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We have studied the effect of random long-range connections in chaotic thermosensitive neuron networks
with each neuron being capable of exhibiting diverse bursting behaviors, and found stochastic synchronization
and optimal spatiotemporal patterns. For a given coupling strength, the chaotic burst-firings of the neurons
become more and more synchronized as the number of random connections �or randomness� is increased and,
rather, the most pronounced spatiotemporal pattern appears for an optimal randomness. As the coupling
strength is increased, the optimal randomness shifts towards a smaller strength. This result shows that random
long-range connections can tame the chaos in the neural networks and make the neurons more effectively reach
synchronization. Since the model studied can be used to account for hypothalamic neurons of dogfish, catfish,
etc., this result may reflect the significant role of random connections in transferring biological information.
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I. INTRODUCTION

Dynamical processes in complex networks have attracted
growing attention in recent years �1–3�. Studies have been
focusing on the small-world network �SWN� �4� and scale-
free network �SFN� �5� due to their importance in explicitly
mimicking a highly complex structure of many realistic so-
cial �6�, biological �7,8�, or electronic communication �9–11�
networks. So far, studies on complex networks can be di-
vided into two main categories: In the dominant category,
investigations are concerned with the topological properties
of complex networks and various mechanisms to determine
the topology; in the other more important category, research
is engaged in understanding how the network topology influ-
ences the system’s dynamic features. Studies show that any
spreading rate can lead to the whole infection of disease on
SFN �12,13�; stochastic resonance �14� and synchronization
�15,16� can be considerably improved on SWN, and SWN
can greatly enhance the probability of spiral wave formation
in excitable media �17�, ordering chaos �18�, and oscillator
death �19�. All these studies show that random shortcuts play
a crucial role in the system’s dynamics.

In biology, neural networks have always been an impor-
tant subject of research. It is well known that a single neuron
in the vertebrate cortex connects to more than 10 000
postsynaptic neurons via synapses forming complex net-
works �20�. Therefore, it is necessary to employ networks to
account for the dynamics of neural systems, and randomly
adding a number of long-range shortcuts among neurons rep-
resenting random connections is reasonable and feasible.
One of the important dynamical phenomena, regarding the
effects of random connectivity of networks, is the enhance-
ment of synchronization of spikes since the synchronization
of coupled neurons may elucidate how the coherent sponta-
neously synchronized oscillations, which have been observed

in the brain cortex, are established in many neural systems
�21–23�.

Braun et al. �24� proposed a modified Hodgkin-Huxley
�MHH� model of thermally sensitive neurons that mimics all
spike train patterns observed in electroreceptors from dogfish
�25�, catfish, and facial cold receptors �26�. All these neurons
can be characterized by spontaneous, noisy oscillations that
are reflected in spike or burst trains. A lot of studies have
been dedicated to the dynamics of the MHH model due to its
rich nonlinear behaviors. The single MHH neuron model ex-
hibits various bursting behaviors as temperature T is varied
�24�, and burst-enhanced synchronization and various syn-
chronization regimes with the increase of coupling strength
were observed in the coupled neurons �27�. The bifurcation
diagram �28� and phase-space structure �29� of the MHH
neuron have been discussed in detail. It shows that as the
temperature is decreased, the system undergoes a series of
period-adding bifurcations, corresponding to transitions be-
tween various bursting states, and after a critical value of T,
the system undergoes a homoclinic bifurcation, followed by
an inverse period-doubling cascade. Therefore, an intriguing
and significant question arises: How does the complex net-
work topology affect the spatiotemporal chaotic dynamics of
the coupled MHH neuron system?

