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Engineered internal noise stochastic resonator in gene network:
A model study
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Abstract

Based on a genetic bistable switch model coupled with a gene oscillator model, we have constructed a mesoscopic stochastic model for the
coupled synthetic gene network, and studied how internal noise would influence the oscillation of such a system. We found that the state-to-state
transitions can occur if the internal noise is taken into account, and the performance of resulting oscillation can reach a maximum in a certain
internal noise level, which indicates the occurrence of internal noise stochastic resonance (SR) and makes the coupled gene network work as a
stochastic resonator. The potential role of such an effect on gene expression systems is also discussed.
© 2006 Published by Elsevier B.V.
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1. Introduction

Recently, the effects of internal noise in complex biological
systems have drawn ever-growing attention and a variety of impor-
tant results were reported. In life systems, specially, the study of
internal noise in gene expression is of great interest [1–10]. As
pointed out byMcAdams et al., gene expression process is a “noisy
business” [1]. This “noise” has internal source due to the inherent
molecular fluctuations as a result of stochastic reaction events in
transcription and translation processes, as well as environmental
external source. Currently, most studies in this field focus on where
the internal noise comes from, how to characterize it and what its
effect is, through both experimental and theoretical studies [3–5].
For instance, it was reported that the internal noise in the gene
expression in prokaryotes mainly comes from the translation
process [8];while for eukaryotes, transcription process contributes a
great level to the noise in the clonal population [9]. Moreover, since
the circadian clock system is mainly regulated by gene expression
process in molecular level, the internal noise effect on circadian
oscillation is also remarkable [11]. For example, it was found that
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the circadian oscillation would become highly irregular character-
ized by rapid vanishing of autocorrelations when the maximum
numbers of mRNA and protein molecules are relatively small [12].
To resist the destructive effects of internal noise, the circadian
systemmay show robustness to internal noise by feedback loops or
redundancy [13]. However, in some studies, internal noise may
induce oscillationswhich are not present in the deterministicmodel,
making the internal noise effect more complex [14,15].

Very recently, the study of engineered gene networks has gain
much interest. Engineered gene networks have provided insights
into how the network architecture influence its function, which
makes the first step towards the understanding of the function of
real gene regulatory networks [16]. For example, a bistable genetic
toggle switch has been designed from two mutually repressing
genes [17–21], and two oscillatory circuits in E. coli were cons-
tructed, one called the ‘repressillator’ consisting of three trans-
criptional repressors, and the other consisting of an activator and a
repressor. However, the main concern of the study of engineered
gene networks is how to design a circuit which is robust against the
fluctuations in gene expression, which is unavoidable in the cell
environment. But numerous studies have shown that nonlinear
systems can often exploit noise to perform constructive functions,
for instance, to enhance the detection and transportation of feeble
signal, to induce transitions between two stable states, or to induce
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Fig. 2. Bifurcation plots for the steady–state concentration of CI protein on the
control parameter γx for the gene switch. The plots in the dash line represent
unstable steady–states of Eq. (2). The potential profile in the top right corner is a
sketch of γx=5.215. Parameter values that remain unchanged during simulation:
m=1.0, α=11.0, σ1=2.0, σ2=0.08.
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oscillation thus make oscillatory dynamics easier to happen.
Therefore, our question is, is that possible to design a gene circuit
which can “exploit” the gene noise?

Based on above considerations, we take amodel study of a gene
circuit consisting of a toggle switch coupledwith an oscillator. The
output of the gene oscillator acts as a signal input for the switch
through the coupling. Intrinsic gene noise is accounted for by using
chemical Langevin equations. Due to the existence of gene noise,
random transitions between the two states of the switch could
happen. Our target is to find out if such transitions could show
some resonant behavior with the signal input from the oscillator, a
phenomenon called stochastic resonance (SR), which has been
widely studied in a variety of science community. Consequently,
SR is found in reasonable parameter ranges and internal noise
strength, indicating that the coupled circuit can function as a sto-
chastic resonator, which might be a useful module for signal
transmission and amplification in real gene regulatory networks.

