with increasing noise amplitude which is
added externally, reaches a maximum and decreases when
further increasing the noise amplitude. It is more interesting
that SR or CR not only takes place in excitable neurons but
also in the networks of mammalian brain,10 in the coherence
between the spinal and the cortical neurons in the somatosen-
sory system of an anaesthetized cat,11 and even in the feeding
behavior of a paddlefish.12

Classical SR of bistable systems are understood in the
context of time-scale matching between the signal and noise
induced hopping which depends on the noise amplitude.13 In
addition, in bistable systems, this time-scale matching mechan-
ism of SR also holds in the numerical simulations of the
excitable neurons.14 In the case of CR where the external signal
is absent, the excitable system has an intrinsic period that
characterizes the temporal behavior of the system. Certain
optimal noise amplitude could induce spikes of maximal
coherence according to the time-scale of the excitable system,15

which includes an excitory and a refractory part. To achieve
resonance by these mechanisms, suitable noise amplitude is
needed. The requirement for a certain optimal noise amplitude
hindered the promising applications of SR or CR in neural
systems since it is more difficult to tune noise amplitude directly
in nature than in experiments. However, later research pointed
out that embedding one element into an array16 or a network17

of elements with different coupling strength, different coupling
strategy,18 different topological structure, would remarkably

enhance the effects of SR or CR and broaden the resonant
scope of noise amplitude.
To employ SR or CR, another mechanism for adapting to

the uncontrollable noise amplitude is the so-called system size
resonance,19 where the effective noise amplitude of a system of
coupled elements is inversely proportional to the system size.
Pikovsky et al.19a demonstrated in a system of coupled bistable
overdamped oscillators and in the 2-D nearest neighbor Ising
model that when other parameters are fixed, the response of the
mean field to a periodic forcing can have a maximum at a
certain system size. They conjectured in their paper that the
mechanism of system size resonance might be employed by
neuronal dynamics to achieve the maximal sensitivity, and by
changing the coupling strength or connectivity, a neuronal
system can tune itself to signals with different frequencies.
Toral et al.19b extended the system size resonance in the
coupled FHN models by finding the system size coherent
resonance, where in the absence of external forcing the noisy
excitable systems pulse on average with a regularity which is
optimal for a specific value of the system size. Note that the
phenomenon of system size resonance differs from array-
enhanced SR in that the system size has a resonant behavior
with regard to the coherence of the output.
In the present paper, we show that frequency-selective

response is realized via system size multi-resonance when
considering system of coupled excitable systems, in which each
element is subjected to a sub-threshold periodic signal and
independent Gaussian white noise. We choose the FHN model
as an example because it provides a simple description of the
dynamics of a large class of neurons. The equations are20,21

_xi ¼
1

e
xi �

1

3
x3i � yi

� �
þ K

N

XN
j¼1
ðxj � xiÞ þDxiðtÞ ð1Þ

_yi ¼ xi þ aþ A sin
2p
Te

t

� �
ð2Þ

Here xi(t) is a Gaussian white noise with zero mean and unit
variance i.e. hxi(t)i ¼ 0 and hxi(t)xj(t0)i ¼ dijd(t � t0); D denotes
the noise intensity, K is the coupling strength, and N is the
number of elements in the system.
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It is well-known that if a4 1, the single FHN model stays at
a stable fixed point which is excitable. For a o 1, a stable limit
cycle is created through a supercritical Hopf bifurcation, which
changes from small amplitude quasi-harmonic oscillation to
spikes abruptly through canard explosion. We fix a ¼ 1.01, e ¼
0.1, hence the elements in the system are excitable. The
amplitude of the periodic signal is set to be sub-threshold,
namely, the signal alone is not capable of triggering spikes. To
avoid being masked by the intrinsic period of the self-spiking
behavior on the oscillatory side of the bifurcation point, the
signal period is set to be larger than the intrinsic one. For the

collective behavior of the system, we investigate the mean field

XðtÞ ¼ 1
N

PN
i¼1

xiðtÞ. The system is numerically integrated by the

explicit Euler–Maruyama22 algorithm with a time step of
0.005. To quantify the coherence in the output, we adopt the
commonly used coefficient of variance (CV) of the inter-spike
intervals (ISI), which is defined as

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hT2i � hTi2

q
hTi ;

where T is the series of inter-spike intervals. A spike is defined
if a certain threshold of the mean-field voltage variable X(t) is
exceeded from below.

