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By constructing a mesoscopic stochastic model for intracellular calcium oscillations in a cell system, we
have investigated how the internal noise would influence the calcium oscillations of such a system using
stochastic simulation methods and chemical Langevin method. It is found that stochastic calcium oscillations
appear when the internal noise is considered, while the deterministic model only yields steady state. The
performance of such oscillations undergoes a maximum with the variation of the internal noise level, indicating
the occurrence of internal noise stochastic resonance. Interestingly, we find that the optimal system size
matches well with the real cell size when the control parameter is tuned near the left Hopf bifurcation point,
and such a match is robust to the variation of the control parameters.
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I. INTRODUCTION

The constructive effects of noise in nonlinear systems
have gained much attention in the last two decades. It was
demonstrated that there exists a resonant noise intensity, at
which the response of a system to a periodic force is maxi-
mally ordered, which is well known as stochastic resonance
�SR�. Since it was put forward in the 1980s �1�, SR has been
studied in a variety of systems from physics �2�, chemistry
�3� to biology �4�. Recently, much attention has been paid to
an interesting SR-like phenomenon, internal noise stochastic
resonance �INSR�, or system size resonance. For chemical
oscillating reactions taking place in small scale systems,
where the molecule numbers of the reactants are often low
and the internal noise resulting from the stochastic reaction
events must be considered, stochastic oscillations can be ob-
served in a region subthreshold to deterministic oscillatory
dynamics, and there is an optimal system size at which such
stochastic oscillations show the best performance �5–13�. For
example, Shuai and Jung demonstrated that optimal intracel-
lular calcium signaling appears at a certain size or distribu-
tion of the ion channel clusters �5,6�. Ion channel clusters of
optimal sizes can enhance the encoding of a subthreshold
stimulus �7–9�. In recent studies, we have also found such a
phenomenon in the Brusselator model �10�, circadian clock
system �11�, surface catalytic reaction system �12�, and neu-
ron system �13�.

It is well known that intracellular calcium �Ca2+� is one of
the most important second messengers in the cytosol of liv-
ing cells �14,15�. Cytosolic calcium oscillations play a vital
role as a communication mechanism between distinct parts
of the cell or between adjacent cells in the tissue. Many
processes �15–17�, like intracellular and extracellular signal-
ing processes, muscle contraction, cell fertilization, gene ex-
pression, and so on, are all controlled by the oscillatory re-
gime of the cytosolic calcium concentration. Calcium is
called “a life and death signal” �18� because of its paramount
importance for the control of all these processes. So far, most

studies about calcium oscillations account for ad hoc exter-
nal noise �19–21�, and the system’s dynamics is often de-
scribed by a macroscopic deterministic equation. However,
as stated in above, for cellular or subcellular reaction system,
the number of reaction molecules is often low �22–25� and
one must pay much attention to the internal noise which
results from the random fluctuations of the stochastic reac-
tion events.

In the present paper, by constructing a mesoscopic sto-
chastic model for intracellular calcium oscillations in a cell
system, we have investigated how the internal noise would
influence the calcium oscillations of such a system using
stochastic simulation methods and chemical Langevin
method. We find that stochastic calcium oscillations appear
when the internal noise is considered, in a parameter region
where the deterministic model only yields steady state. The
performance of such oscillations undergoes a maximum with
the variation of the internal noise level, indicating the occur-
rence of internal noise stochastic resonance �INSR�. Inter-
estingly, we find that the optimal system size matches well
with real cell size when the control parameter is tuned near a
Hopf bifurcation point, and such a match is robust to the
variation of the control parameters.

