
Frequency-selective response of FitzHugh-Nagumo neuron networks via changing
random edges
Gang Zhao, Zhonghuai Hou, and Houwen Xin 
 
Citation: Chaos: An Interdisciplinary Journal of Nonlinear Science 16, 043107 (2006); doi: 10.1063/1.2360503 
View online: http://dx.doi.org/10.1063/1.2360503 
View Table of Contents: http://scitation.aip.org/content/aip/journal/chaos/16/4?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Effects of correlated Gaussian noise on the mean firing rate and correlations of an electrically coupled
neuronal network 
Chaos 20, 033116 (2010); 10.1063/1.3483876 
 
Astrocyte-to-neuron signaling in response to photostimulation with a femtosecond laser 
Appl. Phys. Lett. 97, 063703 (2010); 10.1063/1.3478452 
 
Mapbased neuron networks 
AIP Conf. Proc. 887, 69 (2007); 10.1063/1.2709587 
 
Role of Noise in Complex Networks of FitzHughNagumo Neurons 
AIP Conf. Proc. 800, 355 (2005); 10.1063/1.2138637 
 
Parameter dependence of stochastic resonance in the stochastic FitzHugh-Nagumo neuron 
AIP Conf. Proc. 501, 250 (2000); 10.1063/1.59940 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.236.82.7 On: Fri, 19 Dec 2014 06:53:38

http://scitation.aip.org/content/aip/journal/chaos?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1774429656/x01/AIP-PT/CiSE_ChaosDL_121714/Awareness_LibraryF.jpg/47344656396c504a5a37344142416b75?x
http://scitation.aip.org/search?value1=Gang+Zhao&option1=author
http://scitation.aip.org/search?value1=Zhonghuai+Hou&option1=author
http://scitation.aip.org/search?value1=Houwen+Xin&option1=author
http://scitation.aip.org/content/aip/journal/chaos?ver=pdfcov
http://dx.doi.org/10.1063/1.2360503
http://scitation.aip.org/content/aip/journal/chaos/16/4?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/20/3/10.1063/1.3483876?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/20/3/10.1063/1.3483876?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/97/6/10.1063/1.3478452?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2709587?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2138637?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.59940?ver=pdfcov


Frequency-selective response of FitzHugh-Nagumo neuron networks
via changing random edges

Gang Zhao
Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026,
People’s Republic of China and Department of Common Education, Jiangxi Blue Sky University, Nanchang,
Jiangxi 330029, People’s Republic of China

Zhonghuai Houa� and Houwen Xin
Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026,
People’s Republic of China

�Received 14 April 2006; accepted 12 September 2006; published online 12 October 2006�

We consider a network of FitzHugh-Nagumo neurons; each neuron is subjected to a subthreshold
periodic signal and independent Gaussian white noise. The firing pattern of the mean field changes
from an internal-scale dominant pattern to an external-scale dominant one when more and more
edges are added into the network. We find numerically that �a� this transition is more sensitive to
random edges than to regular edges, and �b� there is a saturation length for random edges beyond
which the transition is no longer sharpened. The influence of network size is also investigated.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2360503�

Excitable neurons fire spikes spontaneously or when
stimulated. The spontaneous firing is due to neural noise,
such as noise caused by the stochastic opening and clos-
ing of ion channels on neuron membrane. The presence
of neural noise could improve neurons’ ability to detect
subthreshold signals via stochastic resonance. Therefore,
in the presence of neural noise and subthreshold stimu-
lating signals, neurons can fire spikes either according to
their spontaneous dynamics or to the period of the exter-
nal stimulus. Because the mean firing rate of a spike se-
quence is one of the main manners for neural systems to
encode information, it is important to understand the
mechanism underlying the transition between the two
time scales. In this paper, we investigate the influence of
connections of neuron networks on the transition of its
mean field’s firing rate. We find the benefit of fast-
switching due to random long-range edges. We also find
that the random long-range edges need not be very long
to bring about the fast-switching effect.

