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We have studied the influence of internal noise on the reaction rate oscillation during
carbon-monoxide oxidation on single crystal platinum surfaces using chemical Langevin equations.
Considering that the surface is divided into small well-mixed cells, we have focused on the dynamic
behavior inside a single cell. Internal noise can induce rate oscillations and the performance of the
stochastic rate oscillations shows double maxima with the variation of the internal noise intensity,
demonstrating the occurrence of internal noise coherent biresonance. The relationship between such
a phenomenon with the deterministic bifurcation features of the system is also discussed. ©2005
American Institute of Physics. fDOI: 10.1063/1.1874933g

I. INTRODUCTION

A variety of spatiotemporal patterns, including reaction
rate oscillations, are often observed in heterogeneous cataly-
sis systems, such as CO oxidation and NO reduction on plati-
num surface, etc.1 At low pressures and typical temperatures,
the surface can be regarded as locally well-mixed and simple
mean-field models in the form of deterministic reaction-
diffusion equations have been very successful to reproduce a
lot of experimental observations. However, when looking at
very small length scales, internal noises become crucial and
must be considered.2 Internal noises are inherent in chemical
reaction systems due to the stochastic nature of the elemen-
tary processes including reaction and diffusion, and it is gen-
erally accepted that the strength of the internal noise is in-
versely proportional to the square root of the system size. In
heterogeneous catalysis, sufficiently small systems to be
strongly influenced by internal noise are provided by the
facets of a field emitter tip,3 by nanostructured composite
surfaces,4 and by the small metal particles of a supported
catalyst.5 Also when the pressures are increased, the size of
locally well-mixed cell would decrease to a small scale
where a mean-field type of reaction-diffusion equations be-
comes less accurate and internal noises become important.
Therefore, an important question arises: how the internal
noises would influence the spatiotemporal dynamics in small
heterogeneous catalysis systems?

Only recently has attention been paid to internal noise in
heterogeneous catalysis systems. It was found that internal
noise can induce transitions between the active and inactive
branch of the reaction for catalytic CO oxidation on a Pt field
emitter tip.3 Internal noise becomes essential in the dynamic
behavior of CO oxidation when surface cells over low-index
single crystal surface are very small.6 Using a stochastic
model,5,7,8 Peskov and co-workers demonstrated that the
large difference between the oscillations observed on a 4-nm

and 10-nm Pd particles was a consequence of the interplay
between the system’s nonlinear dynamics and the internal
noise. In the study of spatiotemporal self-organization in
catalytic oxidation of hydrogen on Pts111d, the authors also
suggested that a mesoscopic stochastic model taking into ac-
count internal noise should be used to quantitatively explain
the experimental observations.9 Very recently, experimental
study has shown that coverage fluctuations on catalytic par-
ticles can drastically alter their macroscopic catalytic behav-
ior, causing bistability to vanish completely with decreasing
particle size.10 The effects of internal noise on pattern forma-
tion in nanometer scale, i.e., the nonequilibrium nanostruc-
tures, have also been deeply studied.11

On the other hand, the constructive roles of noise in
nonlinear dynamical systems have attracted great research
interest in recent years. It was demonstrated that there exists
a “resonant” noise intensity at which the response of the
system to a periodic force is maximally ordered, which is
well known as stochastic resonancesSRd,12 or the order of
the noise-driven system itself can have a maximum in the
absence of periodic forcing, which is called coherent reso-
nancesCRd.12 However, most of the studies on SR-like be-
havior so far only accounts forad hocexternal noise, and
few attentions have been paid to the constructive roles of
internal noise. In previous studies including our work,13–20 it
was found that internal noise can also play SR-like roles in
small scale chemical or biochemical reaction systems includ-
ing intracellular and intercellular calcium signaling, circa-
dian oscillation system, and ion channel gating, which was
termed asinternal noise SRor internal noise CR.

In the present paper, we have studied the effect of inter-
nal noise on the reaction rate oscillations during the oxida-
tion of CO on low-index platinum surfaces.6 Here we con-
sider that the surface is divided into small cells inside which
the reactant molecules are well mixed, and the reactions in-
side each cell as well as the exchange of particles between
neighboring cells are both stochastic. Therefore, the surface
is heterogeneous in a large scale, but homogeneous in small
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scales. Generally, one should develop a stochastic model for
the reactions taking place on the whole surface. As the first
step, we will focus on the influence of internal noise on the
dynamics inside a single cell in the present study and con-
sider the inclusion of diffusion in future works.