In this paper, we have investigated the dynamics of cha-
otic MHH neurons on complex networks. The complex net-
work is constructed by randomly adding long-range links
�shortcuts� to an originally nearest-coupled one-dimensional
neuron chain. We mainly focus on how the topological ran-
domness p, defined as the fraction of random shortcuts,
would affect the system’s spatiotemporal evolution. The pa-
rameters chosen can only sustain spatiotemporal chaos in the
original regular neuron network. We find that chaotic burst-
firings become appreciably and more and more synchronized
in space and periodic in time with the addition and increase
of random shortcuts, and at an optimal value of p a most
ordered spatiotemporal behavior appears, which indicates all
neurons undergo periodic synchronized oscillations. Further
increasing random shortcuts, however, would destroy the pe-
riodicity in time though it can enhance the synchronization in
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space. We have introduced an order parameter to characterize
the spatiotemporal regularity of the neurons’ motion, which
shows a clear maximum with the variation of p. These phe-
nomena imply that topological randomness can tame the spa-
tiotemporal chaos in the MHH neurons. We have also studied
the effects of the coupling strength and found that the value
of the optimal randomness p decreases when the coupling
strength increases.

II. MODEL AND EQUATIONS

The model here is the coupled MHH neurons on a com-
plex network. The network is constructed as follows: It
starts with a one-dimensional regular chain which comprises
N=60 identical chaotic MHH neurons. Each neuron is con-
nected to its two nearest neighbors. Links are then randomly
added between non-nearest vertices. In the limit case where
all neurons are coupled to each other, the network contains at
most N�N−1� /2 edges. Using M to denote the number of
added shortcuts, then the fraction of the shortcuts, which is
the ratio of random shortcuts to all possible number of edges
among the neurons, reads p=M / �N�N−1� /2�, which can be
used to characterize the randomness of the network. Note
that for a given p there are a lot of network realizations.

In the presence of the coupling between neurons, the
membrane potential of each neuron is given by

CM
dVi

dt
= − Iil − IiNa − IiK − Iisd − Iisr + �i + �

j

gij�Vj − Vi� ,

�1�

where CM is the membrane capacitance, �i denotes the noise
in each neuron, and � jgij�Vj −Vi� represents the coupling be-
tween two neurons. The currents on the right-hand side fall
into three groups. The first two, IiNa and IiK, are the fast
sodium and potassium currents that generate the action
potentials,

IiNa = �gNaaNa�Vi − VNa� , �2�

IiK = �gKaK�Vi − VK� , �3�

where the g’s are the conductances and the a’s contain the
switching characteristics of the channels. In the steady state

aNa,� = aK,� =
1

1 + exp�− 0.25�Vi + 25mV��
. �4�

The sodium and potassium currents relax exponentially

daNa

dt
=

�

�Na
�aNa,� − aNa� , �5�

daK

dt
=

�

�K
�aK,� − aK� . �6�

The dimensionless factors � and � contain the temperature
dependence

� = 1.3�T−T0�/10, �7�

� = 3.0�T−T0�/10, �8�

where the reference temperature T0=25 °C. The next two
currents in Eq. �1� describe the slow currents which are given
by

Iisd = �gsdasd�Vi − Vsd� , �9�

Iisa = �gsaasa�Vi − Vsa� , �10�

where the indices sd and sa stand for “slow depolarization”
and “slow after hyperpolarization.” They are resumed to re-
lax according to

dasd

dt
=

�

�sd
�asd,� − asd� , �11�

dasa

dt
=

�

�sa
�− �Iisd − kasa� , �12�

where �=0.012 �A, k=0.17, and

asd,� =
1

1 + exp�− 0.09�Vi + 40 mV��
. �13�

The temperature dependence is controlled by the same
factors � and � as above. Finally, the leak current Iil is given
as

Iil = gl�Vi − Vl� . �14�

The values of all the other parameters that appear in the
above equations are listed in Table I.

In the coupling term � jgij�Vj −Vi�, Vi and Vj are
the membrane potentials of neurons i and j, respectively;
1� �i , j��N, here N=60 is the number of neurons, and the
summation takes over all neurons; gij is a coupling constant
between the two neurons i and j, which is determined by the
coupling pattern of the system and is identical for any two
neurons, i.e., gij =g. If neurons i and j are connected, they
have a constant coupling strength g; otherwise the coupling
strength is g=0.

TABLE I. Values of parameters used in the model.

