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Abstract. The effects of internal noise in mesoscopic chemical oscillation
systems have been studied analytically, in the parameter region close to the
deterministic Hopf bifurcation. Starting from chemical Langevin equations,
stochastic normal form equations are obtained, governing the evolution of the
radius and phase of the stochastic oscillation. By stochastic averaging, the normal
form equation can be solved analytically. Stationary distributions of the radius
and auto-correlation functions of the phase variable are obtained. It is shown that
internal noise can induce oscillation; even no deterministic oscillation exists. The
radius of the noise-induced oscillation (NIO) becomes larger when the internal
noise increases, but the correlation time becomes shorter. The trade-off between
the strength and regularity of the NIO leads to a clear maximum in its signal-
to-noise ratio when the internal noise changes, demonstrating the occurrence
of internal noise coherent resonance. Since the intensity of the internal noise
is inversely proportional to the system size, the phenomenon also indicates the
existence of an optimal system size. These theoretical results are applied to a
circadian clock system and excellent agreement with the numerical results is
obtained.
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1. Introduction

In recent years, the effects of internal molecular noise in small-scale chemical reaction systems,
where the number of reactant molecules can be low, have gained much attention [1]–[22].
Though noise may be viewed as nuisance at the first glance, more and more studies show
that it can also play counterintuitive constructive roles, especially near some kind of critical
points in nonlinear systems. Specifically, for mesoscopic chemical oscillation systems, internal
noise can induce stochastic oscillation, in the dynamic parameter region outside but close to the
deterministic oscillatory region [3, 4]. In addition, the effective signal-to-noise ratio (SNR) of
the noise induced oscillation (NIO) shows a clear maximum when the noise intensity changes,
which has been well known as internal noise coherent resonance (INCR) [5]–[13]. Since the
magnitude of the internal noise is proportional to 1/

√
V, whereV denotes the system size, the

above phenomenon was also called system size resonance (SSR). Since oscillatory dynamics is
of ubiquitous importance in nature, such a behavior may find wide applications in a variety
of systems, such as calcium signaling [14], ion-channel gating [15], gene expression [16]
and circadian oscillation [17]–[19] taking place in subcellular spaces, as well as catalytic
reactions on the surface of nanoparticles or single crystals [20]–[22]. Most of the studies are
based on numerical simulations; however, the common mechanism of such behaviors is still
unknown to us.

In the present paper, we have developed a theory to understand the NIO and INCR. We
notice the fact that they all happen close to the Hopf bifurcation (HB) point of the deterministic
system, indicating that some common features of HB must be relevant. Based on the bifurcation
theory of vector fields, the behavior of the system near HB can be described by a normal
form equation on a two-dimensional (2D) center manifold [23]. Starting from the chemical
Langevin equations (CLEs) recently proposed by Gillespie [24], a stochastic normal form
equation is obtained near the HB. Thanks to the method of stochastic averaging, the stochastic
normal form can be solved analytically, giving the exact expression of the most probable radius
rs, auto-correlation timeτc, and SNR of the NIO. When the system sizeV decreases (the
internal noise increases),rs increases monotonically, i.e. the NIO becomes stronger, whileτc

decreases monotonically, indicating that the NIO becomes less correlated in time. To a good
approximation, the effective SNR equals to(rsτc)

2, which undergoes a clear maximum at an
optimal system sizeVopt. This analysis gives a general picture of the effect of internal noise near
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the HB: it destroys the regularity of the oscillation induced by itself. The ‘trade-off’ between
the strength and regularity of the NIO leads to the resonance phenomenon.

The paper is organized as follows. Section2 gives the theory. In section3, we apply the
theory to a circadian clock system. Discussions and conclusions are drawn in section4.

2. The theory

2.1. The CLE

Consider homogeneous chemical reactions involvingN species andM reaction channels taking
place in a small volumeV ,

N∑
i =1

ν<
iρ Xi −→

kρ

N∑
i +1

ν>
iρ Xi , (i = 1, . . . , N; ρ = 1, . . . , M). (1)

Each reaction channelρ changes the integer numbers ofXi ∈ N of molecules of the speciesi
by an amount equal to the stochiometric coefficient

νiρ ≡ ν>
iρ − ν<

iρ. (2)

The transition rate associated with each reaction reads,

Wρ ({Xi }) = V kρ

N∏
i =1

Xi !(
Xi − ν<

iρ

)
!

