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In recent years, dynamic processes in complex networks have
attracted growing attention.[1–3] Studies have focused on the
small-world network (SWN)[4] and scale-free network (SFN)[5]

due to their importance in explicitly mimicking highly complex
structure of many realistic social,[6] biological,[7, 8] or electronic
communication[9] networks. So far, studies on complex net-
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works can be divided into two main categories: In the domi-
nant category, investigations are concerned with topological
properties and the various mechanisms, which allow to deter-
mine the topology. Research in the other, more important cat-
egory is engaged in understanding how the network topology
influences the system’s dynamic features.[2, 10, 11]

Any spreading rate can lead to the whole infection of dis-
ease on a “scale-free” network (SFN).[12] Stochastic resonance[13]

and synchronization[14] can be considerably improved for SWN,
and SWN can greatly enhance the probability of spiral wave
formation in excitable media,[15] ordering chaos,[10] and oscilla-
tor death.[11] All these studies show that random shortcuts play
a crucial role for the system’s dynamics.

In biology, neural networks have always been an important
subject of research. It is well-known that a single neuron in the
vertebrate cortex connects to more than 104 postsynaptic neu-
rons via synapses, forming complex networks.[16] Therefore,
adding a number of long-range shortcuts among them is rea-
sonable and feasible. Recently, the dynamics of coupled Hodg-
kin–Huxley (H–H) neurons on complex networks have gained
much interest.[17, 18] Two important dynamical phenomena, re-
garding the effects of random connectivity of networks, are
the enhancement of temporal coherence and the spatial syn-
chronization of action potentials (spikes). Coherence and syn-
chronization of coupled excitable neurons may elucidate, how
the coherent spontaneously synchronized oscillations, which
have been observed in the brain cortex, are established in
many neuronal systems.[19–21] Therefore, the study of coherence
and synchronization of the H–H neurons on complex networks
is of great significance for real neuronal systems.

Since Hodgkin’s and Huxley’s cornerstone paper[22] was pub-
lished, numerous studies have been contributed to the dynam-
ics of the H–H neurons. The dynamics of membrane potentials
for a large and a small ion channel number can be described
by the deterministic H–H equation[22] and the stochastic H–H
model,[23, 24] respectively. In the case of coupled neurons, fluctu-
ations may be generated both from a small number of ion
channels and from the synapses by stochastic effects in the
transport of neurotransmitter through the synaptic cleft as
well as by the relative small number of postsynaptic receptors.
Since synaptic noise is extrinsic to the ion channel processes
that generate the action potential, it appears as noise term in
the equation for the membrane potential. Intrinsic channel
noise appears in the equations for the gating variables.[23, 24] A
study of simple threshold-fire model neurons has shown that
the maximal signal-to-noise ratio (SNR), found by varying the
excitability at a given noise level, decreases monotonously
with increasing noise.[25] Thus, adding noise externally is not
the best strategy to optimize signal encoding. The dynamics of
the stochastic H–H neuron model subjected to channel noise,
arising from stochastic opening-closing of ion channel gates,
has been extensively studied.[23-25] It is shown that the intrinsic
channel noise can significantly alter the spiking activity of neu-
rons. Interestingly and importantly, recent studies have demon-
strated that optimal areas of ion channel clusters for subthres-
hold signal encoding exist.[31, 32] Concerning the influence of in-
trinsic channel noise on the synchronization between the spik-

ing activity of the excitable membrane and an externally ap-
plied periodic signal, it is found that synchronization takes
place only for sufficiently large ion channel assemblies.[33] A
study of a system composed of two intrinsically noisy H–H
neurons, which are coupled by a diffusive interaction, shows
that the addition of sinusoidal forcing can change the system’s
statistical dynamics, giving rise to the statistical locking of
random switching to the phase of the external signal.[34] It is
also found that there exist both optimal clusters areas and an
optimal number N of coupled neurons for the best coher-
ence.[35] Note here that an optimal size of channel clusters cor-
responds to an optimal level of internal noise.

