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Abstract. In this work, the authors construct a pair-approximation (PA) mean-field theory
(MFT) for the dimer–dimer–monomer surface reaction model proposed by E V Albano. We find
that PA-MFT can yield predictions which are qualitatively and quantitatively in good agreement
with the Monte Carlo simulation results. We conclude that PA-MFT may be suitable to describe
these kinds of lattice-gas models and it is likely to make predictions using PA-MFT ahead of
Monte Carlo simulation.

1. Introduction

Recently, the subject of reaction kinetics and irreversible phase transitions (IPTs) in
surface catalysis has gained growing attention. Since one lacks a general theory to study
nonequilibrium phase transition, great efforts have been concentrated on Monte Carlo
simulations (MCS) and corresponding theoretical descriptions for particular models. The
simplest model is the monomer–monomer (MM) model [4–12],A + B → 0, for which a
single first-order critical point exists aty1A = 1

2, such that foryA < y1A (yA > y1A)(here
yA denotes the normalized rate of arrival and subsequent sticking coefficient ofA-species,
which is proportional to the mole fraction ofA-species in the gas phase), the surface
is poisoned byB- (A-)species, respectively. Inspired by the carbon monoxide oxidation
CO+ 1

2O2→ CO2 on a catalyst surface, the dimer–monomer (DM) modelA+ 1
2B2→ AB

(A andB2 correspond to CO and O2, respectively) has been extensively studied by means
of various techniques ever since the work of Ziff, Gulari and Barshad (so the DM model
is also known as the ZGB model) [13–32]. There exist two IPTs for this model, one of
second order aty1A ' 0.391 and the other of first order aty2A ' 0.525, between which is a
reaction window where sustained reaction occurs. The counterpart of the dimer–dimer (DD)
[33–36] model,1

2B2 + C2 → BC2, in real systems is the catalytic oxidation of hydrogen
(B2 (C2) corresponds to O2 (H2) respectively). A first-order phase transition exists at the
stoichiometric valuey1c = 2

3. Based on these models Albano [1–3] studied two multiple-
reaction models: one is the dimer–monomer–monomer (DMM) model [37–38] which is
the combination of the DM model and the MM model, and the other is the dimer–dimer–
monomer (DDM) [1–3] model which combines the DM model and the DD model and
will be studied in this work. Although neither of these two models represents any specific
real reaction system, they are helpful to study the influence of contaminants on the critical
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behaviour of the well known IPTs characteristic of the MM, the DM and the DD models.
Furthermore, they also exhibit rich critical behaviours, i.e. they both have a continuous set
of both first- and second-order IPTs.

Some theoretical approaches [14, 15, 18, 24, 26–28, 30–34] have also been proposed to
study these kinds of IPTs. Among these approaches, mean-field theory (MFT) within pair
approximation (PA), proposed by Dickman [15, 18] can qualitatively well reproduce the
phase diagrams and even quantitatively yield correct predictions of the first-order IPT values
for the ZGB model. In our previous works, we have adopted PA-MFT to some variants of
the ZGB model [30], the (extended) DMM model [38] and the DD model [36]. Dumontet al
has used PA-MFT to study the isotopic exchange surface reaction [32]. It is found that PA-
MFT also shows good agreement with MCS for these models. Note that these models are
all based on the Langmuir–Hinshelwood (LH) mechanism, i.e. all reactants are adsorbed on
the surface. Different species adsorbed on adjacent pairs of sites react instantaneously such
that each reaction step concerns two nearest-neighbour (NN) sites; on the other hand, the
adsorption of a dimer also needs a pair of adjacent empty sites. Therefore NN correlation
plays a very important role in these surface reaction models, and PA-MFT, which takes
into account NN correlation, can reasonably describe the steady state behaviours of these
models.

