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The spatial synchronization and temporal coherence of FitzHugh-Nagumo (FHN) neurons on complex networks

are numerically investigated. When an optimal number of random shortcuts are added to a regular neural chain,

the system can reach a state which is nearly periodic in time and almost synchronized in space. More shortcuts

do not increase the spatial synchronization too much, but will obviously destroy the temporal regularity.

PACS: 05.45.—a, 05.45. Xt

Complex mnetworks have gained considerable
attention® 3 in the past few years due to their
importance in mimicking real systems of the
world, such as social,l biological,l®®! and electronic
In fact, any coupled
system can be viewed as a network consisting of a
number of sites connected with a certain topology
graph, where vertices represent the dynamic elements
of the system and the edges represent the interactions
or couplings between them. Two distinct types of
complex networks, the small-world network (SWN)[1]
and the scale-free network (SFN),['] have been stud-
ied extensively due to their important relevance to
many real-world structures. Studies on complex net-
works can be divided into two main categories. While
currently the dominant one is to study the topo-
logical properties of complex networks and various
mechanisms to determine the topology, the other one,
which is considered to be more important, is to study
how the interplay between the intrinsic dynamic of
the constituent elements and their complex connec-
tivity can influence the system’s dynamical features.
It is now accepted that the network topology can
considerably influence the collective behaviour of the
system, although a thorough understanding is still
needed. For instance, it was found that any spread-
ing rate can lead to the whole infection of disease
in a scale-free small-world network, 213! stochastic

communication!”~® networks.

resonance!' and synchronization*®'¢! can be con-
siderably enhanced on SWN, and small-world con-
nections can improve the probability of spiral wave
(17l tame spatiotempo-
ral chaos,!® and eliminate oscillation death,*® to list
just a few examples.

Neural networks have always been the research
subject in this area. The elementary processing units

formation in excitable media,

in the central nervous system are neurons which are
connected to each other in an intricate pattern. It
is known that a single neuron in vertebrate cortex
connects to more than 10* postsynaptic neurons via
synapses, forming complex networks.[2?] Therefore,
adding a number of long-range connections among
them is reasonable and feasible. It has been shown
that the topology of the FitzHugh-Nagumo (FHN)
neuron network has an important impact on the ef-

21 and small

fective frequency range of the system,
world chaotic Hindmarsh—Rose neural networks can
achieve collective phase synchronization,?? the dy-
namic neuronal system with small world connectiv-
ity can be adjusted to an optimal sensitive state for
signal processing in the presence of additive noise.[??!
Thus, the studies of the influence of complex network
topology on the dynamics of real neural systems are
of great significance.

In this Letter, we investigate the synchronization
and coherence of noisy FHN neurons on complex net-
works, constructed by randomly adding shortcuts to a
regular one-dimensional lattice. On the original regu-
lar chain, the ensemble shows a rather disorder state
due to the presence of noise and heterogeneity. Being
consistent with the literature, we find that the neu-
rons can be more synchronized with the increase of
the number of random shortcuts. When investigating
the collective temporal behaviour of the neuron net-
work, however, we find that for an optimal number
of shortcuts, the temporal regularity of the collective
spike train reaches a maximum, corresponding to a
nearly-periodic state in time. We also notice that the
neurons are already nearly-synchronized in space at
this state. Therefore, the distinct finding of our work
is the existence of an optimal amount of random short-
cuts sustaining a most spatiotemporal-ordered state.
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The system we consider here is N coupled FHN
neurons on a complex network, which is constructed as
follows. We start from a one-dimensional lattice under
a periodic boundary condition, composed of N = 60
elements and each site is connected to its two near-
est neighbours. Then we randomly add links between
non-nearest sites, and the number of random shortcuts
is denoted by M. In the limit case when the neurons
are globally-coupled to each other, the network con-
tains N (N —1)/2 edges. Hence the fraction of random
shortcuts is given by p = M/[N(N — 1)/2]. Since the
structural properties of complex networks, e.g. char-
acteristic length L(p) and clustering coefficient C(p)
in SWN, vary together with randomness p, it is im-
portant to study the effect of p on the dynamics of
complex networks. One may use the parameter p to
measure the randomness of the network. However, we
should note that for a given p, there could be a lot of
network realizations.

The dynamics of the noisy FHN[24 neuron network
can be described by the following equations:

dx; x‘:’
S TiT g Y + Zgij(wj - ),
j
dy;
d@; = 2; + a; + DE(t), (1)

Time

Space

where i,7 = 1,2,..., N. The variables z in Eq. (1) are
the membrane potential of the neuron and y is related
to the time-dependent conductance of the potassium
channels in the membrane; ¢ = 0.01 is a small param-
eter allowing one to separate the motions of the fast
and slow variables.?’] For a single FHN neuron, the
system has an excitable stable fixed point for |a| > 1,
and a stable limit cycle for |a| < 1. We assume that all
the neurons stay at the excitable state in the absence
of noise such that all a; are larger than 1. Hetero-
geneity is also introduced by assuming a uniform dis-
tribution of a; inside (1,1.1). D&;(t) denotes the noise
of the ith neuron, where D is the noise strength (we
consider a homogeneous noise level along the network)
and &;(t) is Gaussian white noise with zero mean value
and unit variance, i.e. (&(t)&;(t")) = 0;;0(t —t'). It
is well-known that noise will induce firing activities of
the FHN neuron, a general property of excitable sys-
tems. Due to the heterogeneity of a;, the neurons will
have different average firing frequencies2®! if they are
not coupled, although the noise levels are the same.
Here g;; is the coupling strength between neuron 1<
and j, which is determined by the coupling pattern of
the system. If these two neurons are connected to each
other, we have g;; = 0.03, and otherwise g;; = 0. Nu-
merical integration of Eq. (1) is carried out by explicit
Euler method with a time step 0.001 s.