In particular, the study of dynamics of coupled H–H neurons
on SWN has shown that random topologies give rise to fast re-
sponse, if regular networks produce coherent oscillations on a
slow time scale. Furthermore, random topology may speed the
synchronization of neuron firings by taking advantage of a few
long-range shortcuts.[17] Since the structural properties of com-
plex networks, for example, the characteristic path length L(p)
and clustering coefficient C(p) in SWN, vary together with p, the
fraction of random shortcuts, it is important to study the effect
of p on the dynamics of complex networks. An increase of p
leads to an enhancement of coherence resonance and synchro-
nization of neuron firings.[18] Thus, the intriguing question, if an
optimal p for coherence and synchronization exists, raises.
Herein, we really find such an optimal p, where neuron spikes
achieve the best performance of coherence, by using the sto-
chastic H–H neuron model subjected to channel noise. We dem-
onstrate that appropriate random long-range shortcuts favor
temporal coherence and hence subthreshold signal encoding.

The random neural network herein is constructed as follows.
We start with a regular ring which comprises N = 60 identical
H–H neurons. Each neuron has two nearest neighbors. Links
are then randomly added between non-nearest vortices. In the
limit case, when all neurons are coupled to each other, the net-
work contains N(N�1)/2 edges. Using M to denote the number
of added random shortcuts, then the fraction of random short-
cuts reads p = M/[N(N�1)/2] , which is chosen as the control pa-
rameter herein. One should note that for a given p a lot of net-
work realizations exist.

It is known that in the presence of an external stimulus I(t),
the temporal evolution of the membrane potential V(t) for a
single neuron is governed by the differential Equation (1):

C
dV
dt
¼ �gNam3hðV�VNaÞ�gKn4ðV�V KÞ�gLðV�VLÞ þ IðtÞ ð1Þ

where the constants gNa = 120, gK = 36, and gL = 0.3 mS cm�2

are, respective, the maximal conductance of sodium, potassi-
um, and leakage currents, C = 1 mF cm�2 is the membrane ca-
pacitance, and VNa = 50 mV, VK =�77 mV, and VL =�54.4 mV
represent corresponding reversal potentials. We employ a peri-
odic stimulus I = sin(0.3 t), which is a subthreshold stimulus and
does not trigger action potentials, if intrinsic channel noise is
not taken into account. Note here that different subthreshold
stimuli may cause a change in the spiking activity. However, it
is shown that for a single neuron the interspike interval distri-
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bution is not affected by the subthreshold stimulus for small
patch sizes, and the influence of the stimulus is rather small
even for larger patch sizes.[32] Accordingly, there may be small
quantitative difference regarding the influence of different sub-
threshold stimuli on the coupled H–H neurons’ spiking activity,
but the qualitative result should remain the same.

According to Hodgkin and Huxley’s work, the conductance
of a potassium channel is gated by four independent and iden-
tical gates and, thus, if n is the probability of one gate to be
open, the probability for a potassium channel to stay open is
n4. Similarly, sodium channels are assumed to be governed by
three independent, identical gates with opening probability m
and an additional different one, possessing the opening proba-
bility h. Accordingly, the opening probability of the sodium
channel reads m3h. To take into account the internal channel
noise, the stochastic gating variables m, h, and n obey the fol-
lowing Langevin equations [Eqs. (2a–2c)]:[23]

_m ¼ amðVÞð1�mÞ�bmðVÞmþ xmðtÞ ð2aÞ

_h ¼ ahðVÞð1�hÞ�bhðVÞhþ xhðtÞ ð2bÞ

_n ¼ anðVÞð1�nÞ�bnðVÞnþ xnðtÞ ð2cÞ

with the experimentally determined voltage-dependent transi-
tion rates, given in Equations (3a–3f)]:[22, 27]

amðVÞ ¼
0:1ðV þ 40Þ

1�exp½�ðV þ 40Þ=10� ð3aÞ

bmðVÞ ¼ 4exp½�ðV þ 65Þ=18� ð3bÞ

ahðVÞ ¼ 0:07exp½�ðV þ 65Þ=20� ð3cÞ

bhðVÞ ¼ f1þ exp½�ðV þ 35Þ=10�g�1 ð3dÞ

anðVÞ ¼
0:01ðV þ 55Þ

1�exp½�ðV þ 55Þ=10� ð3eÞ

bnðVÞ ¼ 0:125exp½�ðV þ 65Þ=80� ð3fÞ

where xi= m,n,h(t) are Gaussian white noises with hxi(t)i= 0,
hxi(t)xj(t’)ii¼6 j = 0, and hxi(t)xi(t’)i= Did(t�t’). Di = m,n,h represent the
effective intensities of internal channel noises, which are inver-
sely proportional to the total number of sodium or potassium
channels in the membrane patch, shown in Equations (4a–4c):

Dm ¼
2

NNa

ambm

am þ bm

ð4aÞ

Dh ¼
2

NNa

ahbh

ah þ bh

ð4bÞ

Dn ¼
2

NK

anbn

an þ bn

ð4cÞ

where NNa and NK are the total numbers of sodium and potassi-
um channels present in a given patch of the membrane, re-
spectively. With the assumption of homogeneous ion channels
densities, 1Na = 60 mm�2 and 1K = 18 mm�2, NNa and NK are deter-
mined by using the membrane patch area S via NNa =1NaS and
NK =1KS.