In this work, we shall construct a PA-MFT for the DDM model. For comparison, we
have also performed MCS. The aim of this work is to study the critical behaviour of the
IPTs characteristic of this multiple-reaction model by a theoretical approach and further
demonstrate the validity of PA-MFT. One notes that MCS often needs a large amount of
computing time due to the use of a large lattice and critical slowing down [1] in the vicinity
of IPTs. As an example, the CPU time required to obtain a single point in figure 1(a) is
about 2.5 h using a lattice of sideL = 150. Evaluation of the critical points, such as those
shown in figure 3 (broken line), need much more time and typically requires about 20 h of
CPU time per single point. However, using PA-MFT, one only needs about 1.5 h to obtain
a single point in figure 3 (full line). Thus, it may be more convenient to use PA-MFT to
predict some interesting characters of the extended DDM model, such as the influence of
diffusion, desorption, finite reaction probability [31] and so on, rather than MCS.

The DDM model is based on the LH mechanism and it is assumed the reaction occurs
according to the following steps:

A(g)+ S → A(a) (1a)

B2(g)+ 2S → 2B(a) (1b)

C2(g)+ 2S → 2C(a) (1c)

A(a)+ B(a)→ AB(g)+ S (1d)

B(a)+ C(a)→ BC(a)+ S (1e)

BC(a)+ C(a)→ BC2(g)+ 2S (1f)

where S denotes an empty site, (a) and (g) refer to the adsorbed and gaseous species,
respectively. Equations (1a), (1b) and (1d) correspond to the ZGB model and equations (1b),
(1c), (1e) and (1f ) correspond to the DD model.

In the simulation, the catalyst surface is modelled by a two-dimensional square lattice
using periodic boundary conditions. In each simulation step,A, B2 andC2 are selected
at random with probabilityyA, yB and yC (yA + yB + yC = 1), respectively. Note that a
selected dimer needs two adjacent empty sites for adsorption. After a successful adsorption
of each species, the neighbourhood is checked for reactions (1d–f ). A random decision
is made when more than one reaction path is possible, but reactions (1d) and (1f ) take
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Figure 1. Phase diagrams foryC = 0.0005 obtained from MCS and PA-MFT. ——(full square):
θA; · · · · · ·(full circle): θB ; – – –(down triangle):θBC . (a) For MCS the two IPTs exist at
y1A = 0.3825 andy2A = 0.446. (b) For PA-MFT y1A = 0.243 andy2A = 0.457.

precedence over reaction (1e). After a reaction step, the productsAB(g) andC2B(g) are
removed from the surface immediately. For more details of the simulation algorithm, see
the descriptions of both the ZGB model [13] and the DD model [33–35].

2. Pair approximation for the DDM model

According to PA-MFT, one should derive the equations of motion for the pair-concentrations
xij . For the DDM model,ij can be of typeSS, AS, BS, CS, DS, AA, BB, CC, DD,
AC, AD andBD (from now on, we often useD to representBC(a)-species for the sake
of convenience). It is useful to distinguish between the processes happening on the surface
according to their different rates and different contributions to the pair-change numbers
(PCNs)1Nij . Furthermore, one has to distinguish both between subprocesses leading to
different PCNs and between different configurations which might lead to a given process.
In this work, we divide the processes into the following three groups:

(1) A-adsorption and following reaction;
(2) B2-adsorption and following reaction;
(3) C2-adsorption and following reaction.
In table 1, we list the subprocesses and their rates. Accordingly the PCNs are presented

in table 2. The processes are distinguished between each other according to the following
facts: forA-adsorption, one just needs to check its neighbourhood forB to account for
reaction (1d); for B2-adsorption, since adsorbedB-species can react either withC or with
A and reaction (1d) takes precedence over (1e), one must first decide if there existA-
species in the neighbourhood of theSS-pair whereB2 adsorbs to account for reaction (1d),
and if not, check forC-species for reaction (1e) and possible further reaction (1f ). The
case ofC-adsorption is similar as that ofB2. The diagrams in table 1 give examples of
the initial configurations of a given subprocess and the notes can help understanding the
expressions of the rates. Note that for subprocess (2b), theC-species and theSS-pair can
be on the same line (not shown in table 1) or not (shown there) for which the rate is1

3R
2b
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and 2
3R

2b, respectively. This factor must also be considered in the calculation of1Nij , e.g.
for subprocess (2b),

1N
(2b)
ij = 1

31Nij (S S C)+ 2
31Nij

(
S S

C

)
as it is shown in table 2. The other subprocesses are treated in a similar way. For more
details of the derivation of the PCN, see [15, 18, 30–32].