Space
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Fig. 1. Spatiotemporal evolution of z;(t) for (a) p = 0.0, (b) p = 0.18, (c) p = 0.70. Time increases from top to bottom.

To focus on the effect of the network topology, we
fix the noise strength D = 0.2, which is able to trigger
spikes for the above-mentioned parameters, and vary
p. The spatiotemporal evolution of all the 60-neuron
membrane potential z;(t) is displayed in Fig. 1. Time
passes from top to bottom. Figure 1(a) corresponds
to the regular lattice case, i.e. p = 0. In the bright
regions, the neurons fire, while in the dark ones they

are in quiescent states. It shows that without random
shortcuts, the network shows rather irregular spiking
activity in spacetime. However, when a certain num-
ber of random shortcuts are present, we find that the
system can show a rather regular spatiotemporal pat-
tern, which is almost synchronized in space and nearly
periodic in time (see Fig.1(b) for p = 0.18). If the
number of random shortcuts is further increased (see
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Fig. 1(c) for p = 0.7), the firing activities of the neu-
rons are still synchronized in space, but the periodic-
ity in time is clearly lost. Therefore, the existence of
an optimal number of random shortcuts sustaining a
most spatiotemporal ordered state is demonstrated.
To further quantitatively characterize this be-
haviour, we introduce standard deviation o and recip-
rocal coefficient of variance R to measure the spatial
synchronization and temporal regularity of the net-
work collective firing activity, respectively. Here o is

defined as
o = [{o(t))]

with

1 Y 1 2
ISR S
1)

o(t) = i=1 e

(2

where (e) represents the averaging over time and [e]
denotes the averaging over 50 different network re-
alizations for each p. Clearly from the definition, a
smaller value of (o(t)) denotes better synchronization,
and (o(t)) = 0 corresponds to the complete synchro-
nization. Here o is a time-average of o(t), which is a
reasonable measure of the synchronization in space for
a long time. One should note that o contains no in-
formation of the system temporal regularity. A state
completely synchronized in space may correspond to
many temporal patterns, periodic in time, totally ran-
dom, or even chaotic. Hence, we further introduce R
to characterize the system temporal regularity, which
is defined as in Eq. (3):

(1) } ,
(12) —(T)*

R=| (3)

where [e] has the same meaning as above. (T') and
(T?) are the mean and mean-squared interspike in-
tervals (ISI), respectively. To describe the network
collective behaviour, we have introduced the average

N
1
membrane potential as Zout(t) = N Z z;(t). A spike
i=1

is defined to occur each time x,; across 0.5 mV. Note
that R represents a measurement of the spike coher-
ence, in the way that a larger R represents better pe-
riodicity in time, and for a completely periodic spike
train R is infinity. Such a measure as R is of biologi-
cal significance because it is related to the spike timing
precision of the information processing in real neural
systems.

Figure 2(a) depicts the dependence of o on p.
We can see that the value of o decreases monotoni-
cally when p increases, approaching zero as p is large
enough. This enhancement of synchronization by
adding connections is consistent with many previous

studies and the mechanism has been well-understood.
One only needs to note that o decreases very sharply
in a narrow range around p = 0.1, and after that, o
undergoes a rather even change. There is a turning
point at p ~ 0.15. Correspondingly, the curve of R
versus p is displayed in Fig. 2(b). Interestingly, a clear
maximum is shown at p ~ 0.18, where the neurons
reaches the best performance in their collective tem-
poral dynamics. On the other hand, it is important
to emphasize that at such an optimal case, o already
reaches the even-varying stage and has a rather low
value (see Fig.2(a)), indicating that the neurons are
already almost-synchronized in space. Therefore, the
system is both nearly-periodic in time and almost-
synchronized in space, i.e. it is in a most spatiotem-
poral ordered state.

1.2 T T T
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p

Fig. 2. Dependences of (a) o and (b) R on p.

The study of synchronization of coupled oscillatory
elements is an intensively developing branch of nonlin-
ear science27=29 for its relevance to many problems
of physics, chemistry, and life science, in particular
to neuroscience. Synchronization of coupled neurons
has been suggested as a mechanism for binding spa-
tially distributed features into a coherent object and
may play an important role in revealing communica-
tion pathways in neurons.[*”) Moreover, it is known
that neural information is mainly transmitted using
a code based on the time intervals between neural
firings®!, and the reciprocal coefficient of variance R
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is of biological significance because it is related to the
spike timing precision of the information processing
in neural systems. Hence, it is necessary to study the
synchronization and the coherence of the neurons. In
real neural systems, neurons cannot interact by regu-
lar connection, but are connected to each other in an
intricate pattern forming a complex network. Thus
our findings of the dynamics of FHN neurons on com-
plex networks may find its applications for a better
understanding of the behaviour of real neural systems.

In conclusion, we have studied the synchronization
and coherence of FHN neurons on complex networks.
It is found that complex network connectivity can lead
synchronization which is absent in the regular lattice,
and this spatial synchronization of FHN neurons is
enhanced as p increases. The temporal coherence of
the network collective dynamics is also calculated. In-
terestingly, a novel phenomenon is found such that
there is an optimal fraction of random connections
which sustains a state of the maximal spatiotemporal
order, which is nearly-periodic in time and almost-
synchronized in space. Since real neural networks are
often complex, we hope that our findings will find in-
teresting applications.
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