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Based on a deterministic mammalian circadian oscillator proposed recently, we have constructed the corre-
sponding mesoscopic stochastic model, and studied the effect of internal noise on the genetic oscillations of
such a system. It is found that the stochastic genetic oscillations can show best performance at an optimal
internal noise level via a mechanism of internal noise stochastic resonance. Furthermore, it is found that there
exists a moderate system size that makes the stochastic model show effective oscillation at more extended
region than the deterministic description, which indicates enhanced robustness as the result of internal noise.
The potential biological application of such an effect is also discussed.
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I. INTRODUCTION

The molecular and biological bases of circadian tim-
ing, which accounts for the sleep/wake cycle, have at-
tracted considerable attention and led to rapidly evolv-
ing models of the underlying ‘clockwork’. Recently,
mathematical models provide insight into detailed prop-
erties of the circadian oscillation [1,2], i.e. some mod-
els describe the molecular processes in great detail [3].
In mammals, circadian oscillations are generated within
single neurons by intersected negative/positive feedback
loops [4]. The negative feedback loop, which mainly in-
cludes per and cry genes and corresponding proteins,
is considered as an essential element in generating cir-
cadian oscillations [5]. Meanwhile, the positive feed-
back loop, which primarily involves Bmal1 and Rev-
erbα genes and their proteins, has been showing roles
in enhancing robustness of Drosophila [6] and mutant
mice [7].

At the molecular level, circadian oscillation is regu-
lated by gene expression. It is well known that many
regulatory molecules act at rather low concentration in
the processes of gene expression, leading to large ran-
dom fluctuations on the reaction rates of these processes
[8]. Since Arkin and co-workers [9] realized that the
reactions underlying gene expression occur in abrupt
stochastic bursts rather than successive deterministic
manner, it has been realized that in various systems
the intrinsic noise of gene expression is inherent and
should be paid considerable attention [10]. The effects
of molecular fluctuations were shown to be prominent
and can not be ignored in models of transcriptional reg-
ulation [11,12] and signal cascades [13]. Up to now,
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most of the studies accounting for the intrinsic noise
in gene expression focus on how to measure, charac-
terize and explain the intrinsic noise experimentally or
theoretically, and how the system shows robustness to
intrinsic noise by feedback loops or redundancy on view-
ing the noise as a nuisance.

However, some recent studies have explored the roles
of noise in the dynamics of gene expression, such as
intrinsic noise may induce oscillations which are not
present in the deterministic model [14], or induce bifur-
cations which have no counterpart in the deterministic
description [15]. Meanwhile, in some reverse engineer-
ing approaches, some regulatory mechanisms may ex-
ploit intrinsic noise to randomize outcomes where vari-
ability is advantageous [16]. In this way, the intrinsic
noise can be used to control a toggle switch [17-19], or
a repressilator, in which three gene products inhibit the
transcription of each other in a cyclic way [20]. More
importantly, among the studies where the intrinsic noise
systematically facilitates the system properties, it was
found that in a cellular control system intrinsic noise
may enhance the sensitivity of intracellular regulation
by stochastic focusing (SF) [13], and that in a genetic
control circuit the fluctuations in repressor or corepres-
sor numbers can improve the control of gene expression
[21]. Interestingly, it was found that optimal internal
noise effect exists in some sub-cellular system. Shuai
and Jung demonstrated that optimal intracellular cal-
cium signaling appears at a certain size or distribution
of the ion channel clusters [22-24]. In previous studies,
we have also found the constructive roles of internal
noise or optimal system size effects in prokaryotic cir-
cadian clock system [25], calcium signaling system [26]
and synthetic gene network [27]. However, few works
so far account for the effect of internal noise in mam-
malian circadian clock system, in which the interlocked
negative/positive feedback loops have great impact on
system dynamics behavior.
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In the present work, we use a recently proposed mam-
malian circadian model [28] and investigate the effect
of internal noise on the genetic oscillations of such a
system. The model accounts for the interdependence of
the positive and negative feedback, and shows sustained
oscillations in agreement with experimental observa-
tions with periods and phases. We first constructed
the mesoscopic stochastic model from the original one;
and then find that the stochastic genetic oscillations
can show best performance at an optimal internal noise
level via a mechanism of internal noise stochastic reso-
nance (INSR). Furthermore, we find that there exists a
moderate system size that makes the stochastic model
show effective oscillation (EO) at more extended region
than the deterministic description. Since the magnitude
of the internal noise is determined by the system size,
such phenomena also demonstrate some optimal system
size effect. Finally we discuss some potential biological
applications of such an optimal system size effect.