I. INTRODUCTION

The firing rate is the main manner for neurons to encode
information in neuronal systems. Excitable neurons, if stimu-
lated, can fire with a pattern either entrained by stimulus or
according to their excitatory-refractory dynamics.1 There-
fore, the function of selective response between different
temporal patterns is expected.2,3

Noise, both internal, such as that resulting from random
conformational changes of ion channels, and external, such
as synaptic noise, has salient effects on neuron dynamics and
its biological functions.4–7 Large enough noise would destroy
the temporal structure of external stimulus or internal oscil-
lations; therefore, the resulting firing pattern is meaningless.

However, an optimal level of noise could increase neurons’
sensitivity to subthreshold stimulus, which is well known in
the context of stochastic resonance �SR� and coherence reso-
nance �CR�.1,8,9 The mechanism of SR or CR requires an
optimal noise intensity to maximize neurons’ capacity to de-
tect weak signals, but it is not as easy as in laboratory ex-
periments to tune noise intensity in vivo. Thus, the prospec-
tive application of SR or CR in organisms seemed very
difficult. However, many authors have discovered other
mechanisms, such as summing network,10 system-size reso-
nance �all-to-all coupled network�,11,12 and feedback
mechanism,13 to employ SR or CR with looser restriction of
the requirement of an optimal level of noise.

In one of our previous papers,14 we studied how network
size would influence the response of the globally �all-to-all�
coupled networks of FitzHugh-Nagumo �FHN� neurons
when both subthreshold periodic signals and noise are
present. It is numerically proven that as the size of the
coupled network is increased, the firing pattern of the mean
field of the coupled network is first dominated by the internal
time scale of the neurons �the internal-scale dominant �ID�
case�. Then the external time scale manifests itself more and
more frequently in the spike series, and with a certain net-
work size, the spike series is most ordered and dominated by
the external time scale �the external-scale dominant �ED�
case�, which means that the information transmitted by the
mean field is mostly maximized. Further increasing network
size would lead to disordered and meaningless spike series.
If there are multiple external signals, some common mul-
tiples would be selected by certain network sizes. Thus, dif-
ferent firing rates are selected by the size of the globally
coupled network.

In any study of network dynamics, the issue of how the
elements are connected is of crucial importance. The all-to-
all coupling strategy �or summing strategy� that has beena�Corresponding author.
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considered in the above-mentioned references is more an
ideal model tractable for theoretical analysis than an approxi-
mate description of the real structure of neural systems. A
network with local connections and some portion of long-
range edges, i.e., a complex network, is a relatively more
realistic model for neuronal systems.15–20 The study of com-
plex networks has gained extensive attention in recent years.
An intriguing type of complex networks is the small-world
network �SWN�.21,22 The main feature of a SWN is that it
combines high clustering, which is usually found for regular
lattices, and short characteristic path length, which is a typi-
cal property of random network. It has been shown that sto-
chastic resonance23 and synchronization24 can be consider-
ably improved on a small-world network, and a small-world
network can greatly enhance the probability of spiral forma-
tion in excitable media,25 order chaos,26 and can eliminate
oscillator death or introduce global oscillator death.27 All
these works show that the connectivity of the complex net-
work plays a crucial role for the system’s dynamics.

Neuron dynamics on complex networks have been stud-
ied by several authors. The small-world connectivity in the
network of excitable integrate-and-fire neurons with unidi-
rectional coupling is found to generate or inhibit, at low or
high densities of random connections, persistent activity that
is caused by a local stimulus.28 In the numerical simulations
of networks of Hodgkin-Huxley neurons, small-world con-
nections that take advantage of regular and random networks
are found to perform optimally, giving rise to fast response
and coherent oscillations, while regular or random networks
cannot do both.29 SWN of FHN neurons also behaves opti-
mally with respect to both stimulus response coherence and
noise sensitivity,30 and SWN of Hindmarsh-Rose neurons
changes radically from local phase synchronization to global
phase synchronization depending on the connections �rewir-
ing probability� of the network.31

In the present study, we continue the research in Ref. 14
of frequency-selective response of neuronal networks by in-
vestigating the influence of connections of the network on
the firing pattern of the mean field. The consideration of
connections of a neuronal network as a control parameter has
its theoretical and practical importance because plasticity in
single neurons, synapses, and large circuits is common in the
brain, over time scales ranging from milliseconds to
years.32,33 Our numerical results suggest that frequency-
selective response could be realized by changing the number
or length of edges in the network. The transition of firing
pattern from an internal-scale dominant �ID� to an external-
scale dominant �ED� firing pattern could be realized by much
fewer edges than that of an all-to-all coupled network, by
much fewer random �long� edges than regular �short� edges,
and more sensitively by random �long� edges than regular
�short� edges. Moreover, there exists a saturation value, in
the sense of the firing pattern transition, for the length of
random edges that is much less than the diameter of the
network.