For this purpose, we have adopted a recently developed
stochastic model6and the corresponding chemical Langevin
equations.21 Interestingly, we find that internal noise can play
rather nontrivial roles. In a parameter region which is sub-
threshold for the deterministic oscillatory dynamics, internal
noise can induce stochastic oscillations, which are distinct
from random fluctuations in that there is a clear peak in the
power spectrum. The regularity of the stochastic oscillation,
characterized by an effective signal-to-noise ratiosSNRd, un-
dergoes two maxima with the variation of the internal noise
strength, indicating the occurrence of internal noise coherent
biresonance. In addition, we find that the parameter region
can be divided into four distinct regions, where the SNR
undergoes 2, 1, 0, and 1 maxima, respectively. We show that
such a behavior is much relevant to the system’s determinis-
tic dynamic features.

II. MODEL AND RESULTS

The model used in the present paper was developed for
the oxidation of CO on Pts110d single crystal surface.6 The
reaction was found to follow a Langmuir–Hinshelwood
mechanism, which involves the adsorption of CO or O2 mol-
ecules, and the reaction between adsorbed CO molecules and
O atoms. In addition, the adsorbate-induced 131⇔132
phase transition is taken into account to address the influence
of the surface structure on the reactivity. The state of a cell
containing N adsorption sites can be described by XNstd
=fNCOstd ,NOstd ,N131stdgT, whereNCO, NO, andN131 denote
the number of adsorbed CO molecules, oxygen atoms, and
adsorption sites in a nonreconstructeds131d surface, re-
spectively. The system’s dynamics is then described by sto-
chastic birth-death processes governed by a chemical master
equation, which describes the time evolution of the probabil-
ity of having a given number of these species. For the
present model, the stochastic processes and the correspond-
ing reaction rates are listed in Table I, where we have intro-
duced the concentrationsu=NCO/N, v=NO/N, and w
=N131/N. Note that the transition ratesai=1,…,6 are all pro-
portional to the system sizeN.

From these processes, one may readily write down the
chemical master equation for this system. However, there is
no general procedure to solve this master equation analyti-
cally. A well-known method to handle the master equation is
the exact simulation algorithm proposed by Gillespie, which
mimic the reaction dynamics by randomly determining what
the next reaction is and when will it happen.22 Recently,
Gillespie found that under certain circumstances, it is also
reasonable to approximate the master equation by a chemical
Langevin equationsCLEd.21 In our previous studies,14–16 we
have shown that it is applicable to use the CLE to study the
effect of the internal noise in small chemical reaction sys-
tems qualitatively. Specifically, given the stochastic pro-
cesses and transition rates shown Table I, the CLE for the
current model reads

du

dt
=

1

N
fsa1 − a3 − a4d + Îa1h1std − Îa3h3std − Îa4h4stdg,

dv
dt

=
1

N
fs2a2 − a4d + 2Îa2h2std − Îa4h4stdg, s1d

dw

dt
=

1

N
fsa5 − a6d + Îa5h5std − Îa6h6stdg,

wherehi=1,…,6std are Gaussian white noises withkhistdl=0
and khistdh jst8dl=di jdst− t8d. The items withhistd give the
internal noises, which scale as 1/ÎN becauseai=1,…,6~N.

In the macroscopic limitN→`, the internal noise items
can be ignored and the system’s dynamics is described by the
deterministic equation,

du/dt = sa1 − a3 − a4d/N, dv/dt = s2a2 − a4d/N,

s2d
dw/dt = sa5 − a6d/N.

With the variation of the parametersPO andPCO, the system
s2d shows very abundant bifurcation features.6 In the present
paper, we fix PO=9.6310−5 mbar, T=520 K and choose
PCO as the only control parameter. In such a case, the bifur-
cation diagram of the deterministic system is shown in Fig.
1. There is a supercritical Hopf bifurcationsHBd at PCO

<3.557310−5, where a stable limit cycle emerges. The limit
cycle disappears via a saddle-node infinite periodsSNIPERd
bifurcation when it encounters the turning pointsTP1d at
PCO<3.6151310−5. For PCO less than HB or larger than
TP1, the system only shows one stable state, and oscillations

TABLE I. Stochastic processes and reaction rates for CO oxidation on Pts110d. All the parameter values are the
same as those listed in Table 2 of Ref. 6.