II. MODEL DESCRIPTION

The model proposed by Becker-Weimann et al. is
a mammalian circadian core oscillator described by or-
dinary differential equations. The variables represent
the concentration of clock genes’ mRNAs and proteins.
The deterministic dynamics is described by the follow-
ing equations,

dy1

dt
=

v1b(y7 + c)
k1b[1 + (y3/k1i)p] + (y7 + c)

− k1dy1

dy2

dt
= k2byq

1 + k3ty3 − k2ty2 − k2dy2

dy3

dt
= k2ty2 − k3ty3 − k3dy3

dy4

dt
=

v4byr
3

kr
4b + yr

3

− k4dy4

dy5

dt
= k5by4 + k6ty6 − k5ty5 − k5dy5

dy6

dt
= k5ty5 + k7ay7 − k6ty6 − k6ay6 − k6dy6

dy7

dt
= k6ay6 − k7ay7 − k7dy7

(1)

here y1 to y7 represent the concentrations of per2

or cry mRNA, PER2/CRY complex in the cyto-
plasm, PER2/CRY complex in the nucleus, Bmal1
mRNA, cytoplasmatic BMAL1 protein, BMAL1 pro-
tein in the nucleus and transcriptionally active form
BMAL1*, respectively. The parameters starting with
v denote the corresponding transcriptional maximal
rates, and that starting with k denote the common re-
action rates of the processes, such as transcription (with
suffix b), import/export (with suffix t), activation (with
suffix a) and degradation (with suffix d). p and r cor-
respond to the hill coefficient of inhibition of per2/cry
transcription and activation of Bmal1 transcription, re-
spectively. q is the number of PER2/CRY complex

forming subunits. The essence of the model is the in-
troduction of positive feedbacks that can modulate the
dynamics of the system. Here the concentration of con-
stitutive activator c and maximal rate of Bmal1 tran-
scription v4b both account for the positive feedbacks, so
we choose them as control parameters. The parameter
values that remain unchanged during our simulation are
listed in Table I. See [28] for more details.

The Eq.(1) is a rather good description of the deter-
ministic dynamics. However, due to the small system
size, one is wondering how the internal noise would af-
fect the system’s behavior. To account for the internal
noise, such a deterministic description is not exactly
valid and one can describe the reaction as a birth-death
stochastic process governed by a chemical master equa-
tion. Generally, there is no practical procedure to solve
chemical master equation analytically, but it still pro-
vides the basis for numerical simulation. One of the
widely used simulation algorithm is exact stochastic
simulation method introduced by Gillespie in 1977 [29],
which stochastically determines what’s the next reac-
tion step and when it will happen according to the tran-
sition probability of each reaction event. This simula-
tion method exactly accounts for the internal noise. For
the present model, the 23 reaction steps drawn from the
reaction details and the corresponding transition rates
are listed in Table I, note that the transition rates are
proportional to the system size V . Although the exact
stochastic simulation method has been widely used to
study the effects of internal noise in many systems, it is
too time-consuming when the system size is large. Re-
cently, Gillespie developed the τ -leap method [30] that
randomly determines how many steps will take place for
each reaction channel in the next “macro-infinitesimal”
time interval τ . It has been proved that the τ -leap
method is a rather good approximation of the exact
method when the system size is large. Therefore, it is
advisable for us to use the exact stochastic simulation
method when the system size is small enough and em-
ploy the τ -leap method when the system size is too large
for the exact stochastic simulation method.