II. MODEL DESCRIPTION

The model discussed in the present paper is based on the
minimal model for intracellular calcium oscillations with the
mechanism of calcium induced calcium release �CICR� �26�.
Although there are many different models of intracellular
calcium oscillations, this minimal model has been frequently
studied even in the recent years �27,28�. Here, we choose
such a minimal model to simply illustrate how the internal
noise would influence the calcium oscillations. If the internal
noise is ignored, the system can be described by the follow-
ing dynamical equations �26�:

dz

dt
= �0 + �1� − �2 + �3 + kfy − kz ,
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dy

dt
= �2 − �3 − kfy , �1�

where

�2 = VM2
zn

K2
n + zn , �3 = VM3

ym

KR
m + ym

zp

KA
p + zp . �2�

In these equations, z and y denote the concentration of free
Ca2+ in the cytosol and in the IP3-insensitive pool, respec-
tively; �0 refers to a constant influx of Ca2+ from the extra-
cellular medium; �1� denotes the IP3-modulated influx from
the IP3-sensitive store. The rates �2 and �3 refer to the pump-
ing of Ca2+ into the IP3-insensitive store and the release of
Ca2+ from this store into the cytosol in a process activated by
cytosolic Ca2+; VM2 and VM3 denote the maximum values of
these rates. kf is a rate constant measuring the passive, linear
leak of y into z; k relates to the assumed linear transport of
cytosolic Ca2+ into the extracellular medium. Parameters K2,
KR, and KA are threshold constants for pumping, release, and
activation; n, m, and p denote the Hill coefficients character-
izing these processes. Especially, the parameter � measures
the saturation of the IP3 receptor and is selected as the con-
trol parameter, which rises with the level of the stimulus and
varies from 0 to 1. The detailed description of the model and
parameter values can be found in Ref. �26�.

For a typical living cell system however, such a determin-
istic description is no longer valid due to the existence of
considerable internal noise. Rather, a mesoscopic stochastic
model should be used. Generally, one can describe such a
reaction system as a birth-death stochastic process governed
by a chemical master equation �29�, but there is no practical
procedure to solve this equation analytically. One of the
widely used simulation algorithms is the exact stochastic
simulation �ESS� method introduced by Gillespie in 1977
�30�, which stochastically determines what is the next reac-
tion step and when it will happen according to the transition
probability of each reaction event. In accordance with
Gillespie’s method, we introduce the number of calcium ions
in the cytosol as Z and correspondingly the number of cal-
cium ions in the IP3-insensitive pool as Y, such that the con-
centrations of the reactants are obtained as z=Z /�, y=Y /�,
where � is the total cell volume. Then, using the similar
procedure as in Ref. �31�, the reactions in the cell can be
grouped into six elementary processes for the current model.
See Fig. 1 for a simple description of the processes, and
Table I for the corresponding transition rates. Note that the
transition rates are proportional to the system size �.

Although the ESS method has been widely used to study
the effects of internal noise in many systems, it is too time
consuming when the system size is large. To overcome this
problem, Gillespie developed the �-leap method �32�, and it
has been proved that the �-leap method is a rather good
approximation of the ESS method for large system sizes.
Therefore, it is convenient for us to use the ESS method for
small systems and employ the �-leap method for large ones
during our stochastic simulation if a large range of system
size must be accounted for.

A further alternative method to study the internal noise
was also proposed by Gillespie �33�, which is the chemical

Langevin �CL� method. It was proved that the CL method is
a rather good approximation if a “macroinfinitesimal” time
scale exists in the system. Compared to the ESS and �-leap
methods, the CL equation gives us clear information about
how the internal noise depends on the system size as well as
the reaction dynamics. According to Gillespie, the chemical
Langevin equation for the current model reads

dz

dt
= �a1 + a2 − a3 + a4 + a5 − a6� +

1
��

��a1�1�t� + �a2�2�t�

− �a3�3�t� + �a4�4�t� + �a5�5�t� − �a6�6�t�� ,

dy

dt
= �a3 − a4 − a5� +

1
��

��a3�3�t� − �a4�4�t� − �a5�5�t�� ,

�3�

where �i=1,. . .,6�t� are Gaussian white noises with ��i�t��=0
and ��i�t�� j�t���=�ij��t− t��. Because the reaction rates ai are
proportional to �, the internal noise item in the chemical
Langevin equation scales as 1 /��. In the following parts, we
will mainly use Eq. �3� as our stochastic model for numerical
simulation to study how the internal noise would influence
the intracellular calcium oscillations. The ESS method and
the �-leap method are also used to show consistency if nec-
essary.

