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Internal Noise Coherent Resonance for
Mesoscopic Chemical Oscillations:
A Fundamental Study
Zhonghuai Hou,* Tie Jun Xiao, and Houwen Xin*[a]

Very recently, the effects of internal molecular noise in small-
scale chemical reaction systems, where the number of reactant
molecules can be low, has gained much attention.[1,2] Examples
of such mesoscopic chemical systems include gene expres-
sion,[3] circadian oscillation,[4–6]ion-channel gating,[7] calcium sig-
naling[8] taking place in subcellular spaces, or catalytic reactions
on the surface of nanoparticles[9,10] or field-emit tips,[11,12] to
name just a few. While most of the studies so far have focused
on the design of reaction mechanisms or regulatory architec-
tures to be robust against the unavoidable molecular noise,
another interesting phenomenon, where internal noise may
also be exploited to play a constructive role, is of particular in-
terest. Specifically, for mesoscopic chemical reactions showing
oscillatory behavior, it was reported that internal noise can
induce oscillation, even in a parameter region where only the
steady-state can be observed in a corresponding macroscopic
system. In addition, the signal-to-noise ratio (SNR) of the noise
induced oscillation (NIO) undergoes a maximum when the
noise intensity is varied, indicating the occurrence of internal
noise coherent resonance (INCR).[13–22] Since the internal noise
intensity is often inversely proportional to some kind of system
size, such behavior has also been named “system-size reso-
nance”. For instance, H=nggi and co-workers and Shuai and
Jung reported that ion-channel clusters of an optimal size
were the most favorable for intracellular calcium signaling;[13–17]

and in a few previous studies, we have also found such behav-
ior for calcium signaling,[18] circadian oscillation,[19] surface cata-
lytic reactions,[20,21] and the Brusselator system.[22]

Herein, we give a fundamental understanding of the NIO
and INCR. Since they all happen close to the deterministic
Hopf bifurcation point, we believe that some universal proper-
ties of the Hopf bifurcation must be relevant. From the theory
of dynamical systems, we know that, near the Hopf bifurcation,
the system’s dynamics can be described by a normal form in-
volving the evolution of a complex amplitude Z in the center
manifold.[23] Starting from chemical Langevin equations (CLE),
which clearly combine the deterministic dynamics and contri-
butions from internal noises, and by performing a normal form
calculation and stochastic averaging procedure, we obtain sto-

chastic differential equations for the oscillation amplitude r
and phase q that is solvable. The analytical results show rather
good agreement with the numerical results, hence the NIO
and INCR have been well explained. Our analysis also provides
a starting point for the investigation of internal molecular
noise near the Hopf bifurcation.
To account for the internal molecular noise in mesoscopic

chemical reactions, one can basically view the system as a Mar-
kovian stochastic birth–death process and write down a chemi-
cal master equation governing the evolution of the probability
of having a given number of reactant molecules.[24] Very re-
cently, Gillespie argued that a system’s temporal behavior may
also be described by a chemical Langevin equation, given that
a macroinfinitesimal timescale exists.[25] Generally, if the system
size V is not too small, such a condition is expected to be fulfil-
led and the CLE works, at least in a qualitative manner. Also,
such a CLE is consistent with the Fokker–Planck equation asso-
ciated with the master equation.[25] In our previous studies,[18–22]

it was shown that CLE was in good qualitative agreement with
other exact simulation algorithms, making it a convenient
method for studying the role of internal noise. One more ben-
efit of the CLE is that it clearly relates to the system’s determin-
istic dynamics, and it is deservedly a suitable starting point for
analytical treatments, especially when bifurcation happens.
For simplicity, but without losing generality, we consider the

conceptual Brusselator model involving two species X1 and X2

and M=4 reaction channels. The reaction steps are A!X1, B+
X1!X2, X1!C, 2X1+X2!3X1 where species A and B are kept
at constant concentrations such that the system is out of equi-
librium. For certain choices of parameters, the rates are
wj=1,…,4= (A,BX1,X1,X1