Membrane capacitance CM =1 ��F/cm2�
Conductances �m S/cm2�

gNa=1.5 gK=2.0

gsd=0.25 gsa=0.4

gl=0.1

Time constants �ms�
�Na=0.05 �k=2.0

�sd=10 �sa=20

Reversal potentials �mV�
VNa=Vsd=50

VK=Vsa=−90

Vl=−60
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The MHH neuron in system �1� is temperature dependent
and exhibits distinct dynamical behaviors with various
temperatures. It behaves like regular spikes �T	7.31 °C�,
chaotic bursts �7.31 °C�T�10 °C�, and regular bursts
�T
10 °C� �28�. Here, in order to address the effect of the
network topology on the ordering chaos, we fix temperature
T=8.2 °C, such that the system is located in a chaotic region
and hence each neuron shows chaotic bursts. Noises �i=1,. . .,60
are Gaussian white ones with ��i�=0, ��i�t�� j�t��i�j =0,
and ��i�t��i�t���=D��t− t��, where D represents the noise
intensity.

Numerical integrations of Eq. �1� are performed by using
the explicit Euler method with time step 0.01 ms. Periodic
boundary conditions are employed and the parameter values
for all the neurons are identical except for distinct initial
values of potential Vi0 and the noise terms �i for each neuron.

III. RESULTS AND DISCUSSION

The bifurcation of a single neuron, i.e., the system �1�
in the absence of the coupling term � jgij�Vj −Vi�, has
been described in detail in Ref. �28� and hence is not
repeated here. We study the system �1� by fixing the coupling
strength g=0.001,0.002,0.003,0.004 and noise level
D=0.0005,0.005,0.05,0.1, and let the fraction of random
shortcuts p be variable. All other parameters are the same as
given above.

We first fix D=0.05 and choose g=0.002. For each p, the
average over 50 calculations �i.e., realizations of networks� is
performed, and in each calculation the initial values of 60
neurons’ membrane potentials are newly chosen randomly.
At the beginning, we let p=0, i.e., all neurons are located on
the regular ring and there is not any random shortcut added
to the chain. In this case, each neuron behaves like chaotic
bursts �Fig. 1�, and all neurons do not synchronize their
bursts either. To check the evolution of the temporal period-
icity and spatial synchronization of different neurons with
changing p, we give the comparison of the time series of
membrane potentials of two neurons in Fig. 2 and the spa-

tiotemporal evolution of all 60 neurons in Fig. 3. In Fig. 3
the narrow structures in the brighter regions correspond to
the firing patterns of individual spikes inside a burst. The left
panels in Figs. 2 and 3 correspond to the case p=0, i.e., in
the regular network, they show that the bursts are chaotic
without random shortcuts. As p is increased, the bursts be-
come appreciably ordered �Figs. 2�b� and 3 for p=0.125�. As
p is increased to p=0.26, the bursts reach the most ordered
spatiotemporal state where they become the most temporally
periodic and considerably spatially synchronized �Figs. 2�c�
and 3 for p=0.26�. However, as p is further increased, the
temporal periodicity becomes worse, while the spatial syn-
chronization evolves better �Figs. 2�d� and 3 for p=0.525�.

These spatiotemporal evolutions of membrane potentials
of 60 coupled neurons on the complex network with p shows

FIG. 1. Chaotic time series of a membrane potential V of a
single neuron at p=0, i.e., on the regular network.

FIG. 2. �Color online� Time series of the membrane potentials of
two neurons with various p. The most ordered spatiotemporal be-
havior appears at p=0.26.

FIG. 3. �Color online� Spatiotemporal evolution of membrane
potentials of 60 coupled neurons on the complex network for
four typical values p=0, 0.125, 0.26, 0.525, with D=0.05 and
g=0.002. The most ordered spatiotemporal behavior of bursting
appears at p=0.26. In each panel, the abscissa represents the neu-
rons and the ordinate represents the time changing from top to
bottom. The bright regions show the firing of neurons, while the
dark regions show the quiescence of them.
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that random shortcuts benefit the synchronization of chaotic
bursts and, more important, there exists an optimal topologi-
cal randomness such that the system has the maximal order
and the spatiotemporal chaos is tamed.