In addition, a further alternative method to study the
internal noise is chemical Langevin (CL) method, which
was also proposed by Gillespie [31]. It was proved that
the chemical Langevin equation (CLE) is a rather good
approximation if a “macro-infinitesimal” time scale ex-
ists in the system. From the form of CLE one can easily
see that the internal noise is related to the system size
and the parameter values, as well as the state variables
that evolve with time. To further facilitate the simu-
lation and show robustness of our results, we have also
performed studies based on the CLE. For the present
model, the CLE reads
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TABLE I Reaction steps and corresponding transition rates involved in the model

Reaction steps Descriptions Transition rates

Y1 →Y1 + 1 Generation of per2 or cry mRNA W1 = a1V

Y1 →Y1 − 1 Degradation of per2 or cry mRNA W2 = a2V = k1dY1

Y2 →Y2 + 1 Increment of PER2/CRY complex in W3 = a3V = k2b(Y1/V )qV

cytoplasm by formation and transportation W4 = a4V = k3tY3

Y2 →Y2 − 1 Reduction of PER2/CRY complex in W5 = a5V = k2tY2

cytoplasm by transportation and degradation W6 = a6V = k2dY2

Y3 →Y3 + 1 Increment of PER2/CRY complex in nucleus by transportation W7 = a7V = k2tY2

Y3 →Y3 − 1 Reduction of PER2/CRY complex in nucleus W8 = a8V = k3tY3

by transportation and degradation W9 = a9V = k3dY3

Y4 →Y4 + 1 Generation of Bmal1 mRNA W10 = a10V

Y4 →Y4 − 1 Degradation of Bmal1 mRNA W11 = a11V = k4dY4

Y5 →Y5 + 1 Increment of cytoplasmatic BMAL1 protein W12 = a12V = k5bY4

by formation and transportation W13 = a13V = k6tY6

Y5 →Y5 − 1 Reduction of cytoplasmatic BMAL1 protein W14 = a14V = k5tY5

by transportation and degradation W15 = a15V = k5dY5

Y6 →Y6 + 1 Increment of BMAL1 protein in nucleus by W16 = a16V = k5tY5

transportation and activation W17 = a17V = k7aY7

Y6 →Y6 − 1 Reduction of BMAL1 protein in nucleus by W18 = a18V = k6aY6

activating, transportation and degradation W19 = a19V = k6tY6

W20 = a20V = k6dY6

Y7 →Y7 + 1 Increment of BMAL1* protein by activation W21 = a21V = k6aY6

Y7 →Y7 − 1 Reduction of BMAL1* protein by activating and degradation W22 = a22V = k7aY7

W23 = a23V = k7dY7

here a1 =
v1b(y7 + c)

k1b[1 + (y3/k1i)p] + (y7 + c)
and a10 =

v4by
r
3

kr
4b + yr

3

. Parameter values that remain unchanged during simulation:

v1b=9 nmol/Lh, k1b=1 nmol/L, k1i=0.56 nmol/L, p=8, k1d=0.12 h−1, k2b=0.3 nmol/Lh, q=2, k2t=0.24 h−1, k2d=0.05
h−1, k3t=0.02 h−1, k3d=0.12 h−1, k4b=2.16 nmol/L, r=3, k4d=0.75 h−1, k5t=0.45 h−1, k5b=0.24 h−1, k5d=0.06 h−1,
k6t=0.06 h−1, k6a=0.09 h−1, k6d=0.12 h−1, k7a=0.003 h−1, k7d=0.09 h−1.

dy1

dt
= a1 − a2 +

1√
V

[
√

a1ξ1(t)−√a2ξ2(t)]
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dt
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√

a3ξ3(t)

+
√
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√
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dy4
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1√
V

[
√

a10ξ10(t)−√a11ξ11(t)]

dy5

dt
= a12 + a13 − a14 − a15 +

1√
V

[
√

a12ξ12(t)