2. Model description

The basic scheme of our design is plotted in Fig. 1.We couple a
synthetic genetic bistable switch model [22] with an oscillator
model [23], both models were proposed by Collins et al. The
oscillator is a genetic circuit of ë phage consisting of two plasmids
with the same promoter. On plasmid 1, the promoter controls the cI
gene and thus regulates the expression of the CI protein. On
plasmid 2, the promoter controls the lac gene, and thus regulates
the production of the Lac protein. Interesting dynamics in the
numbers ofCI andLac proteins arises due to the influence of two of
the binding configurations on the transcriptional rate: (i) when a CI
dimer is bound to OR2 and OR3* is vacant, the promoter is turned
“on”, i.e., its gene is transcribed at an amplified rate, and (ii) when a
Lac tetramer is bound to OR3, the promoter is turned “off ”, that
means its gene is not transcribed. The deterministic dynamics of
the oscillator is described by the equations:

dx1
dt

¼ ktdM1d
1þ x21 þ a Vr Vx41

ð1þ x21 þ r Vx41Þð1þ y41Þ
−kxdx1 ¼ b1−b2

dy1
dt

¼ ktdM2d
1þ x21 þ a Vr Vx41

ð1þ x21 þ r Vx41Þð1þ y41Þ
−kydy1 ¼ c1−c2

ð1Þ

Here b1, b2, c1 and c2 represent the production rate and decay
rate of CI protein and Lac protein, respectively. x1 and y1 denote
Fig. 1. Scheme for the model design of this work. The cI genes produce CI proteins
proteins, and vice versa. Such a cross negative feedback loop generates sustained osci
the same plasmid as the plasmid 1 of the oscillator.
the concentrations of CI protein and Lac protein involved in
the oscillator, and kt, kx and ky are rate constants of the
processes of protein formation, degradation of CI protein and
Lac protein, respectively. M1 and M2 represent the copy
numbers of cI and lac gene, respectively. α′ is the degree to
which the transcription rate is increased when a CI dimer is
bound to OR2 relative to binding at OR1, and σ′ is the relative
affinities for the dimer binding to OR1 versus that of binding
to OR2.

Then we introduce the genetic switch model [22], which is a
simple kinetic model of λ phage for examining the bistability in
a single-gene network. It has the same promoter and protein
with plasmid 1 of the above model. The basic dynamical
properties of this network are as follows. The gene cI expresses
repressor (CI), which in turn dimerizes and binds to the DNA as
a transcription factor (TF). This binding can take place at one of
the three binding sites sequentially: the dimmer first binds to the
OR1 site, the OR2, and last OR3. Positive feedback arises due
to the fact that downstream transcription is enhanced by binding
at OR2, while binding at OR3 represses transcription,
effectively turning off production and thereby constituting a
, which show negative feedback on lac genes and repress the production of Lac
llation. The generated oscillation regulates the genetic bistable switch, which has
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negative feedback loop. The deterministic dynamics of the
system is described by the following equation:

dx
dt

¼ mð1þ x2 þ ar1x4Þ
1þ x2 þ r1x4 þ r1r2x6

−gxx ¼ a1−a2 ð2Þ

Here x is the concentration of CI protein in the cell involved in
the bistable switch dynamics, andσi denotes the relative affinities
for the dimer binding to OR1 versus that of binding to OR2 (σ1)
and OR3 (σ2). α represents the degree to which the transcription
rate is increased then a CI dimer is bound to OR2 relative to
binding at OR1. γx is the normalized degradation rate of CI
protein. m is the copy number concentration of the plasmid.

In a common cell, the quantity of cI genes is much more than
that of lac genes. Consequently, in some regions where lac
genes exist, cI and lac genes form oscillatory circuits through
the mechanism of Eq. (1); while in other regions the products of
Fig. 3. The time series and corresponding autocorrelations of Eq. (4) at different sys
initial value of x is fixed at 0.0 and the control parameter γx=5.215. Parameter values
α′=11, σ′=2, K=4.924.
cI genes regulate their owns to constitute bistable switches (Eq.
(2)). The bistable switches would not change the concentration
of the CI protein in certain parameters' set, while the oscillatory
circuits make the concentration of the CI protein oscillates with
certain frequency and amplitude. Intuitively, this concentration
change by the oscillator would influence the dynamic behavior
of the bistable switch. We set the degradation rate of CI protein
γx as the control parameter, and by assuming that the relative
deviation of the concentration of CI protein from its average
level affects the control parameter, we couple the two models
with the equation:

dx
dt

¼ mð1þ x2 þ ar1x4Þ
1þ x2 þ r1x4 þ r1r2x6

− gxd ð1þ Kðx1− x̄1ÞÞd x ð3Þ

Here x̄1 is the average value x1 generated by Eq. (1). K
represents the couple strength.
tem sizes. The corresponding sizes are 104, 100 and 10 from bottom to top. The
that remain unchanged during simulation: kx=2.625, ky=0.088,M1=50,M2=1,