One should note that the methods used in the present
work to account for internal noise is different from those of
Shuai and Jung �5,6�. In their work, the internal noise comes

FIG. 1. Schematic representation of the mechanism for the mini-
mal model of signal-induced calcium oscillations. The external sig-
nal �S� acts on a membrane receptor �R�, and triggers the production
of IP3 which then modulates the release of Ca2+ from an
IP3-sensitive store �A� into the cytosol. Each level of IP3 controls a
constant flow of Ca2+ into the cytosol, denoted by �1�; cytosolic
Ca2+ �z� is pumped into an IP3-insensitive store, determined by �2;
Ca2+ in this store �y� is transported into the cytosol in a process
activated by cytosolic Ca2+, denoted by �3; parameters �0, k, and kf

relate, respectively, to the influx of extracellular Ca2+ into the cy-
tosol, to the efflux of cytosolic Ca2+ from the cell and to a passive
leak of y into z. The dashed arrow refers to replenishment of the
IP3-sensitive Ca2+ store �see Ref. �26� for further details�.
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from the stochastic gating dynamics of calcium channels in-
side a channel cluster, which involves a fast time scale and
small space scale. They focused on the effects of channel
noise and used deterministic dynamics for the exchange of
calcium. In our work, however, the internal noise comes
from the stochastic reaction events in the whole cell. Treating
the reactions involving the exchange of calcium as stochastic
steps as listed in Table I, one can write down a master equa-
tion which is the basis for the stochastic simulation and the
chemical Langevin equation. These reactions happen in a
much slower time scale than the open-close events of the
channel gates as suggested by Hofer �34�. Therefore, al-
though the channel noise still exists, it can be averaged out
by quasi-steady-state approximation as demonstrated very
recently by Rao and Arkin �35�. Substituting the steady-state
value of the gating variables into the reaction rates of the
channel flux, one finally obtains an expression like a4 in
Table I. One should note that the minimal model used in the
present work is in a rather simplified form, but basically the
discussions above remain valid.

III. RESULTS AND DISCUSSION

To investigate the influence of internal noise, it is neces-
sary to study the corresponding deterministic kinetics as a
comparison. We perform numerical calculation of Eqs. �1�
and �2� by Eular method with a time step 0.001 s. Simulation
results show that, with the variation of the control parameter
�, the system undergoes two Hopf bifurcations �HB� at �
�0.291 and ��0.775. The maximum and minimum values
of the variable z are plotted in Fig. 2. The two HB points
divide the parameter space into three regions, the low steady
state to the left hand side �LSS region�, the oscillation state
in the middle �OS region�, and the high steady state to the
right hand side �HSS region�.

We have first studied the influence of internal noise in the
OS region with the control parameter �=0.60. Simulation
results show that the calcium oscillation performance mea-
sured by effective signal-to-noise ratio �SNR� �see Ref. �11�
for detailed description of the calculation of effective SNR�
decreases monotonically with the increases of internal noise
level �see Fig. 3�. That is, internal noise plays a destructive
role in this region. However, this result fails when the system
is tuned near the HB point but outside the oscillation region.
One should note that it is always near the critical points
where internal noise can play constructive roles. Therefore,