+
√

a13ξ13(t)−√a14ξ14(t)−√a15ξ15(t)]
dy6

dt
= a16 + a17 − a18 − a19 − a20 +

1√
V

[
√

a16

ξ16(t) +
√

a17ξ17(t)−√a18ξ18(t)

−√a19ξ19(t)−√a20ξ20(t)]
dy7

dt
= a21 − a22 − a23 +

1√
V

[
√

a21ξ21(t)

−√a22ξ22(t)−√a23ξ23(t)]

(2)

here a1-a23 are the transition rates per volume
listed in Table I, and ξ1 to ξ23 is Gaussian white
noise with zero mean 〈ξi(t)〉=0 and correlation of
〈ξi(t)ξj(t′)〉=δijδ(t − t′). Without the second terms in
the brackets at the right side, the CLE (2) is equivalent
with the deterministic Eq.(1). Therefore, these terms
actually reflects the effects of the internal noise. It is
quite clear that the magnitude of the internal noise
items is proportional to 1/

√
V , and they depend

not only on the control parameter but also on the
concentrations of mRNAs and proteins.

III. RESULTS AND DISCUSSION

A. Bifurcation properties

As already well known from numerous studies, noise
often plays constructive roles near the bifurcation
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points. Guided by Fig.1 in [28] and set c and v4b as
control parameters, we perform numerical calculation
of Eq.(1) using explicit Euler method with time step
0.001 h and parameters as listed in Table I and find
that there exists 4 regions with different dynamics be-
havior, as plotted in Fig.2. See caption of Fig.2 for
more details about the bifurcation properties. To study
the system dynamics in a more simplified way, we take
assumption that all variables initialized at 1, in which
case the bifurcation diagram can be simplified as the
inserted figure in Fig.2. One can see that for a fixed
value of c, there exists only one Hopf bifurcation (HB)
point of v4b. In the present work, we focus on the effect
of internal noise when the control parameters are tuned
very close to the Hopf bifurcation. To this end, we first
fix c at 0.005, and find that there exists a supercritical
Hopf bifurcation point at about v4b=0.51.

FIG. 1 The dependence of SNR on system size for c=0.0031
and v4b=1.0 with different initial condition. Open circles:
all variables initialized at 1, solid square: all variables ini-
tialized at 0.

If the system stays inside the steady-state region and
we do not account for the internal noise, the system
would not oscillate. But if the internal noise is taken
into account, simulation results via the exact stochastic
simulation method, the τ -leap method and the CLE, all
show stochastic oscillations. Such stochastic oscillations
do not solely contain random noisy information, for
there are clear peaks in their power spectrums (Fig.3(a)
and Fig.3(b)).

B. Internal noise stochastic resonance

The stochastic oscillation due to internal noise im-
plies some kind of resonance effect. On one hand, there
is no oscillation in the steady-state region when the in-
ternal noise is not taken into account. On the other
hand, if the system size is too small, the internal noise
becomes so large that sustained oscillation would be
overwhelmed by random noise. Therefore, it can be
predicted that for some intermediate system size and

FIG. 2 The bifurcation diagram of the model. c and v4b

are both chosen as control parameters. The four parameter
regions indicate different types of dynamical behavior. In
region 1 the system shows oscillation; and the system stays
at stable steady state in region 3. In region 2 and 4 the dy-
namics are somewhat complex in that more than one stable
state coexists. In region 2, oscillations coexist with stable
steady states, and whether the system show oscillation or
steady state depends on the initial condition. For example,
the systems of c=0.002 and v4b=3.0 show oscillation when
all variables initialized at 1 and show stable steady state
when all variables initialized at 0. In region 4, two stable
steady states coexist. See Ref.[28] for more details. The
inserted figure is the bifurcation diagram when all variables
initialized at 1. Here the difference between the two stable
steady states is omitted.

corresponding internal noise level, the stochastic oscil-
lation due to internal noise would be most pronounced.