2X2). The CLE is given by Equation (1):[25]
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The effect of internal noise for a mesoscopic chemical oscillator
is studied analytically in a parameter region outside, but close to,
the supercritical Hopf bifurcation. By normal form calculation
and a stochastic averaging procedure, we obtain stochastic dif-

ferential equations for the oscillation amplitude r and phase q

that is solvable. Noise-induced oscillation and internal noise co-
herent resonance, which has been observed in many numerical
experiments, are reproduced well by the theory.
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dXa ¼ FaðXÞdt þ
1ffiffiffi
V

p
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p
dWjðtÞ ða ¼ 1,2Þ ð1Þ

where we also use X1 and X2 to stand for the concentrations, V
is the system size (volume), FaðXÞ ¼

PM
j¼1 vjawjðXÞ, nj1=

(1,�1,�1,1) and nj2= (0,1,0,�1) are the stoichiometric change
of species X1 and X2, respectively ; dWj=1,…,M(t) are M independ-
ent Wiener processes associated with the M reaction channels,
with dWjðtÞ

� �
¼ 0 and dWjðtÞdWj0 ðt0Þ

� �
¼ djj0dðt � t0Þdt and t it

the time. In the macroscopic limit V!1, the internal noise
terms can be ignored, resulting in the deterministic dynamics
dXa/dt=Fa(X), which has a supercritical Hopf bifurcation at B=
Bc=A

2+1.
The calculation of the normal form for the Brusselator model

is standard, but one should pay attention to the internal noise
terms. Since the CLE, Equation (1), is interpreted in Ito manner,
one should first transform it into a Stratonovich form, which
allows for normal calculus during variable transformation
[Eq. (2)]:[26]

dXa ¼ F0aðXÞdt þ
1ffiffiffi
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dWjðtÞ ða ¼ 1,2Þ ð2Þ

where 
 stands for Stratonovich interpretation,
F0aðXÞ ¼FaðXÞ �

P
j vjahjðXÞ, and hjðXÞ ¼ 1

4V

P
b
@wj
@Xb

results from
the transformation from the Ito to Stratonovich calculus. Note
that F’(X) has equilibrium points XS and a Hopf bifurcation
value B’c slightly different from that of F(X), but the discrepan-
cies are only of the order of 1/V. For B’B’c , the Jacobi matrix
Jab= (@aF’b)(XS) has two conjugate eigenvalues m� iw0, with ei-
genvectors (1,a� ib). By variable transformation [Eq. (3)]:

x ¼ X1�X1S , y ¼ ½ðX2�X2SÞ�aðX1�X1SÞ�=b,Z ¼ x þ iy ¼ reiq

ð3Þ

Equations (4a) and (4b) are obtained:

dr ¼ ðmr þ Crr
3Þdt þ 1ffiffiffi

V
p

X
j

crj 
 dWj ð4aÞ

dq ¼ ðw0 þ Cir
2Þdt þ 1ffiffiffi

V
p

X
j

cqj 
 dWj ð4bÞ

where Cr and Ci are constants associated with the nonlinear
deterministic terms near the Hopf bifurcation; crj ¼
ð~vj1 cos qþ~vj2 sin qÞ

ffiffiffiffiffi
wj

p
and cqj ¼ð�~vj1 sin qþ~vj2 cos qÞ

ffiffiffiffiffi
wj

p
=r ; ~vj1

and ~vj2 are linearly transformed from nj1 and nj2 via ~vj1=nj1 and
~vj2= (nj2�anj1)/b.
The deterministic parts in Equations (4a) and (4b) are famili-

ar to us, where the two variables r and q are separated and
there exists a stable limit cycle r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ð�CrÞ

p
only in the su-

percritical region m>0. However, when the internal noise is
considered, r and q are strongly coupled to each other
through