The equations of motion read

dxij
dt
=
∑
k

1N
(k)
ij · R(k) (2)

whereR(k) are presented in table 1. The reaction rates ofAB(g) andC2B(g) are

RAB = R1b + R2g + R2h + R2i + 2R2j (3a)

RC2B = R2d + R2e + 2R2f + R2i + R3d + R3e + 2R3f . (3b)

Performing numerical integration of equation (2), one can readily obtain the phase
diagram and IPT values of the DDM model. After the system reaches the steady state, the
reaction rates can be calculated by equation (3). Note that the IPT values may depend on
the choice of initial condition for equation (2). As reported in previous works [15, 30], for
the ZGB model, PA-MFT obtains a second-order IPT aty1A = 0.2487 and a ‘spinodal’
point at ysA = 0.561 when the system evolves from an initially empty lattice. When
the lattice is initially half-empty and half-saturated byA, the first-order IPT is located at
y2A = 0.524 which is in correct agreement with the MCS result 0.525. The discrepancy of
y1A between PA-MFT and MCS is due to the long correlation length near the second-order
IPT, while, according to Evans [18, 19], the discrepancy betweenysA andy2A results from
the ‘metastability’ of the system in the intervaly2A < yA < ysA. Our recent study shows
that the occurrence of metastability may be due to fluctuations in MCS [39]. In the present
work, we do not study the effect of the initial condition and the IPT values are all obtained
from an initially empty lattice.

2.1. A+ 1
2B2→ AB in the presence ofC2

If yC = 0, the DDM model reduces to the ZGB model, which exhibits two IPTs at
y1A ' 0.391(second order) andy2A ' 0.525(first order), such that foryA < y1A (yA > y2A)

the surface becomes poisoned byB- (A-)species, respectively. From MCS we find that,
however, a very small contaminant ofC-species, e.g.yC = 0.0005, reducesy2A drastically
to y2A ' 0.446, while the second-order IPT is slightly shifted toy1A ' 0.3825. Both above
y2A and belowy1A, the poisoned state differs from the ZGB model. Within the poisoned
state, foryA < y1A, B are the majority species but traces ofBC are also adsorbed; and for
yA > y2A, one also hasBC-intermediates with a considerable coverage (θBC ' 0.2 close to
y2A). Within the reaction regime, the coverage ofBC is nearly a constant:θBC ' 0.19. The
phase diagram foryC = 0.0005 is shown in figure 1(a). The simulation results obtained
here are in agreement with that obtained by Albano.

Setting yC = 0.0005 and performing numerical integration of equation (2), one can
find two IPTs atym1A = 0.243 andymsA = 0.457 (the superscript ‘m’ corresponds to MFT
value) compared with PA-MFT results for the ZGB model:ym1A = 0.2487 andymsA = 0.561.
Although the sharp reduction ofy2A obtained by MCS is rather surprising, one sees that it
can be well reproduced by PA-MFT. In addition, the value ofym1A is only slightly left-shifted,
which is also in good agreement with MCS. Another character of MCS is also reproduced.
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Figure 2. Phase diagram foryA = 0.05 obtained from MCS and PA-MFT. ——(down triangle):
θA; – – –(full circle): θB ; · · · · · ·(full square): θC ; — · —(up triangle): θBC . (a) For MCS
y1C = 0.566 (second order) andy2C = 0.592 (first order). (b) For PA-MFT y1C = 0.544 and
y2C = 0.593.