To measure the relative performance of the stochastic
oscillation quantitatively, we define an effective signal-
to-noise ratio (SNR) β=R/(∆ω/ωp), where ωp is the
frequency at the peak, ∆ω is the width between ωp and
the frequency ωl satisfying ωl>ωp and P (ω1)= P (ωp)/e,
here P (ω) denotes the power spectrum density (PSD)
for a given frequency ω; R=P (ωp)/P (ω2), where P (ω2)
is the smallest PSD value between P (0) and P (ωp). See
also the caption of Fig.3(b) for more details. For the
present model, the dependence of β on system size V
for c=0.005 and v4b=0.46 is plotted in Fig.3(c). The
time series used to calculate the power spectrum con-
tains 16,384 data points with an average time interval
0.3 h. The smoothed power spectrum curves are ob-
tained by the nearest averaging over 50 points from the
original ones. A Welch window function is used dur-
ing the estimation of the power spectrum. One can see
that a clear peak is present for system size V≈104-105,
which demonstrate the existence of a resonance effect.
Since the resonance effect is caused by internal noise, it
can be termed as INSR, reminiscent of the well-known
phenomenon of stochastic resonance (SR) [32,33].

From Fig.3(c) one can see good qualitative agree-
ment among the chemical Langevin method, the exact
stochastic simulation method and the τ -leap method.
Such agreement implies that it is convenient to use the

ISSN 1003-7713/DOI:10.1360/cjcp2007.20(2).119.7 c©2007 Chinese Physical Society



Chin. J. Chem. Phys., Vol. 20, No. 2 Optimal Internal Noise for Mammalian Circadian Oscillator 123

FIG. 3 (a) The stochastic oscillations of y1 concentration for three system sizes V =102, 105 and 109, respectively. The control
parameters are c= 0.005 and v4b=0.46. The curve for V =102 is obtained from exact stochastic simulation method, while the
other two are obtained by CL method. (b) Corresponding smoothed power spectrums for the time series in (a), respectively.
The points A, B and C in the PSD curve demonstrate how to calculate the SNR value, β=[P (B)/P (A)]× ωB/(ωC − ωB),
where point C is located by the condition P (C)=P (B)/e. (c) The dependency of SNR on the system size V for c=0.005
and v4b=0.46. Open triangles: data obtained by exact stochastic simulation method for V <105, open circles: results from
τ -leap method for V≥105, solid square: data from CL method.

FIG. 4 The dependency of SNR on system size for different
values of v4b when c=0.005 by CL method. The curves are
the nearest smoothed over 3 points from the original ones.

CLE to study the qualitative effects of internal noise
in a systematic way. Using the CL method, we have
also studied how the SR behavior depends on the value
of the control parameter. The results of c=0.005 and
several different v4b value are shown in Fig.4. When
the control parameter v4b becomes closer to the Hopf
bifurcation point, the SR curve becomes higher. One
can see the optimal system sizes are always about
V≈104-105. It is shown that for those v4b slightly
smaller than the Hopf bifurcation point, the internal
noise can play a constructive role at a moderate system
size. While for those v4b slightly larger than the Hopf
bifurcation point, the peak disappears and the SNR
increases monotonically with the increment of system
size. In this case, the internal noise due to small system
size always play a destructive role.

C. Effective oscillation region

Oscillation is ubiquitous in biological systems. How-
ever, oscillations with very small amplitude are often
useless in performing biologic functions for their poor
ability on carrying and transferring signals. To study
the properties of sustained oscillations due to internal
noise, we define the oscillation whose effective SNR is
larger than a threshold value as the effective oscillation
(EO). In the present work, we set the threshold value of
effective SNR as 500.0, which is the largest SNR value
when the system size V =102.