The next part of the paper is devoted to a description of
the model, in which we place some emphasis on the strategy
of choosing dynamical parameters. Then we show illustra-
tively the transition of firing patterns due to the variation of

the number of edges in a random network. Then we compare
transitions on different network connections and come to the
conjecture that random �long� edges in random, small-world,
and scale-free networks are important for their superiority to
regular networks. After that, we investigate two factors that
have impact on the expense and functional capacities of the
network: length limit of random edges and network size. The
final section contains the conclusion of the paper.

II. MODEL DESCRIPTION

We choose the FHN model as an example because it
provides a simple description of the dynamics of a large class
of neurons. The equations are

ẋi =
1

�
�xi −

1

3
xi

3 − yi� +
1

�
j

Cij

�
j

KCij�xj − xi� + D�i�t� , �1�

ẏi = xi + a + A sin�2�

Te
t� . �2�

Here a and � are parameters in the original FHN model, �i�t�
is a Gaussian white noise with zero mean and unit variance,
i.e., ��i�t�	=0 and ��i�t�� j�t� �	=�ij��t− t� �; D denotes the
noise intensity, K is the coupling strength, and N is the num-
ber of elements in the network. Te is the period of the input
signal. The matrix C=Cij defines the connectivity of the net-
work. If neuron i and neuron j are connected, we define
Cij =Cji=1; otherwise Cij =Cji=0. Cii is set to 1. For the
collective behavior of the network, we investigate the mean
field X�t�=1/N�i=1

N xi�t�. The mean field of the coupled net-
work is meaningful in the biological context because indi-
vidual neurons receive convergent inputs from thousands of
other neurons.

It is well known that if a�1, the single FHN model
stays at a stable fixed point that is excitable. For a�1, a
stable limit cycle, whose period is labeled by Ti, is created
through a supercritical Hopf bifurcation, which changes from
small amplitude quasiharmonic oscillation to spikes abruptly
through canard explosion. We choose parameters to ensure
the following. �a� Single FHN neurons stay at their excitable
states and the quasiharmonic oscillation before canard
explosion34 occurs in a relatively wide range of a. Thus Ti

increases slowly in a wide range of a. �b� The firing pattern
of a single neuron �with the presence of the input signal and
noise� is dominated by the internal time scale of FHN neu-
rons Ti. �c� The firing pattern of the mean field of the all-to-
all coupled network is dominated by Te. In short, the mean
field of the network can transmit external information while
single neurons cannot. The key point to ensure this differ-
ence is to choose proper subthreshold signal �amplitudes and
periods�, noise intensities, and network size.14 Figure 1
shows our numerical result of thresholds to trigger spikes of
single excitable FHN neurons as a function of signal periods.
We are interested in how the firing pattern would change
from the ID pattern to the ED pattern as the random edges
are added into the network. Since the purpose is to investi-
gate more details of the influence of the network connections
on the mean field’s firing pattern, we tend to choose a small

043107-2 Zhao, Hou, and Xin Chaos 16, 043107 �2006�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.236.82.7 On: Fri, 19 Dec 2014 06:53:38



network size to facilitate this study. Actually, the effect of a
larger network size is similar to choosing smaller noise in-
tensity �see Eqs. �4� and �5� in Ref. 12; the effective noise
intensity on the mean field is D /
N�.

In the following, we fix a=1.01, �=0.1. The elements in
the network are excitable. The amplitude of the periodic sig-
nal is set to be subthreshold, namely, the signal alone, with-
out noise, is not capable of triggering spikes. And to avoid
being masked by the intrinsic period of the self-spiking be-
havior on the oscillatory side of the bifurcation point, which
is Ti=4, the signal period is set to be larger than the former.
So we set Te=9, A=0.112 �the threshold is 0.1184�, and K
=10. The noise intensity D is fixed to 0.25; the network size
is set to N=41 unless specified.