Process Rate Descriptions

NCO→NCO+1 a1=NPCOkCOsCOs1−ujd CO adsorption
NO→NO+2 a2= 1/2NPOkOfsO

132s1−wd+sO
131wgs1−ud2s1−vd2 O2 adsorption

NCO→NCO−1 a3=Nskdes
132s1−wd+kdes

131wd3u CO desorption
NCO→NCO−1 NO→NO−1 a4=Nkreuv Reaction
N131→N131+1 a5=Nk131s1−wd3 f131su,wd,

with f131su,wd=s1−«dul+«wl

s132d to s131d

N131→N131−1 a6=Nk132w3 f132su,wd,
with f132su,wd=s1−«ds1−udl+«s1−wdl

s131d to s132d
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can only be observed in the region between HB and TP1. In
addition, an interesting feature of the system is the existence
of a canard pointsCANARDd at PCO<3.575310−5, where a
very fast transition from a small-amplitude oscillation to a
large-amplitude oscillation occurs.24 Therefore, we can di-
vide the bifurcation diagram into four distinct regions,
namely, region A for PCO,HB, B for HB, PCO

,CANARD, C for CANARD, PCO,SNIPER, andD for
PCO.SNIPER.

To get more information of the system’s deterministic
dynamics, we have also drawn the nullclinesu̇=0 andẇ=0
in thew-u plane for five different parameter values ofPCO in
Fig. 2. The w nullcline does not depend onPCO. The u
nullcline is S shaped, which contains one minimum and one
maximum point. The left branch before the minimum and the
right branch after the maximum are both stable and the
middle branch in between is unstable. According to Ref. 24,
such kinds of manifolds may cause excitability as well as
canard phenomenon. From bottom to up,PCO3105 read 3.3,
3.56, 3.58, 3.6151, and 3.65 mbar, respectively. ForPCO

=3.3310−5 mbar which is inside regionA, the two
nullclines intersect at one point which is the only stable state.
This stable state is also excitable, i.e., small perturbations
will cause the system to return immediately to it, while
slightly larger perturbations, beyond some well-defined
threshold, will cause the system to revert to it only after
making a large-amplitude excursion across the right branch
of the u nullcline. With the increasingPCO, the intersection
will move to the middle branch of theu nullcline and be-
comes unstable. WhenPCO reaches the HB, a small-
amplitude limit cycle emerges around the unstable steady
state, which will change very fast to a large amplitude limit
cycle at a slightly larger value ofPCO, the canard point. The

u nullclines for PCO=3.56310−5 mbar sin region Bd and
PCO=3.56310−5 mbarsin regionCd are shown as examples
for these two situationssnote that the nullclines do not show
much difference when the canard phenomenon occursd. With
further increasing ofPCO, the right branch of theu nullcline
begins to intersect with thew nullcline, which will create a
pair of saddle nodes. At the SNIPER pointPCO=3.6151
310−5 mbar, thew nullcline is tangent to theu nullcline, and
the limit cycle ends at a homoclinic orbit with an infinite
period. Therefore, the nullclines can help us understand more
about the system’s dynamics. One will see that such bifurca-
tion features can lead to interesting effects of the internal
noise as described below.

To account for the internal noise, we have numerically
integrated Eq.s1d using the standard procedure for stochastic
differential equations with a time step 0.0l s.21 To begin, we
set the control parameterPCO=3.5310−5 mbar, which is
slightly subthreshold for the deterministic oscillation. Al-
though the deterministic Eq.s2d does not predict self-
oscillations for this parameter, the chemical Langevin Eq.s1d
can yield stochastic oscillations, which is an important effect
of the internal noise. The stochastic oscillation is distinct
from random noises in that there is a clear peak in the cor-
responding power spectrum. Therefore, for reactions in a
small surface cell, the rate oscillations may exist in a larger
parameter range than that suggested by the deterministic
equation. In addition, the dynamic behavior of Eq.s1d shows
strong dependence on the cell sizeN, which determines the
strength of the internal noise. In Fig. 3, stochastic oscilla-
tions for five different cell sizes are shown. ForN=108, the
internal noise is rather small and the system’s dynamics ap-
proximately obeys the deterministic Eq.s2d, hence the CO
concentration only shows slight fluctuations around the de-
terministic steady state as shown in the bottom panel. The
corresponding power spectrum densitysPSDd of the time
series is shown in Fig. 4sthe dashed-dotted-dotted lined.
There is already a peak in the PSD, implying some “oscilla-
tion” information in the time series. When the cell size de-

FIG. 1. Bifurcation diagram for the deterministic systems2d. HB stands for
the supercritical Hopf bifurcation atPCO<3.557310−5, TP1 and TP2 de-
note two turning points atPCO<3.6151310−5 and PCO<4.839310−5.
Stable limit cycles exist in the region between HB and TP1, where the solid
circles show the maxima and minima of the oscillations. Note the oscillation
ends at TP1 via a saddle-node infinite periodsSNIPERd bifurcation. The
heavy solid lines denote stable steady states, the dashed line unstable states,
and the dotted line saddle states. The dependence of the oscillation period
between HB and TP1 is depicted by the open circlessthe right axisd. Impor-
tantly, there is a canard point atPCO<3.575310−5. The bifurcation diagram
is calculated by use of theBIFPACK softwaresRef. 23d.