To quantitatively characterize this behavior, we introduce
the characteristic correlation time ��p� and standard devia-
tion � to measure the temporal regularity and spatial syn-
chronization of the spatiotemporal patterns, respectively. The
characteristic correlation time for measuring the regularity is
based on the normalized autocorrelation function ci��d�,
defined as

ci��d� = �V̄i�t�V̄i�t + �d��/�V̄i
2� , �15�

where Vi�t� is the membrane potential of the ith neuron at

time t, �d is the time delay, V̄i�t�=Vi�t�− �Vi�t��, and the
averaging is taken over the time. The characteristic
correlation time for the ith neuron is then evaluated as
�i,C=1/T�Tci

2�t�dt �30�. In the present case of limited and
discrete sampling with N0 data points for each neuron, the
characteristic correlation time is given by

�i,C =
1

N0t
�
k=1

N

ci
2��k�t , �16�

where �k=kt with t being the sampling time, and N0t
being the length of the time series.

Then the “order parameter” for given p is defined as

��p� = ���i,C�� , �17�

where �·� denotes the average over all the neurons and �·� the
average over 50 different network realizations with the same
p. The more ordered a neuron bursting is, the longer is its
characteristic correlation time and hence its contribution to
the order parameter. Therefore, this quantity can be readily
used to measure the degree of the spatiotemporal order in the
present system �18�. At D=0.05 and g=0.002, the depen-
dence of autocorrelation on the fraction of random shortcuts
p is presented in Fig. 4 �line with circles�. It has a clear
maximum at p=0.26, where all neurons almost run periodi-
cally with the same phase.

The standard deviation � is defined as

� = �	��t�
�

with

��t� =�� 1

N
�
i=1

N

Vi�t�2 −  1

N
�
i=1

N

Vi�t��2�� �N − 1� ,

�18�

where 	·
 denotes the average over time and �·� has the same
meaning as above. Figure 5 depicts the dependence of � on p
of the network topology �line with circles�. One can see that
� decreases monotonously when p is increased, approaching
zero as p→1, which implies that the synchronization of the
coupled MHH neurons is enhanced as p increases, and com-
plete connections, i.e., p→1, will lead to the complete syn-
chronization of the system.

We have also studied the influence of coupling strength on
the phenomenon. We carried out the calculations for other
three coupling constants g=0.001,0.003,0.004 with noise
level D=0.05. Similar evolutions of spatiotemporal patterns
are found but with a somewhat difference in the degree of
temporal regulation and spatial synchronization when the
most ordered spatiotemporal patterns appear �not shown�.
We find that the most ordered spatiotemporal pattern at
g=0.002 is more pronounced than others, which means in
this case of coupling that the addition of random shortcuts
may be more effective for the system to achieve a periodic
spatiotemporal state than in other coupling values. The varia-

FIG. 4. Characteristic correlation time � vs p at D=0.05 for
g=0.001,0.002,0.003,0.004, respectively. There is a peak in each
curve of �, indicating the occurrence of most ordered temporal be-
havior. The value of p for the peak shifts to a smaller value with
increasing coupling constant g.

FIG. 5. Standard deviation � vs p at D=0.05 for
g=0.001,0.002,0.003,0.004. The value of � decreases with the
increase of p, showing that the system becomes more and more
synchronized. And � decreases more rapidly with p for a stronger
coupling constant; represent that same number of random connec-
tions makes the system reach synchronization more easily at a
stronger coupling.
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tions of the characteristic correlation time and the standard
deviation with p at the other three coupling constants
g=0.001,0.003,0.004 are also plotted in Figs. 4 and 5, re-
spectively. One sees from Fig. 4 that the optimal randomness
p shifts to a smaller number with the increase of g, which
indicates that the larger g number, the smaller the number of
randomly added shortcuts is needed for the system to achieve
a periodic spatiotemporal pattern. In addition, the maximal
value of � for g=0.002 is larger than those for the other
values of g, which indicates that a more pronounced spa-
tiotemporal pattern appears in this case. Figure 5 shows that
the larger the g number, the more rapidly the standard devia-
tion decreases with increasing p, which represents that the
system reaches spatial synchronization more effectively for a
higher g.