Now the membrane potential dynamics of coupled H–H
neurons on the complex networks can be described by Equa-
tions (5a) and (5b):

C
dV i

dt
¼ �gNami

3hiðV i�VNaÞ�gKni
4ðV i�VKÞ�gLðV i�VLÞ

þI þ
X

j

eijðV j�V iÞ
ð5aÞ

_x i ¼ axi
ðV iÞð1�xiÞ�bxi

ðV iÞxi þ xxi
ðtÞ ð5bÞ

where x = m, n, h and 1� i�N. Here N is the number of neu-
rons and eij is the coupling strength between the two neurons
i and j, which is determined by the coupling pattern of the
system. If neuron i and j are connected, they have coupling
strength eij = 0.1; otherwise the coupling strength is eij = 0. Nu-
merical integration of Equation (5) is carried out by using the
explicit Euler method with time step 0.001 ms. Periodic boun-
dary conditions are used and the parameter values for all the
neurons are identical except for the noise terms xxi

(t).

Since action potentials can be generated by channel noise
in the case of above subthreshold current input, we first briefly
outline the effect of channel noise on the dynamics of a single
H–H neuron. The patch area S is taken as a control variable
and all other parameter values are as shown above. We have
performed numerically integration of Equations (1)–(4), and ob-
tained the spike oscillations of membrane potential and their
regularity as a function of the patch area. Figure 1 plots the
spike trains of the membrane potential V for three different
patch areas. It is clearly shown that the spike firings appear rel-
atively regular only at an intermediate patch area S = 1.58 mm2.
Usually, the regularity of a spike train is measured by the coef-

Figure 1. Membrane potential V for a single neuron with three different
patch area S : a) S = 50.12 mm2, b) S = 1.58 mm2, and c) S = 0.1 mm2. A regular
spike train is observed for the intermediate patch areas. T1, T2, and T3 in (a)
are the examples of the interspike interval.
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ficient of variation defined as R =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hT 2i�hTi2

p
/hTi. Here we

define l= 1/R as our measure, simply to address the point that
a larger l corresponds to a better spiking regularity. The de-
pendence of l on the patch area S is displayed in Figure 2. It
shows that l goes through a maximum at around
S�1.58 mm2, corresponding to the best regularity of the spike
train. This phenomenon has been termed as “internal noise co-
herence resonance”.[32]

Now we turn to the present coupled H–H neurons on the
complex networks. To mainly investigate the effect of the net-
work topology, we fixed the patch area at S = 6 mm2, and we
let p variable. All other parameters are the same as given
above. The spatiotemporal evolution of the membrane poten-
tials of all the 60 coupled H–H neurons on the networks is pre-
sented in Figure 3. The left panel in Figure 3 corresponds to

the regular lattice case (p = 0). It shows rather irregular and
nonsynchronous spikes. However, if certain random shortcuts
are added (e.g. , p = 0.025, i.e. , number of shortcuts M = 45),
the system shows a more regular spatiotemporal pattern,
which is nearly synchronized in space and almost periodic in
time. When the number of random shortcuts increases to M =

270 (see the panel for p = 0.15), the synchronization is more
enhanced and the performance of temporal regularity be-
comes the best. However, if the number of random shortcuts
is further increased, the spikes are irregular in time although
the neurons are still spatially synchronized (see the panels for
p = 0.325 and 0.45). The temporal regularity is apparently lost.