We numerically integrate the network by the explicit
Euler-Murayama algorithm35 with a time step 0.005, and
then study the interspike intervals �ISI� or the Fourier coef-
ficient Q. A spike is defined if a certain threshold �set to 0.1
in the following� of the mean-field voltage variable X�t� is
exceeded from below.

III. RESULTS AND DISCUSSION

(a) Selective response via changing the number of edges.
We show in Fig. 2 as an example of the trajectory and his-
togram of ISI distribution of the mean field of a random
network, in which any edge is selected with equal probability
1 / �N�N-1� /2�. Denoting the number of edges by M, the ra-
tio, P=M / �N�N-1� /2�, is a commonly used measure of con-
nectedness of networks.36,37 All the results in this paper have
been averaged over 50 different network realizations for each
P. With the increased portion of random edges from P
=0.07 �top� to 0.4 �bottom�, the mean field first fires accord-
ing to the internal spiking period Ti=4, then entrained to the
external period Te=9. With an intermediate portion of edges
P=0.1, the firing pattern is a compound of two parts centered
at Ti and Te, respectively. Therefore, the frequency-selective
response is realized by changing the number of random
edges.

(b) Compare regular edges with random edges. To quan-
tify how the pattern changes from autonomous firing to being
locked to the signal period as connections change from non-
couple to all-to-all couple, we calculate the Fourier coeffi-
cient Q38,39 for the input signal, which quantifies how much
external information is transmitted by the mean field. The
definition of Q is

Qsin =
1

T
�

0

T

2X�t�sin�2�

Te
�dt ,

Qcos =
1

T
�

0

T

2X�t�cos�2�

Te
�dt ,

Q = 
Qsin
2 + Qcos

2 .

Here X�t� is the mean field of the network, �0,T� is the
integral interval.

The Q�P curves of different networks are present in
Fig. 3�a� The regular network is constructed by adding edges
from each neuron to its K nearest neighbors, where K
� 1,2 , . . . ,N/2 or �N-1� /2�. The small-world network is
constructed by randomly adding edges on an underlying ring
lattice �i.e., a regular network with K=1�. The random net-
work is the same as described in �a�. The scale-free network
is constructed following Goh40 with �=2.3. The curve of the
random network shows nonmonotonic behavior when P ap-
proaches zero while other curves show monotone increasing
behavior in that region. We can draw the following conclu-
sions from Fig. 3�a�. First, all the curves saturate before P
=0.6 to the same value of Q �0.41�, which indicates the ca-
pacity of the all-to-all coupled neuron network in responding
to the external signal under the above conditions. Therefore,
the all-to-all coupling strategy �P=1� is not a necessary con-
dition for coupled networks to respond to an external signal.
Secondly, small-world �square�, random �circle�, and scale-
free �diamond� networks increase their Q values with faster
speeds than regular networks as P is increased from 0.05 to
0.15. This is clearer in Fig. 3�b�, which shows �Q/�P, the

FIG. 1. Thresholds to trigger spikes of single excitable FHN neurons �a
=1.01, �=0.1� as a function of signal periods.

FIG. 2. �Left� time series of the mean field of the random network, P
=0.07 �top�, 0.1 �middle�, 0.4 �bottom�. �Right� corresponding histogram of
ISI. Other parameters are a=1.01, �=0.1, A=0.112, Te=9, D=0.25, N
=41, K=10.
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rate of Q versus P, for these networks. The curve of regular
networks has a low and broad plateau while other curves
share the feature of a high and narrow peak. We could con-
tribute the fast increase of Q in small-world �square�, random
�circle�, and scale-free �diamond� networks to random �long�
edges in these networks other than their network structures
since their behavior shows little difference here.

We have also done simulations for different external sig-
nal periods to investigate the robustness of the above phe-
nomena. As long as signal amplitudes and periods �see Fig.
1� are properly chosen, the results are approximately the
same as those in Figs. 2 and 3.