ffiffiffiffiffi
wj

p
in the internal noise terms, which may lead to in-

teresting new dynamics. Unfortunately, the complicated form
of the noise terms renders the direct analysis of Equations (4a)
and (4b) a rather difficult task. Therefore, we turn to the “sto-

chastic averaging” procedure, which has been successfully
used in studying stochastic nonlinear oscillators, such as the
Duffing system.[27] The basic idea of stochastic averaging is to
approximate the systems in Equations (4a) and (4b) as Markov
processes in the long-time limit. This is possible for jm j!1
and V@1. Consequently, one can approximate Equations (4a)
and (4b) with Ito stochastic differentials, Equations (5a) and
(5b):

dr ¼ mr þ Crr
3 þ KðrÞ

2Vr

� �
dt þ erffiffiffi

V
p dWr ð5aÞ

dq ¼ w0 þ Cir
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2V
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V
p

r
dWq ð5bÞ

where KðrÞ=r ¼
P
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R
2p
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j

R
2p
0 ðcrj@rcqj þ cqj@qcqjÞdq=2p results from the coupling be-

tween r and q, e2r ¼
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2p
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2 ¼
P
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0 c2qjdq=2p

are the average noise intensities associated with the approxi-
mated Markov process; dWr and dWq are two “new”, independ-
ent Wiener processes. Writing wj in the form
wj ¼

P
3
kþl¼0 w

ðklÞ
j ðr cos qÞkðr sin qÞl , we find that K(q) is exactly

zero, and only that coefficients with even k+ l have non-zero
contributions to K(r), e2r , and e2q. They all have the form e2+gr2,
where e2 ¼

P
j ð~v2j1 þ ~v2j2Þw

ð00Þ
j =2. g is a constant determined by

the coefficients wkþl¼2
j . For a small internal noise level, r2 !1 is

a good approximation, it is feasible to neglect the contribu-
tions from wkþl¼2

j . Hence, we finally reach rather simplified
forms, such as K(r)= e2r =e2q=e2.

A key point in Equation (5a) is that a new deterministic term
K(r)/2Vr�e2/2Vr appears. Even in the parameter region sub-
threshold to the Hopf bifurcation, that is, m<0, one still can
find non-zero solutions for mr+Crr

3+e2/2Vr=0, which is
rs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � 2Cre2=V

p
þ m


 �
=ð�2CrÞ

h i1=2
. Therefore, we already

get an NIO with non-zero amplitude, most probably rs. One
notes that a non-zero wð00Þ

j is necessary for the occurrence of
NIO, which is related to the non-zero equilibrium values X1S
and X2S, a common feature of chemical reactions. That is, al-
though non-zero steady-state values are not necessary for de-
terministic oscillation, they play a key role in the noisy dynam-
ics. Though we chose the Brusselator as our example, one can
see that the above analysis is not system-specific, and thus
NIO is a universal phenomenon for chemical reactions staying
outside, but close to, the supercritical Hopf bifurcation.
In previous numerical studies, the performance of the NIO

has often been characterized by the effective SNR, which is de-
fined as the peak height in the power spectrum divided by the
peak width.[22] Since the variable r is fully separated from q in
Equations (5a) and (5b), an analytical expression for the SNR is
available. The Fokker–Planck equation associated with Equa-
tion (5a) is given by Equation (6):

@1ðr; tÞ ¼ �@r mr þ Crr
3 þ e2

2Vr

� �
1

� �
þ e2

2V
@2
r 1 ð6Þ

and the stationary probability distribution function (PDF) of r is
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given by Equation (7):

1sðrÞ ¼ C0r exp
2mr2 þ Crr

4

2 e2=VÞð Þ

� �
ð7Þ

where C0 is a normalization constant. The PDF has a maximum
at r= rs, hence in the limit t!1, the system will most proba-
bly stay around this noise-induced limit cycle. Writing r(t)= rs+
dr(t), we have ddr=�l1drdt+O(d