TABLE I. Stochastic transition processes and corresponding rates.a

Transition processes Description Transition rates

�1� Z→Z+1 A constant input of Ca2+ from the extracellular
medium to the cytosol

a1=��0

�2� Z→Z+1 Transport of a Ca2+ flow from an IP3-sensitive
store �A� into the cytosol

a2=��1�

�3� Z→Z−1
Y →Y +1

The pump of Ca2+ from the cytosol into the
IP3-insensitive store

a3=��2

=�VM2zn�K2
n+zn

�4� Z→Z+1
Y →Y −1

The release of Ca2+ from the IP3-insensitive
store into the cytosol in a process activated by
cytosolic Ca2+

a4=��3

=�VM3 ym�KR
m+ym zp�KA

p +zp

�5� Z→Z+1
Y →Y −1

Leaky transport of Ca2+ from the
IP3-insensitive pool to the cytosol

a5=�kfy

�6� Z→Z−1 Transport of cytosolic Ca2+ into the
extracellular medium

a6=�kz

aParameter values used in the paper, �0=1 	M s−1, �1=7.3 	M s−1, VM2=65 	M s−1, VM3=500 	M s−1, kf =1 s−1, k=10 s−1, K2=1 	M,
KR=2 	M, KA=0.9 	M, m=2, n=2, p=4.

FIG. 2. Schematic bifurcation diagram for the deterministic dy-
namics �solid line�. The Hopf bifurcation points are ��0.291 and
��0.775. For comparison, the range of stochastic oscillation for
�=104 obtained from the chemical Langevin equation is also plot-
ted �short dashed line�.

INTERNAL NOISE STOCHASTIC RESONANCE FOR… PHYSICAL REVIEW E 71, 061916 �2005�

061916-3



in the following parts, much more attention is paid to these
regions.

We tune the control parameter �=0.78, which is near the
right HB point but in the HSS region. So that, when the
system size is very large, the internal noise can be ignored
and the system is at a stable state. However, if the system
size is small, we must take into account the internal noise.
Simulations via the ESS method, the �-leap method and the
CL method all show stochastic calcium oscillations. That is,
when the internal noise is considered, a wider range of OS
region exists. To compare with the deterministic kinetics, we
have also shown the range of OS region of z for �
=104 	m3 in Fig. 2. Obviously, the HB point defined by the
deterministic dynamics disappears. We can say that the cal-
cium oscillations become to be quite robust to the variation
of the control parameter in virtue of internal noise.

Now we consider the influence of different internal noise
level on the stochastic calcium oscillations. In Fig. 4, the
power spectrums for the stochastic oscillations of z are plot-
ted for three different system sizes, corresponding to three
different internal noise levels. A Welch window function is

used during the estimation of the power spectrum. The time
series used to calculate the power spectrum contains 16 384
data points, and the smoothed curves are obtained by nearest
averaging over 50 points from the original one. Clear peaks
appear in the power spectrum, which implies that the sto-
chastic oscillations are distinct from random noise and it
contains periodic information. When the system size de-
creases from 109 	m3 to 102 	m3, i.e., with the increase of
internal noise level, both the signal level and the noise back-
ground increase at the peak �see Ref. �11� for the definition
of the signal and the noise background�.

To measure the relative performance of the stochastic cal-
cium oscillations quantitatively, we also use the effective
SNR. The dependence of effective SNR on system size for
�=0.78 is plotted in Fig. 5�a�. A clear maximum is present
for system size ��106 	m3. From the chemical Langevin
equation, we know that the internal noise item is propor-
tional to 1/�� if all other parameters are fixed. Therefore, an
optimal system size implies an optimal level of internal
noise. This constructive role of internal noise recalls one
well-known phenomenon of stochastic resonance �SR�.
Therefore, we call this INSR.

The SNR values obtained from the ESS method and the
�-leap method are also shown in Fig. 5�a�. Good qualitative
agreement among the CL method, the ESS method and the
�-leap method is apparent. This agreement implies that it is
convenient to use the CL method to study the qualitative
effects of internal noise and the robustness of the present
results. Using the CL method, we have also studied how the
INSR behavior depends on the value of the control param-
eter, which is shown in Fig. 5�b�. Results show that, when
the control parameter becomes farther away from the HB
point, both the maximum SNR and the optimal system size
become smaller.