To check the effect of larger or smaller noise levels, we
have also calculated the characteristic correlation time and
standard deviation for the other three typical noise levels
D=0.1,0.005,0.0005 at g=0.002. We find that for different
values of D the spatiotemporal patterns change slightly and
the evolution of the characteristic correlation time and of the
standard deviation with changing p is almost kept unchanged
�figures not shown�, which means that the variation of the
appropriate noise level exerts a slight influence on the burst-
ing activity and the spatiotemporal patterns are robust to it.
This result for the model with temperature T=8.2 °C quali-
tatively agrees with the conclusion for low temperature that
the noise simply produces more realistic looking simulation
and is necessary to account for subthreshold oscillations with
skippings when high-temperature ranges are considered �28�.
As a matter of fact, the addition of noise to the model in this
work is for the purpose of checking the robustness of the
result and for making the model more realistic.

In our previous work, it was also found that random short-
cuts can tame spatiotemporal chaos in an array of coupled
pendulum networks �18�, and a sufficient number of random
shortcuts will synchronize the behavior of the HH neurons
�31�. In this work, we find similar result in the coupled MHH
neuron networks. However, this work differs from the work
in �31�: In that work, we used the HH model which is inde-
pendent of temperature, and each HH neuron can merely fire
regular spikes and cannot exhibit chaotic firings. While in
this work, the coupled thermoreceptor neurons are taken as
our model; more importantly, each neuron fires bursts which
are more complex than spikes in dynamical behavior; and
most importantly, each neuron initially stays in a chaotic
firing state, and the ordering of it is just our main object in
the present work.

By the results obtained above, it seems that ordering spa-
tiotemporal chaos and enhanced synchronization and coher-
ence by the optimal random network topology might be com-
mon phenomena. Our present findings, however, show that
the spatiotemporal chaos in the neurons in the brain can also
be tamed by an optimal number of random links between the
neurons, which illustrates the importance of random links to
the transfer of information in brain. The possible mechanism
of this phenomenon, as stated in our previous work �18�,
may be understood as follows: At the early stage, a few

random shortcuts between neurons can create local coherent
structures, which bring the neuron chain into a periodic mo-
tion, and adding shortcuts could increase the number of co-
herent structures, which results in the growth of the charac-
teristic correlation time. Meanwhile, the shortcuts can
certainly enhance the synchronization of the coherent struc-
tures, and when the random shortcuts are optimal, the coher-
ent structure could reach both a nearly synchronized and
most periodic motion. However, if more shortcuts are added,
the coupling between the neurons is so strong that the whole
system behaves like a single chaotic neuron before coherent
structures are formed, which results in worse periodicity in
time and better synchronization in space.

How the present work could find its applications in real
neural systems is an interesting question. On the one hand,
synchronized neural activities in the central nervous system
have been observed, and they may play an important role in
revealing communication pathways in neural systems
�32,33�. In addition, real neurons display rather rich dynami-
cal behaviors such as chaos �34�, and spatiotemporal chaos is
viewed as a “waiting” state for the cortex, and hence the
neurons in this waiting state exhibit the highly irregular spik-
ing activities �35�. On the other hand, real neural systems are
more feasible to be described as a complex network rather
than a regular one. Therefore, the present findings provide an
insight into understanding the properties of collective mo-
tions in coupled chaotic neurons and the exchange of infor-
mation between different neuron states.

IV. CONCLUSION

We have studied the spatial synchronization and coher-
ence of the chaotic MHH thermosensitive neurons on the
complex networks. We find that the synchronization and co-
herence which are absent in the regular network can be
greatly enhanced by random shortcuts between the neurons.
In particular, we show that there exists an optimal random-
ness p at which the characteristic correlation time � of the
system is maximal, which corresponds to a most ordered
spatiotemporal state that is the most periodic in time and
nearly synchronized in space. Our findings provide an ex-
ample that an optimal number of random shortcuts can ef-
fectively tame spatiotemporal chaos in the coupled MHH
neurons. We also show that this phenomenon is robust to the
change of the coupling strength and the noise level. And it is
easier to tame the chaos under a stronger coupling, but the
variation of an appropriate noise level hardly influences the
spatiotemporal patterns. We expect that these results can find
their applications in real neural systems.
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