Within the reaction regime,θmBC is about 0.21 which is in agreement with the MCS value
0.19. The phase diagram obtained from PA-MFT foryC = 0.0005 is shown in figure 1(b).
The consistency between figures 1(a) and (b) is rather apparent.

2.2. 1
2B2+ C2→ BC2 in the presence ofA

If yA = 0 the DDM model reduces to the DD model which has a first-order IPT at the
stoichiometric valuey1C = 2

3 such that foryC < y1C (yC > y1C) the surface becomes
poisoned by a binary compound ofB- andBC-species (C-species) respectively. One should
note that in the poisoned state the total surface coverage is not 1 butθB + θBC ' θC ' 0.9.
The reason is that the dimer requires adjacent pairs of empty sites for the adsorption.

The presence of monomersA in the gas phase leads to the occurrence of a finite width
reaction window. For example, foryA = 0.05 we obtain a second-order IPT aty1C ' 0.566
and a first-order IPT aty2C ' 0.592 by MCS. Within the poisoned state, foryC < y1C , the
surface is still poisoned by a binary compound ofB- andBC-species but nowθB+θBC ' 1
because the presence ofA-monomers provides a mechanism for the creation of NN empty
sites to adsorb dimers, i.e. adsorbedA can react with solitary adsorbedB or C. For
yC > y2C , the poisoned state is mainly composed of three species withθC � θA > θBC .
The phase diagram obtained from MCS, foryA = 0.05, is shown in figure 2(a).

Using PA-MFT, we findym1C = 0.544 andym2C = 0.593 for yA = 0.05 which are in
reasonable agreement with the MCS results. The phase diagram obtained by PA-MFT is
presented in figure 2(b). One can see that the main qualitative features in figure 2(a) are
well reproduced.

2.3. Critical behaviour of the DDM model

ScanningyA or yC , the whole range of critical values can be determined and the DDM
model shows a crossover from two IPTs charateristic of the DM model (yC = 0) to a first-
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Figure 3. The whole range of critical values obtained from MCS (full lines) and PA-MFT
(broken lines). The full circles correspond to first-order IPTs and the open circles to second-
order IPTs. The MCS values are mainly drawn from [1].

order IPT of the DD model (yA = 0). In figure 3 we show the whole range of critical values
obtained by MCS (full lines) and PA-MFT (broken lines). Note that some of the MCS points
are drawn from [1]. The open circles denote first-order IPTs from the reactive regime to a
poisoned state withA + C + BC, and the full circles represent second-order IPTs from a
poisoned state withB + BC to the reactive regime. With increasingyC in the gas phase,
the reactive window characteristic of the DM model becomes increasingly narrow until the
two IPTs coincide with each other at the first-order IPT point for the DD modely1C = 2

3.
MCS and PA-MFT are qualitatively in good agreement. On the other hand, one can see
that PA-MFT predicts a much wider reaction window than MCS. The drastic left-shift of
y1A predicted by PA-MFT results from the large correlation length near the second-order
IPT which leads to the breakdown of PA. The overestimation of the first-order IPT values
is due to the occurrence of metastability resulting from fluctuations as mentioned above.

3. Conclusion

In this work, we have constructed a PA-MFT method to study the critical behaviour of the
DDM reaction model. We find that PA-MFT can well reproduce the phase diagram obtained
by MCS and can yield quite good predictions of the influences of the contaminants on the
IPTs characteristic of the DM model and the DD model. Our work further demonstrates
the validity of PA-MFT on these kinds of lattice-gas models. Since MCS often needs a
large amount of computing time due to the use of a large lattice and averaging over many
independent runs, we can use this method to study some variants of the DDM model or
other interesting multiple-reaction models, e.g. to account for surface diffusion, desorption,
finite reaction probability, lateral interaction, and so on. One expects that some interesting
predictions can be made ahead of MCS.
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