Figure 5 shows our numerical results with three sys-
tem size at different control parameter values of c and
v4b. Each point denotes the threshold value of v4b that
makes the EO occur with fixed c. One can see that
when the system size is very large (V =109), the in-
ternal noise is so small that the EO boundary is very
close to the deterministic one, which is composed of a

FIG. 5 EO boundaries for three system sizes when the vari-
ables c and v4b are varied simultaneously. The area above
the borderline is the EO region of that system size.
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series of Hopf bifurcation points. Furthermore, when
the system size is too small (V =102), the internal noise
is so large that the EO region is relatively small, only
the points with large enough control parameters c and
v4b have the ability to resist the perturbation of inter-
nal noise. However, for a moderate system size (here
V =5×104), the EO can even occur at the point that
remains steady state in the deterministic description as
the result of INSR. In this way, the area of EO can be
enlarged and internal noise enhances robustness as a
result of small system size.

D. Discussion

Our simulation is exerted near the supercritical Hopf
bifurcation point of v4b at a fixed c, where the system
only shows a stable steady state when internal noise
is not accounted for. However, once the internal noise
is taken into account, internal periodic oscillation can
be stimulated, so the sustained oscillation can be ob-
served and it contains not only random signals but also
the inherently system signal. Furthermore, the perfor-
mance of such sustained oscillation undergoes a maxi-
mum with the increment of internal noise, which implies
the occurrence of INSR. Such phenomenon is common
in that for different value of c there always exists an
optimal internal noise level. Previous studies on mam-
malian circadian clock system often ignore the effect of
intrinsic noise, or view noise as a nuisance, so the reg-
ulatory mechanisms need to show resistance to random
noise. However, in the present work, noise can play
constructive roles via INSR such that the regulatory
mechanism may exploit the advantage of internal noise.
Furthermore, we find that there exists an optimal in-
ternal noise level that makes the stochastic model show
EO at more extended region than the deterministic de-
scription. Since the magnitude of internal noise is deter-
mined by the system size, such INSR also demonstrates
the existence of an optimal system size, and indicates
the enlargement of the EO region as a result of small
system size.

In this work, we use the initial condition of all variable
initialized at 1 for simplification. In fact, it is not nec-
essary for the occurrence of INSR. Most of our results
can be repeated at all variables initialized at 0. Besides
this, there are some different phenomena if all variables
initialized at 0. As an example, we show in Fig.1 the
different dynamics resulting from different initial con-
dition. One can see that the SNRs for c=0.0031 and
v4b=1.0 increase monotonously with the increment of
system size when all the variables are initialized at 1,
while they undergo a maximum if all variables are ini-
tialized at 0. The bifurcation diagram Fig.2 can explain
such phenomenon in that the deterministic state of the
point is different for different initial condition (region
4).

It is now already known that many biological sys-

tems can take advantage of benefits of noise for non-
linear transmission and amplification of feeble informa-
tion, and here we expanded such advantageous roles to
a mammalian circadian system. In addition, from our
results one can see the performance of sustained oscilla-
tion is optimal in V≈104-105. Since the optimal system
size exists in the present model, the biological organism
may learn to adjust the kinetic parameters to make it
work at an optimal size. Due to the complexity of mam-
mal organism, the real cell size may be affected by many
other factors, so our optimal system size by simulation
might have deviation with the real size; however, we
believe the deviation would not be too large. Since the
process of circadian clock in mammals is of ubiquitous
importance in biology, the optimal system size effect
could be remarkable.

IV. CONCLUSION

In conclusion, we have constructed a mesoscopic
stochastic model for a mammalian circadian clock core
model, and studied the effect of internal noise on the
genetic oscillations of such a system. We find that
the stochastic genetic oscillations can show best perfor-
mance at an optimal internal noise level via a mecha-
nism of INSR. Since the magnitude of the internal noise
is determined by the system size, this phenomenon also
demonstrates the existence of an optimal system size.
Furthermore, we find that the stochastic model show
EO at more extended region than the deterministic de-
scription, which indicates enhanced robustness as a re-
sult of small system size. Our findings may find some
interesting applications for gene regulatory processes in
vivo.
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