Using the methods discussed above, we have also studied
the influence of internal noise when the control parameter is
tuned near the left HB point but inside the LSS region. Simi-
lar results are obtained that INSR occurs and such a behavior
depends on the value of the control parameter. When the
control parameter becomes farther away from the HB point,

FIG. 3. Dependence of effective SNR on the system size with
the control parameter �=0.60.

FIG. 4. The smoothed power spectrums for three different sys-
tem sizes �=102, �=106, and �=109, respectively. The control
parameter is �=0.78. The curves are all obtained from the chemical
Langevin method.

FIG. 5. �a� The dependence of effective SNR on the system size
� with the control parameter �=0.78. Open square, chemical
Langevin method �CL�; solid star, exact simulation method �ESS�;
solid triangle, �-leap method. �b� The dependence of SNR on sys-
tem size with different control parameters obtained by the CL
method, 0.78 �solid line�; 0.79 �dashed line�; 0.80 �short dashed
line�. The data have been smoothed.
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both the maximum SNR and the optimal system size become
smaller �see Fig. 6�. However, with regard to the position of
the peak for different control parameters, we find some dis-
tinct features near the left HB compared to the right HB. One
can see that when the control parameter is tuned near the
right HB, the position of the peak changes obviously �from
��106 	m3 to ��104 	m3�, i.e., the system is sensitive
to the internal noise. Near the left one, however, the position
of the peak keeps nearly constant at ��103 	m3 for a wide
range of control parameter values, i.e., the system is robust
to the variation of the internal noise intensity. It is also inter-
esting to note that the size of real living cells in vivo is
around 103 	m3.

How can the INSR phenomenon have implications for
living cellular functions is still an open question. For the
current stage, our results may be of relevance to calcium
signaling in two ways. On the one hand, due to the existence
of unavoidable internal noise, stochastic calcium oscillations
can persist for a much wider parameter range, that is, cal-
cium oscillations can be quite robust to the variation of the
control parameter. On the other hand, instead of trying to
resist the internal molecular noise, living cell systems may
have learned to exploit it to enhance the calcium oscillation
performance via the mechanism of INSR. It is also interest-

ing to note that the calcium signaling sensitivity �5� and ca-
pability �6� in many cells show the maximum if the channel
cluster size is optimal, and the spontaneous action potential
in neurons shows the best time precision when the density of
axon ion channels reaches an optimal level �36�. Such behav-
iors imply that INSR might be a widely used mechanism for
living organisms to adapt and function.

We would like to emphasize here that, as stated by Martin
Falcke, “fluctuations render the intracellular calcium dynam-
ics a truly stochastic medium” �37�. Actually, it was already
demonstrated that stochastic models can show spatial and
temporal structures even with parameters providing a
nonoscillatory or nonexcitable deterministic regime in cal-
cium dynamics �15,38�, which is also one of the main results
of our present work. Besides this, we find that inside this
kind of parameter regime, an optimal level of internal noise
can mostly favor the formation of intracellular oscillation,
indicating some kind of self-tuning mechanism involved in
stochastic calcium dynamics.

IV. CONCLUSION

In conclusion, by constructing a mesoscopic stochastic
model for intracellular calcium oscillations in a cell system,
we have investigated how the internal noise would influence
the calcium oscillations of such a system using stochastic
simulation methods and chemical Langevin method. It is
found that stochastic calcium oscillations appear when the
internal noise is considered, while the deterministic model
only yields steady state. The performance of such oscilla-
tions undergoes a maximum with the variation of internal
noise, indicating the occurrence of INSR. Interestingly, we
find that the optimal system size matches well with the real
cell size when the control parameter is tuned near the left
Hopf bifurcation point, and such a match is robust to the
variation of the control parameters. Our findings may imply
the constructive role of internal noise on intracellular cal-
cium oscillations in living systems.
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