FIG. 2. Nullclines of the deterministic equations2d. Five u nullclines are
shown. From bottom to top,PCO3105 are 3.3, 3.56, 3.58, 3.6151, and 3.65
smbard, respectively. See the text for detailed discussions.
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creases to a smaller value, e.g.,N=106, random fluctuation
around the steady state changes to “stochastic oscillation” of
small amplitude, and a clear peak shows in the PSD curve
sFig. 4, dashed-dotted lined. With further decreasing of the
cell size, we find that occasional random pulses are triggered
on the background of the small stochastic oscillations. The
hybrid of small oscillations and pulses lead to no peaks in the

PSD sFig. 4, dotted lined. For a certain smaller but optimal
cell size,N=103, for instance, the pulses can become rather
regular, showing a relatively high and narrow peak in the
PSD sFig. 4, dashed lined. If the cell size is too small, the
oscillation will be destroyed by the large internal noise, and
the peak in the PSD becomes lower and wider againsFig. 4,
solid lined. Consequently, with the variation of the cell size
N, or correspondingly the internal noise level, small-
amplitude stochastic oscillations are first induced and then
replaced by the stochastic pulses, the latter becomes the most
regular at an optimal system sizeN, and finally overwhelmed
into the internal noise background. For large system size
ssmall internal noised, the stochastic oscillations are of small
amplitude, which looks like those deterministic ones in re-
gion B sFig. 1d, and for small system sizeslarge internal
noised, the system will show large-amplitude stochastic os-
cillations like those in regionC. For both kinds of stochastic
oscillations, there seems to be an optimal system sizesinter-
nal noise leveld where the performance of the stochastic os-
cillation is the best.

To quantitatively characterize the regularity of the sto-
chastic oscillation, we have introduced the effective signal-
to-noise ratio sSNRd as already used in our previous
studies.14–16It is defined as the height of the peak normalized
by its relative width, as described in Fig. 4. One may also
refer to Refs. 14–16 for more details. The dependence of
SNR on system sizeN is shown in Fig. 5. Two maxima
appear, one atN,103 and the other atN,105.5. Such a
behavior may be called system size biresonance, or internal
noise coherent biresonance, reminiscent of the great research
attention in stochastic resonance and recent interest in sys-
tem size resonance.13–20The corresponding peak frequencies
of the stochastic oscillations are also shown in Fig. 5sright
axisd. The first maximasN,105d corresponds to large-
amplitude stochastic oscillations with small frequency, and
the second maximasN.105d corresponds to small-
amplitude stochastic oscillations with large frequency.

The above discussions suggest that it is the specific bi-
furcation feature shown in Fig. 1 that gives rise to the double

FIG. 3. Stochastic oscillations of CO concentration for different number of
adsorption sitesN for PCO<3.5310−5 mbar. From top to bottom,N reads
102, 103, 105, 106, and 108, respectively. Note that the vertical axis has
different scales in panelssad–scd from those insdd and sed. For relatively
smallN, the stochastic oscillations are of large amplitude, while for largeN,
the amplitude is small. ForN,105, neither type of stochastic oscillations
dominates.

FIG. 4. Power spectrum densitysPSDd for the stochastic oscillations shown
in Fig. 3. Clear peaks appear except forN=105. For small N, the peak
frequency is smaller, which corresponds to the large-amplitude oscillation.
For largeN, the peak frequency is larger and the oscillation is of small
amplitude. The pointsA, B, andC in the PSD curve forV=108 demonstrate
how to calculate the effective SNR, i.e., SNR=fPsAd /PsBdg3vA/ svC

−vAd, where PsPd denote the PSD level for a given point andPsCd
=PsAd /e. Arbitrary unit is used for the PSD. From bottom to top,N reads
108, 106, 105, 103, and 102, respectively.