(c) Length limit for random edges. We have shown that
changing the number of edges switches the firing pattern and
random edges can increase the capacity of responding to ex-
ternal signals more efficiently to reach the full capacity than
regular edges. To get more details on the influence of random
edges, we set an upper limit for the length of the random
edges. Here we define the length of a random edge in such a
way: We index neurons by 1, 2,…,N; the length of an edge
that connects neurons i and j �j� i� is d=min�j-i ,N-�j-i��.
We term the longest length �N/2 or �N-1� /2� as the diameter
of the network. With an upper limit, the random edges could
not reach beyond the limit. The consideration of confining
the edges in a certain area in the network here makes sense
when the random edges are physical and energy-consuming.
The results obtained from a random network �N=41� are
shown in Fig. 4.

As the length limit is increased from 7 to 11, the Q value
increases. The Q curve, whose length limit is 11, is almost
the same as the fully random network �i.e., the network with-
out length limit for random edges�. Decreasing noise inten-
sity from 0.25 �solid lines� to 0.15 �dashed lines� raises the
curves and brings little variation to their relative position.
Therefore, we could define an effective diameter of the ran-
dom network, in terms of the dynamical measurement Q,
beyond which the Q�P� curves saturate to that of the fully
random network. We calculate

R = ��Qlim�p� − Qfull�p��/Qfull�p�	� ,

where curly brackets means an average over 50 different
network realizations, and angular brackets means average

over different values of P, which includes 9 points linearly
spaced between 0.01 and 0.09 plus 15 points linearly spaced
between 0.1 and 0.8. The superscript full means the value of
the fully random network, the superscript lim means the
value of the network with a length limit for random edges. If
R�−1% for the first time, we then define the corresponding
length limit as the effective diameter of the random network.
Figure 5 shows the effective diameter as a function of net-
work size.

(d) Influence of number of neurons. As for the expense of
the network, not only the length of edges, but also the num-
ber of neurons may be crucial in some cases. We plot Q as a
function of P for random networks with various network
sizes in Fig. 6.

With the increasing of N, the saturation value of Q is
increased, indicating that the network’s full capacity of re-
sponding to the external signal is increased. At the same
time, the value of P where the saturation of Q is first reached
is decreased. That is to say, a larger network could respond

FIG. 3. �a� Q of random �circle�, small-world �square�, scale-free �diamond�, and regular �triangle� network as a function of P. �b� �Q/�P for these networks.
These curves are plotted after interpolation. Markers are the same as in �a�. Parameters are the same as in Fig. 2.

FIG. 4. Q as a function of P for networks with different length limit. Solid
lines are D=0.25, dashed lines are D=0.15. From bottom to top, the length
limits are 7, 9, 11, and 20, respectively. Other parameters are the same as in
Fig. 2.
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fully to an external signal with fewer portions of random
edges. Also the sensitivity of the switch, in view of P, is
enhanced as the size is increased. Considering the results in
Ref. 14, Fig. 1�a�, further increasing the network size would
lead to a low Q value when P is close to 1. Therefore, a
peaking behavior would appear in the Q�P� curve when the
network size is increased to such a degree that the external
signal plus the effective noise is too small to trigger the
spiking response. Figure 7 shows alternative curves of this
situation, in which we choose smaller noise intensities to
avoid excessively long CPU time caused by very large net-
work sizes. So, from the point of view of functional gain
�sensitive switch�, there exists an optimal network size, as
noise intensity cannot be tuned easily in many cases. Con-
sidering the balance between the cost of the network, includ-
ing the number of neurons, the number of edges, and the

length of edges, and the functional gain of the system, one
may propose a certain strategy to design an “optimal” work-
ing network.

IV. CONCLUSION

In conclusion, we have studied numerically the influence
of network connections on the function of frequency-
selective response. The pattern of the mean field depends on
the number or length of the edges in the network. We have
shown that the capacity of responding to external signals of
an all-to-all coupled network could be reached by many
fewer random �long� edges than regular �short� edges. And
the switch in the regular network is slow while the switches
in random, small-world, and scale-free networks are much
steeper. Those fast switches between two firing patterns dem-
onstrate some type of ultrasensitivity of the networks’ dy-
namics to their connections.31 Moreover, we find that the
length of random edges could be bounded for the purpose of
cost-saving, while the network’s capacity of information
transmission and sensitive switch is not reduced. Network
size, which could adapt to the changes of noise intensity, has
an optimal value with regard to the cost of the network and
its functional capacities. The tradeoff between cost of the
network and its full capacity may set up a building strategy
for an “optimal” network.
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