2
r dt)+

ffiffiffiffiffiffiffiffiffiffi
e2=V

p
dWrðtÞ leading

to limt!1hdr(t)i=0, limt!1hdr(t)dr(t+t)i’e2e�l1t=2l1V , where
l1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � 2Cre2=V

p
. These give the approximated correlation

function of r(t) as limt!1hr(t)r(t+t)i= r2s þ e2e�l1t=2l1V , where
t is the time lag. After a sufficiently long time, 1(r,t) will reach
the stationary distribution. Approximately, we may then re-
place r2 and r�1 in Equation (5b) by their stationary mean
values r2h is and r�1h is respectively. q is then Gaussian distribut-
ed with a mean value qðtÞh i ¼ ðw0 þ Ci r

2h isÞt ¼ w1t and var-
iance qðtÞ2h i � qðtÞh i2¼e2 r�1h i2s t=2V� 2l2t. Using eiq

� �
¼

ei qh ie� q2h i� qh i2½ �=2,[26] we obtain Equation (8):

lim
t!1

cos qðtÞ cos qðt þ tÞh i ¼ 1
2
cosðw1tÞ expð�l2tÞ ð8Þ

Now the autocorrelation function and corresponding power
spectrum of the state variable x=X1�X1S= rcosq is calculated
as Equations (9a) and (9b):

CðtÞ¼ lim
t!1

xðtÞxðt þ tÞh i

ffi 1
2

r2s þ
e2e�l1t

2l1V

� �
cosðw1tÞ expð�l2tÞ

ð9aÞ

PSDðwÞ¼ 2

Z1

0

CðtÞe�iwtdt

¼ r2s l2
l22 þ ðw� w1Þ2

þ l1 þ l2ð Þe2=2l1V
l1 þ l2ð Þ2þðw� w1Þ2

� � ð9bÞ

Note that in Equation (9b) we have only kept the branch of
positive w near the resonance frequency w1.

By numerical calculations of Equation (9), the dependence of
the PSD on the noise intensity can be readily obtained. In addi-
tion, it can be shown that the second term in the bracket of
Equation (9b) is much smaller than the first one and can be
neglected. Therefore, as a reasonable approximation, the peak
locates at w=w1, and the peak height, half width, and the ef-
fective SNR are given by Equations (10a)–(10c):

H ¼ r2s =l2 ffi 2r4sV=e
2 ð10aÞ

Dw ¼ l2 ffi e2=2Vr2s ð10bÞ

SNR ¼ H=Dw ¼ 4r6sV
2=e4 ð10cÞ

By using @(SNR)/@V=0, we find the optimal system size lo-
cates at Vopt=�4Cr/e

2m2. Note m comes from the linear part of
the system’s dynamic equation, Cr from the nonlinear parts,
and e2 is related to the steady-state concentrations; m is a uni-
versal parameter, while Cr and e2 are system-specific. For the

Brusselator, the parameter values are Cr’�3/8, Ci’1/24, m’
(B�1�A2)/2, e2’4. Note that we use ’ because small values,
of the order of 1/V, resulting from the transformation from
Equation (1) to (2), have been neglected.
To check the validity of the above analysis, we performed a

numerical simulation of Equation (1) with a time step of 0.01.
Time series X1(t) and X2(t) were used to calculate r(t) and q(t)
via Equation (3) and rðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðtÞ þ y2ðtÞ

p
; cos qðtÞ ¼ xðtÞ=rðtÞ.

The distribution of r(t) is shown in Figure 1, where excellent
agreement with Equation (7) is observed. The autocorrelation
function (ACF) of cosq(t) was also calculated, as shown in Fig-
ure 2a. By fitting the peaks in the ACF, one can numerically

Figure 1. Stationary distribution of the radius of the noise-induced limit
cycle obtained from numerical simulation (symbols) and Equation (7) (c).
m=�0.025, log(V)=2,3,4.