FIG. 5. Dependence of the SNR of the stochastic oscillations on the number
of adsorption sitesN. Two clear peaks appear, one atN,103 and the other
N,106. For N,105, the SNR reaches the lowest level. The corresponding
principle frequencies are also shownsright axisd. This figure clearly demon-
strates the occurrence of internal noise coherent resonance. Since the inter-
nal noise level is controlled via the change ofN in the present paper, the
phenomenon also indicates a kind of system size biresonance.
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maxima in the SNR,N curve. Phenomenologically, when
the parameter locates in regionA where the system is sub-
threshold for the deterministic oscillation but excitable, small
internal noise tends to draw the system into regionB, while
large internal noise may cause excitation and drive the sys-
tem into regionC. Therefore, one naturally asks how the
behavior depends on the control parameterPCO. To answer
this question, we have gone through the parameters from
regionA to D, and the result is given in Fig. 6. In Fig. 6sad,
we find four kinds of dependence on the system size.sad For
parameters in regionAsPCO=3.45310−5,3.50310−5,3.55
310−5 mbard, there are two maxima, as already described
above. sbd For parameters in regionBsPCO=3.56
310−5,3.57310−5 mbard, we also observe a resonance
maxima at N,103, which corresponds to the large-
amplitude stochastic oscillations.scd In regionCsPCO=3.60
310−5 mbard, the existence of internal noise is destructive.
With the increment of internal noise strength, the SNR of the
large-amplitude oscillation monotonically reduces. No reso-
nance behavior exists in this range.sdd In region DsPCO

=3.62310−5 mbard, which is also outside the deterministic
oscillation region, system size resonance with only one peak
occurs again, and the stochastic oscillation is also of large
amplitude. The corresponding peak frequencies of the sto-
chastic oscillations are shown in Fig. 6sbd, which helps to
understand what the stochastic oscillations look like.

Here, it should be pointed out that casesbd is quite dis-
tinct to previous understandings. One notes that for param-
eters in regionB, the system already shows deterministic
oscillations when internal noise is ignored. In previous stud-
ies, it was demonstrated that in such a region, the inclusion
of internal noise will only lead to localization and phase
diffusion of the original deterministic oscillations, and there
is a low limit of system size where the oscillation is no
longer correlated in time.25 Therefore, although it is now
widely accepted that internal noise may play constructive

roles in the subthreshold regionA, the constructive roles of
noise in a deterministically oscillation region was not re-
ported before. In our present work, we demonstrate such a
possibility in a specific chemical reaction model, which
shows peculiar bifurcation features. We think that the exis-
tence of a canard explosion from regionB to C is the very
reason of such a phenomenon. Actually, we have also per-
formed similar studies for other parameter values ofPO. For
the deterministic systems2d, oscillation only exists for cer-
tain range ofsPO,PCOd parameters. We find that if the canard
phenomenon disappears then the biresonance behavior in the
subthreshold regionA cannot happen.

III. DISCUSSION

Using a stochastic model to describe CO oxidation on
single crystal platinum surfaces, we have studied the influ-
ence of internal noise on the reaction rate oscillations. Con-
sidering that the surface is divided into small well-mixed
cells, we have focused on the dynamic behavior inside a
single cell. In parameter regions where no deterministic os-
cillations can exist, internal noise can induce reaction rate
oscillation, which is in consistent with previous studies in
Ref. 6. In addition, we find that the regularity of the stochas-
tic rate oscillations can show two maxima with the variation
of the internal noise level, which is changed via the variation
of the cell sizeN, one atN,103 and the other atN,105.5.
The relationship between such a phenomenon of internal
noise stochastic biresonance with the deterministic bifurca-
tion features of the system is also discussed.

As stated in the Introduction, in most experiments, the
system’s dynamics can be well described by reaction-
diffusion models. Usually, external parameter fluctuations as
well as surface heterogeneity are more important factors than
the internal noise. Therefore, how the results of the present
study, which accounts for the interesting role of internal
noise in a single cell, would be relevant to real systems is an
open question. At the current stage, a few points may be
addressed. First, the occurrence of noise induced oscillation
and stochastic resonance indicates that internal noise can
play some nontrivial, constructive roles in the dynamics of
heterogeneous catalysis. Furthermore, because of the exis-
tence of two maxima, we find that internal noise might also
be crucial for a relatively large cell containing surface sites
up to N,106. We note that this is different from previous
studies such as in Ref. 6, where it was stated that internal
noise may become crucial only when the cell sizeN is less
than 104. sNote the first maximaN,103 in the present work
coincides with this statement.d The reason may be that the
second maximum corresponds to small-amplitude oscillation
here and we have tuned the parameterPCO in the very vicin-
ity of the Hopf bifurcation. Finally, present work acts as the
preceding step to study the effects of internal noise on the
spatiotemporal dynamics on the larger scale surface in future
works, especially when the system lies close to some critical
points.

FIG. 6. The dependence of the SNRsad and frequencysbd of the stochastic
oscillations onN for different PCO.
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