We show in Fig. 1a R of the mean field X as a function of the
system size N. An interesting bimodal shape which could be
called system size bi-resonance appears. The parameters are
K ¼ 10, D ¼ 1, A ¼ 0.09, Te ¼ 9. We mark those local extrema

as A (N ¼ 5), B (N ¼ 30) and C (N ¼ 260). The corresponding
ISI histograms (ISIH) of the mean field are shown in Fig. 1b.
When the system size is large (N ¼ 260), the mean field fires
according to the external signal period Te ¼ 9. For small
system size (N ¼ 5), the mean field fires autonomously accord-
ing to the self-spiking period of the model Ti ¼ 4. With
intermediate system size (N ¼ 30), the firing pattern is a hybrid
of Ti¼ 4 and Te¼ 9. The mean field responds differently due to
the variation of the size of the system. Therefore, the fre-
quency-selective response is realized via the system size bi-
resonance. We have also done simulations for different signal
periods. If signal periods Te are larger than but close to Ti, the
bimodal shape and the effect of frequency-selective response
are not distinct due to the small difference between Te and Ti.
The two minima become intermixed to give rise to a broader
resonant scope of N. For larger signal periods, the bimodal
shape and the effect of frequency-selective response are strong.
To understand the above phenomena, let us consider the

main idea of system size resonance. Coupling a number of
elements into the system gives rise to an effective noise ampli-
tude of D

� ffiffiffiffi
N
p

on the mean field, whose dynamics maintains
the main features of the couple-free element, which is in19a

bistability and in19b excitability. Following the line, we try to
understand the system size bi-resonance by investigating a
single periodically forced FHN model. To compare, we nu-
merically integrate eqns (1) and (2) with K ¼ 0 and investigate
R and ISIH. The curve of R of the output x(t) vs. D is shown in
Fig. 2a, and the corresponding ISIH of those local extrema
marked as A, B, and C are shown in Fig. 2b. The bimodal
shape and the effect of frequency-selective response are the

Fig. 1 (a) System size bi-resonance of globally coupled FHN models.
Parameters are K ¼ 10, D ¼ 1, A ¼ 0.09, Te ¼ 9. Marked points are:
N ¼ 5 (A), 30 (B), 260 (C). (b) The ISIH corresponding to those
marked points in (a). The threshold for identifying a spike is 1.0.

Fig. 2 (a) The bimodal shape in a single FHN model. Parameters are
A ¼ 0.09, Te ¼ 9. (b) ISIH of the marked points in (a). The threshold
for identifying a spike is 1.0.
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same as in Fig. 1. The bimodal shape and the effective
frequency-selective response of a single FHN model can be
understood as following. With the presence of the subthreshold
signal, small noise can help the signal surpass the excitable
threshold and induce spikes; this is the typical situation of
stochastic resonance in threshold systems. The spike train may
be organized according to the external signal period (Te) if
Te 4 Ti or according to the self-spiking period (Ti) if Te o Ti,
because the FHN model would not respond to stimuli during
its refractory period. Further increasing noise amplitude, noise
alone could induce spikes; the spike train is now organized
according to the intrinsic time-scale (Ti) of the excitable
system.

When coupled together, the mean field of the system would
behave like a ‘single’ model which is subjected to subthreshold
signal and noise with an effective noise amplitude of D

� ffiffiffiffi
N
p

.
With the variation of N, the effective noise amplitude is varied.
Therefore, the bimodal shape and the effect of frequency-
selective response of the mean field are natural consequences
in the context of the above discussion.

To get a more complete knowledge of the system size bi-
resonance, we have done simulations to investigate the influ-
ence of the coupling strength K. Results of a detailed scan are
shown in Fig. 3. Interestingly, the two minima corresponding
to external period and internal time-scale, respectively, behave
differently. With the increase of K, the resonant size that
corresponds to external period becomes smaller while the other
resonant size that corresponds to internal time scale keeps

constant. Therefore, there is a matching relation between K
and N to get best response to external signal, however, K does
not influence the response of the system to the internal time-
scale.
From the above discussion, one may naturally ask whether it

is possible to achieve system size multi-resonance and fre-
quency-selective response in the case of multi-frequency ex-
ternal signal. We have also performed some simulations about

Fig. 3 (a) R as a function of K andN. Parameters areD¼ 1, A¼ 0.09,
Te ¼ 9.

Fig. 4 (a) R as a function of D in a single FHN model with multi-frequency signal. Te1 ¼ 20, Te2 ¼ 30, j ¼ 0, A ¼ 0.085. ISIH of the mean field of
various systems, (b) from left to right N ¼ 3, 30, 700. Te1 ¼ 20, Te2 ¼ 30, j ¼ 0, A ¼ 0.085 D ¼ 10�6, (c) from left to right N ¼ 3, 80, 500. Te1 ¼ 20,
Te2 ¼ 30, j ¼ e(2.718. . .), A ¼ 0.084, D ¼ 10�8, (d) from left to right N ¼ 3, 60, 500. Te1 ¼ 20, Te2 ¼ 5, j ¼ 0, A ¼ 0.0726 D ¼ 10�6. The threshold
for identifying a spike is 1.0.

3636 P h y s . C h e m . C h e m . P h y s . , 2 0 0 5 , 7 , 3 6 3 4 – 3 6 3 8 T h i s j o u r n a l i s & T h e O w n e r S o c i e t i e s 2 0 0 5

Pu
bl

is
he

d 
on

 0
8 

Se
pt

em
be

r 
20

05
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
Sc

ie
nc

e 
an

d 
T

ec
hn

ol
og

y 
of

 C
hi

na
 o

n 
3/

29
/2

02
1 

1:
50

:1
0 

PM
. 