To quantitatively characterize these two behaviors, we intro-
duce the standard deviation s and the coefficient of variation
lc to measure the spatial synchronization and the regularity of
collective spike firings, respectively. Here s is defined as Equa-
tion (6):

s ¼ ½hsðtÞi� with sðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN

i¼1

V iðtÞ2�
�

1
N

PN

i¼1

V iðtÞ
�2

N�1

vuuut ð6Þ

where h·i denotes the average over time and [·] the average
over 50 different network realizations for each p. The value of
s(t) measures the spatial synchronization of neurons’ spikes at
a fixed time t. Large values of s(t) represents large deviation
between the neurons, and small values of s(t) shows good
synchronization. R is used to measure the regularity of the col-
lective spikes in time, which herein is defined as Equation (7):

lC ¼ ½l0� with l0 ¼ hTiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hT 2i�hTi2

p ð7Þ

here T is the interspike interval, hTi and hT2i are its mean and
mean-squared values, respectively. A spike occures per defini-
tion, when the average membrane potential Vave crosses 0 mV

from below, where Vave(t) =
1
N

PN

i¼1

Vi(t) is the average action po-

tential. Note that lc measures the regularity of the spike train
of Vave spikes and thus represents the collective temporal co-
herence of the system, which is of much biological significance
since it is related to the spike timing precision of the informa-
tion processing in the H–H neuron system.

Figure 4 depicts the dependence of the standard deviation
s on p of the network topology. One can see that s decreases
monotonously when p is increased, approaching zero as p!1,
that is, the synchronization of coupled H–H neurons is en-
hanced more and more as p increases. This is in qualitative
agreement with the result in ref. [18] . Figure 5 displays the
evolution of lC as a function of p within the range p = 0–0.325.
Interestingly, it is shown that lC in this case undergoes a maxi-
mum, which demonstrates the existence of a narrow range of
optimal fraction around p�0.125, where the H–H neurons
behave most periodically in time. This implies that for an opti-
mal p the H–H neurons on the complex networks would exhib-
it the best performance in subthreshold signal encoding and
collective information processing.

Figure 2. Dependence of the variation coefficient l on the patch area S in
the presence of a subthreshold stimulus I = sin(0.3t) for a single neuron. The
maximal l as a function of the patch area S is observed. This maximum
shows the optimal S value for the encoding of small sinusoidal signals.

Figure 3. Spatiotemporal evolution of membrane potentials of 60 coupled
H–H neurons on the network. The spatial synchronization is enhanced with
increasing p, and temporal coherence becomes most pronounced for an in-
termediate p value.
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We have also calculated the averaged spike coherence lS =�
1
N

PN

i¼1

li

�
, where li is the spike coherence of the interspike in-

tervals for the ith individual neuron’s potential Vi(t), and [·] has
the same interpretation as above. The result obtained is also
plotted in Figure 5. One sees that an optimal fraction is pres-
ent around p�0.15 where lS reaches its maximum, which indi-
cates the occurrence of the best performance of spike coher-
ence. One should note that in the range of small p the values
of lC and lS are not the same, however, they tend to be com-
pletely the same for large p values. The reason for this obser-
vation is that for large p values the spikes become completely
spatially synchronized, consequently, the response of the sys-
tem’s collective behavior will certainly become the same as
that of an individual neuron.

The results obtained sufficiently demonstrate that increasing
p would enhance the spatial synchronization of spiking activity
of the coupled H–H neurons on the complex networks. On the
other hand, optimal p would mostly enhance the temporal co-

herence of the system. Note that when the temporal coher-
ence reaches the best level, s already decreases to a relatively
low value, that is, the spatial synchronization is already good.
Therefore, the spatiotemporal order of the system’s collective
behavior reaches its best performance at an optimal value of
p, as already shown in Figure 3.

In conclusion, we have studied the temporal coherence and
the spatial synchronization of the stochastic Hodgkin-Huxley
model subjected to channel noise on complex networks. We
find that coherence and synchronization, which are absent in
the regular network, can be enhanced by random shortcuts.
More interestingly, a novel phenomenon has been found. With
increasing p the temporal coherence displays the best perfor-
mance for an optimal p. We have defined here l, the inverse
value of the “coefficient of variation”, and calculated lC for the
collective spike coherence of the array and lS for individual
neuron’s spike coherence as well. Apparently, they all undergo
a maximum as p is increased, which demonstrates that there
are optimal random shortcuts where the collective spike coher-
ence and individual one conduct the best temporal coherence.
This phenomenon is somewhat similar to that of the channel
noise stochastic resonance in a single H–H neuron.[31, 32] The ex-
istence of optimal random shortcuts for the spike coherence of
the H–H neurons reveals that the neurons may exhibit a rhyth-
mic spiking activity and thus conduct best subthreshold signal
encoding under optimal random shortcuts.
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