Fig. 4. The dependence of average amplitude on different system sizes. The
results are obtained by the CLE (Eq. (4)). Solid lines are drawn to guide the eye.
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Eq. (3) is still a deterministic equation without accounting for
the internal noise for the bistable switch model. However, due to
the finiteness of system size, the internal noise must be taken
into account. Therefore, such a deterministic description is no
longer valid. Intuitionally, one can describe such a reaction
system as a birth–death stochastic process governed by a
chemical master equation. Generally, there is no practical
procedure to solve chemical master equation analytically, but
one may adopt a widely used simulation algorithm, exact
stochastic simulation (ESS) method proposed by Gillespie in
1977 [24]. However, ESS method is too time-consuming when
the system size is not very small. Recently, an alternative
method to study the internal noise, chemical Langevin (CL)
method was proposed by Gillespie [25]. It was proved that the
chemical Langevin equation (CLE) is a rather good approxi-
mation if a “macro-infinitesimal” time scale exists in the system.
For the present model, the CLE of Eq. (3) reads:

dx
dt

¼ a1− gxd ð1þ Kðx1−x̄1ÞÞdx
þ 1ffiffiffiffi

V
p ð ffiffiffiffiffi

a1
p

d n1ðtÞ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2d ð1þ Kðx1− x̄1ÞÞ

q
d n2ðtÞÞ ð4Þ

Here ξ1 and ξ2 are Gaussian white noise with zero mean
〈ξi(t)〉=0 and correlation of 〈ξi(t) ·ξj(t′)〉= δij · δ(t− t′). From
the form of CLE one can easily see that the internal noise is
related to the system size and the parameter values, as well as
the state variables that evolves with time scale. Without the
second terms in the brackets at the right side, the CLE Eq. (4)
is equivalent with the deterministic Eq. (3). Therefore, these
terms actually denote the internal noise.
Fig. 5. The dependence of the order parameter R on system sizes. Solid line is
drawn to guide the eye.
3. Results and discussion

Before we study the dynamic behavior of the bistable switch
coupling to a gene oscillator, we should figure out the bistable
property of the deterministic equation Eq. (2) first. Since the
degradation rate constant γx is easy to control externally, we
choose it as the control parameter. Using parameters in Eq. (2)
as m=1.0, α=11.0, σ1=2.0, σ2=0.08, we obtain the bistable
diagram

Fig. 2. From Fig. 2 one can see a bistable regime occurs as a
result of the nonlinearity of the steady–state concentration of CI
protein in Eq. (2). The bistability arises as a consequence of the
competition between the production of x along with dimeriza-
tion and its degradation. For those parameter values in the
bistable region, the final concentration is determined by the
initial concentration. The plots on the dash line in Fig. 2
represent unstable steady–states of Eq. (2). One can see that the
unstable plots' values are not always the average of two stable
steady–states' values. Here we choose γx=5.215, which is a
relatively symmetrical value, as the potential profile shows
(inserted figure in Fig. 2).

We then consider the switch coupling to the oscillator (Eq. (3)).
We first fit kx=2.625, ky=0.088, M1=50, M2=1, α=11 and
σ0=2, which guarantee x1 lie in the oscillatory region, and then
perform numerical calculation of Eq. (3) using explicit Euler
methodwith time step 0.001minwith different values of coupling
strength K. We find that the average value of x depends on the
initial concentration and the oscillation amplitude is relatively
small when K is small. Specially, if the initial concentration is 0,
the average value of the oscillation is about 0.5 (low branch);
while if the initial value is 1, the average value of the oscillation is
about 1.5 (high branch). It shows the system still has bistable
property. When we enlarge K gradually, the amplitude increase
gradually until K reaches a threshold value of about 4.93. When
K=4.924, the resulting oscillation has an amplitude is less than
0.6, however, the oscillation has amplitude over 1.5 and average
value 1.0 when K=4.93, which indicate the state-to-state
transition (from high branch to low branch) occurs. We choose
K=4.924 in following study, where the system still have bistable
property.