View Article Online

https://doi.org/10.1039/b507107k


this question by replacing the signal term in eqn (2) with

A sin 2p
Te1

t
� �

þ sin 2p
Te2
ðtþ jÞ

� �� �
. To understand in detail the

response of a single FHN model or coupled system to multi-
frequency signal and noise is a challenging task; we just want to
show here that by varying the system size N, one can achieve
selective response to a multi-frequency signal. We think this is
a promising mechanism in living organisms. Some exemplary
results are shown in Fig. 4. When considering a single model
with Te1 ¼ 20, Te2 ¼ 30, j ¼ 0, A ¼ 0.085, the curve of output
coherence R vs. noise amplitude D (Fig. 4a) shows triple local
minima. The ratio of the largest resonant D to smallest
resonant D in Fig. 4a is 109, so it’s too time-consuming to
get the corresponding curve of R vs. N as is the case of Fig. 1
and Fig. 2 because the maximal system size N for a complete
curve is too large for a personal computer. We choose a smaller
noise amplitude D ¼ 10�6 then vary N, and display in Fig. 4b
some typical ISIH to demonstrate frequency-selective response
of the mean field. With certain large size, the mean field fires
with the least common multiple (Tlcm) of the two external
periods (right). With a certain intermediate system size, the
firing pattern is a spectrum of Ti, Te1, Te2, and Tlcm (middle).
Further decreasing the system size, Tlcm, as a component in the
spectrum, disappears (left). With a larger noise amplitude D
and very small system size, the external signal is overwhelmed
and only Ti is manifested (this case not shown). Actually, the
details of the response pattern are closely dependent on signal
periods and the phase. For parameters different from those
considered above, the firing pattern is different. However, the
phenomenon of selective response due to varying system size is
ubiquitous. We show two firing patterns that are more complex
in Fig. 4c and d. In Fig. 4c, we have considered an irrational
phase j ¼ e(2.718. . .), Te1 ¼ 20, Te2 ¼ 30, other parameters are
A ¼ 0.084, D ¼ 10�8. The spectra of firing patterns have more
components than in the case of j ¼ 0. Some harmonics of
Te1(20), 80 and 100, appear; while harmonics of Te2(30) except
for Tlcm do not appear. Selective response to Tlcm is also
present, but is different from the case of j ¼ 0. The component
T ¼ 36 other than Tlcm is preferred in the case of larger system
size. We have also investigated other phases, for example j ¼
e2, e3, e4, 2e, 3e, p/7, and p/11, the firing pattern is either the
same as of j¼ 0 or as of j¼ e. In Fig. 4d, we have investigated
the case of incommensurable periods: Te1 ¼ 20, Te2 ¼ 5p , j ¼
0, A ¼ 0.0726, D ¼ 10�6. In contrast to the case of commen-
surable periods, one cannot observe accurate base or higher
harmonics of Te1 or Te2 in the responses. Instead, spectrum
components nearly to be the common multiples of Te1 and Te2

are found. For instance, response with T ¼ 62 is close to the
4th harmonic of Te1 and the 3rd harmonic of Te2, as shown in
the fourth column of Table 1. In this case, different nearly
common multiples are selected by the system size; the smaller
the system size, the shorter periods are selected.

In this paper, we have shown that in the presence of a
subthreshold signal and noise, the spikes of the mean field of
system of globally coupled FHN models can be organized
according to the time-scale of the signal, or to the intrinsic
time-scale of the FHN model itself, or to the hybrid of the two,
by choosing properly the system size. If the external signal is
multi-frequency, the effect of frequency-selective response via
system size multi-resonance is present. The least-common-
multiple periods or other common multiples could be selected
by different system sizes.

Recently, much attention has been paid to frequency-en-
coded signals in a biological context. For example, Hajnoczky
et al. have studied the control of Ca21-sensitive mitochondrial
dehydrogenases (CSMDHs) with cytosolic Ca21.23 They con-
clude that the frequency of cytosolic Ca21 oscillations can
control the CSMDHs over the full range of potential activities.
Dolmetsch et al. demonstrated that the frequency of cytosolic
Ca21 oscillations could differentially control the activation of
distinct sets of transcription factors and the expression of
different genes.24 Li et al. showed that the oscillations in
cytosolic free calcium levels at roughly physiological rates
could maximize gene expression.25 The frequencies in their
experiments are artificial; however, results in this paper present
a practically potential mechanism that could be employed by
living organisms to modulate biological oscillation frequencies.
The feature in Fig. 4b and d, larger size preferring longer
period, reminds us of the relation between ultradian rhythms,
which result from activities at the cellular level, and the size of
the organisms.26 If we compare the main idea of the system size
resonance, which is manifested in dynamical equations mainly
by an additional term proportional to D

� ffiffiffiffi
N
p

, with the form of
the chemical Langevin equation,27 we can reasonably regard
the number of molecules that are involved in cellular processes
as the system size considered in this paper. Therefore, the
results in this paper may find application in the determination
of characteristic frequencies in cellular processes and in the
explanation of the optimal size of organisms. On the other
hand, in the biological context of information detection and
transmission, the results in this paper provide a possibility for
selective function by varying the size of the operating system.
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