Figure 2. a) A typical autocorrelation function obtained from the theoretical
formula, Equation (8) (b) and numerical calculations (c). c is a fit
using an exponential decay from which we can estimate the autocorrelation
time. m=0.025, V=104. b) The reciprocal autocorrelation time l2 obtained
from numerical fitting and the theoretical formula l2=e2/2rs

2V. m=�0.025.
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obtain the correlation time t0=1/l2, which is drawn in Fig-
ure 2b. Again, the numerical results for q(t) show rather good
agreement with the analytical results. Please note, however,
that quantitative comparison of the SNR values between the
numerical results and the theory is difficult, because the accu-
rate estimation of the power spectrum of the noisy data is not
easy. Numerically, the power spectrum was calculated from x(t)
with 16384 data points, filtered by a Welch window. The
power spectra were then smoothed by nearest averaging over
50 points, so as to estimate the peak height and width and
hence SNR. These procedures were repeated on 100 independ-
ent runs to obtain the final SNR curves. The numerical results
are shown in Figure 3a, and the analytical ones are shown in

Figure 3b. Since the vertical axes are in arbitrary units, the ab-
solute SNR values do not make sense. We see that qualitatively
the two figures agree well with each other, that is, INCR ap-
pears and the optimal size Vopt and the maximal SNR both
become larger when the distance from the Hopf bifurcation
decreases. Our theoretical analysis reproduces the numerical
results well.
As shown in Figures 1 and 2, on decreasing the system size

V (thus the internal noise level increases), the amplitude of the
NIO becomes larger and the correlation time smaller. Since a
longer correlation time often means more temporal “regulari-
ty”, the NIO does not show a maximal regularity at an inter-
mediate noise level. Therefore, INCR does not refer to the reg-
ularity of the NIO; but, rather, to the “performance” of it, which
also accounts for the amplitude. If the noise is small, the NIO is
regular but small ; whereas for large noise, it is chaotic but
large. Hence at an intermediate noise level, the NIO shows the
best performance.
The effects of internal noise on mesoscopic chemical oscilla-

tions have also been studied by others. Specifically, Vance and
Ross investigated fluctuation properties near the limit cycle in
chemical reaction systems using an approximated solution to
the master equation.[28] Gaspard and co-workers studied the
correlation time for chemical clocks in the presence of molecu-
lar noise, also using the master equation,[29,30] and an estima-
tion was obtained for the minimum number of molecules re-

quired for the chemical oscillations to remain correlated in
time. Note that their analysis mainly focused on the parameter
regions away from the Hopf bifurcation, hence NIO and INCR
were not considered there. In contrast, our analysis is valid in
the very vicinity of the Hopf bifurcation, where a normal form
can be obtained. Therefore, combining those studies and the
present work, one may be able to have a deeper understand-
ing of the effects of internal noise in mesoscopic chemical os-
cillating systems.
In conclusion, we have analytically studied the NIO and INCR

phenomenon observed in mesoscopic chemical reaction sys-
tems, in a parameter region subthreshold but close to the de-
terministic supercritical Hopf bifurcation, by normal form calcu-
lation and stochastic averaging. Numerical and analytical re-
sults show excellent agreement. Although we used the Brusse-
lator as our model, the analysis can also apply to other sys-
tems, and we believe that NIO and INCR are common
phenomena. Physically, they result from the coupling of r and
q through the internal noise associated with the reaction chan-
nels, as implied in the stochastic amplitude equation. The max-
imum in the effective SNR is somewhat an artificial result that
arises from the definition, that is, the correlation time of the
NIO does not show a maximum, rather, when we combine the
amplitude and regularity of the NIO together, the “resonance”
shows up. The optimal internal noise, corresponding to an op-
timal system size V, where the NIO shows the best perform-
ance, depends not only on common features, that is, the dis-
tance m from the bifurcation point, but also on the specific
property of the system, that is, the coefficient Cr derived from
the nonlinear terms in the normal form calculation, and the de-
terministic steady-state values that are related to the effective
intensity of the internal noise.
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