We then account for the internal noise with the parameter
values of γx=5.215 and K=4.924. From Fig. 3 one can see the
time series of CLE (Eq. (4)) with three different system sizes.
When the system size is comparatively large (V=104), if we
choose initial concentration at 0.0, the system oscillates near the
lower branch (Fig. 3 left bottom). When the system size
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becomes smaller (V=100), the internal noise becomes larger,
and the state-to-state transitions become more regular (Fig. 3
left middle). And when the system size becomes very small
(V=10), the internal noise is too large, the transition becomes
highly irregular (Fig. 3 left top), although its amplitude is
relatively large.

It is well known that the amplitude of a biological oscillation
is very important. From Fig. 3 one can see intuitively that the
average amplitude of the time series of V=10 and V=100 is
larger than that of V=104. We calculate the average amplitudes
of different system sizes and show results in Fig. 4. One can see
that the amplitudes decrease gradually with the increment of the
system size.

From Fig. 4 one can see that the average amplitude of V=10
is a little larger than that of V=100, but in Fig. 3, the time series
of V=10 is more irregular than that of V=100. We need to
import another quantity to depict the regularity. Here we
introduce the autocorrelation function C(τ). For a given time
series, one can calculate the autocorrelation spectrum (Fig. 3
right), from which one can obtain the value of autocorrelation
time τ. The autocorrelation functions of different system sizes
are plotted in Fig. 3 right. One can see that the autocorrelation
time τ is very short for V=10, while are quite long for V=100
and V=104. To consider the amplitude and autocorrelation time
of different system size simultaneously, we use an order
parameter R=A2 ·τ. The dependencies of R on different system
sizes are plotted in Fig. 5. From Fig. 5 one can see that with the
increment of system size, R reaches a maximum at about
V=100, which shows some resonance effect. Since the effect is
caused by internal noise, it can also be regarded as an internal
noise stochastic resonance (INSR) effect. Through the mech-
anism of INSR, we make the coupled networks work as an
engineered stochastic resonator.

Cells are intrinsically noisy biochemical reactors: low
reactant numbers can lead to significant static fluctuations in
molecule numbers and reaction rates. The internal noise may
lead to abundant stochastic behavior of gene expression
process, which takes place within a single cell. Our study
may suggest that the cellular internal noise, mainly coming from
chemical circuit nature of gene network, would influence the
cell's behavior to some content. Previous studies on genetic
regulatory networks often view noise as a nuisance, so the
regulatory mechanisms need to show robustness or resistance to
random noise. However, in this work, by the mechanism of SR,
the internal noise can induce oscillation with an amplified
amplitude and regularity, as a result of the state-to-state
transitions of the bistable switch. Our results may approve a
view that environmental stimulus and internal noises couple
together and may determine the behavior of a genetic system.

The second term of the CLE, the system size and reaction
rates, corporately determine the magnitude of the internal noise.
Therefore the internal noise SR is also some kind of system size
resonance. From Fig. 5 one can see the performance of the state-
to-state transition oscillation is optimal in V ∼102. Since the
optimal system size exists in the present model, the biological
organism may learn to adjust the kinetic parameters to make it
work at an optimal size. Since the genetic regulation is a topic of
central importance in biology, the internal noise SR and optimal
system size effect are also remarkable. The next question is how
biological organisms use this advantage to play functional roles
in gene expression and other cellular processes. In addition,
there are many genes in cell, not only two. Simple switch or
oscillator cannot capture the main dynamic characteristics of all
genes. One may resort to some new approaches such as
complex networks or neural networks. What complex behaviors
could be discovered through considering all genes? Further
experimental and theoretical work will be of great help to
answer these questions.

4. Conclusion

In the present letters, we have constructed a mesoscopic
stochastic model for the coupled synthetic gene network, and
studied how internal noise would influence the oscillation of
such a system. We found that the state-to-state transitions can
occur if the internal noise is taken into account, and the
performance of resulting oscillation can reach a maximum in a
certain internal noise level, which indicates the occurrence of
internal noise stochastic resonance (SR) and makes the coupled
gene network work as a stochastic resonator.
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