1

V ν<
iρ
. (3)

It is now generally accepted that internal fluctuations, resulting from stochasticity of the
discrete reaction events, become considerable in small systems. Generally, one may view the
reaction as a Markovian stochastic process, and the system’s dynamics can be described by a
master equation ruling the evolution of the probabilityP({Xi }, t) for the system in state{Xi } at
time t :

∂t P ({Xi }, t) =

M∑
ρ=1

[
Wρ

({
Xi − νiρ

})
P
({

Xi − νiρ

}
, t
)
− Wρ({Xi }) P({Xi }, t)

]
. (4)

Very recently, Gillespie argued that if some kind of ‘macro-infinitesimal time scale’ exists
in the system, the master equation can also be approximated by a CLE [24]. Generally, if the
system size is not too small, such a condition is expected to be fulfilled and the CLE works,
at least in a qualitative manner. In practice, the CLE is much faster for computer simulation,
and based on some previous studies [3, 4], the CLE showed rather good agreement with exact
simulation methods of the master equation. For the reaction network (1), the CLE reads,

dXi (t)

dt
=

M∑
ρ = 1

νiρWρ(X(t)) +
M∑

ρ = 1

νiρ

√
Wρ(X(t))ξρ(t) (i = 1, . . . , N). (5)

Here ξρ = 1,2,...,M(t) stand for independent Gaussian white noise with〈ξρ(t)〉 = 0 and
〈ξρ(t)ξρ′(t ′)〉 = δρρ′δ(t − t ′). If the molecule population is not too small, one may approximately
write the transition rate as

Wρ ({Xi }) ' V · wρ ({Xi }) ≡ V · kρ

N∏
i =1

x
ν<

iρ

i , (6)
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wherexi = Xi /V is the concentration of thei th species. Hence the CLE (2) changes to,

dxi (t)

dt
=

M∑
ρ = 1

νiρwρ({xi }) +
1

√
V

M∑
ρ = 1

νiρ

√
wρ({xi })ξρ(t) (i = 1, . . . , N). (7)

It is clear that in the thermodynamic limitV → ∞, one recovers the deterministic equation for
reactions (1),

dxi (t)

dt
=

M∑
ρ=1

νiρwρ({xi }) ≡ Fi ({xi }). (8)

Therefore, the second term on the right-hand side of equation (7) stands for the ‘internal noise’,
the magnitude of which is proportional to 1/

√
V . Also note that the internal noise is coupled

into the system’s dynamics in a multiplicative manner, and each reaction channel involves an
independent Gaussian white noiseξρ(t). Equation (7) will be the starting point of our following
analysis.

One should note that there are certain limitations on the use of the Langevin approach.
As stated above, Gillespie emphasized the existence of a ‘macro-infinitesimal’ time scale
for the validity of CLE. This condition cannot always be true in real systems such that the
predictions of the CLE could show apparent discrepancies with the experiments or simulation
results. For instance, in the case of the propagation of chemical fronts into an unstable state,
the Langevin method predicts that the correction to the front speed is positive and scales as
V−1/3 [25], while microscopic simulation and master equation approaches demonstrated that
the correction is negative and scales as(lnV)−2 [26]. One should also note that Gillespie’s
version of the Langevin equation for mesoscopic chemical reactions was not the first one, as
also stated in Gillespie’s paper [24], and it is associated with the second order truncation of the
Kramers–Moyal expansion for the reaction scheme [27]. Despite these limitations, however, the
agreements with numerical simulations in the present work indicate that the CLE is valid to
study the phenomenon of NIO and INCR, even in some quantitative manner.

2.2. Stochastic normal form

As stated above, we are interested in the effects of noise for parameter regions close to the
supercritical HB of the deterministic system (8). We denote the control parameter byµ and
the HB by µc. Without losing generality, we assume that oscillation happens forµ> µc.
According to the Hopf theorem [28], the Jacobi matrix(J)i j = ∂Fi ({xi })/∂x j has a pair of
conjugate eigenvaluesλ± = α ± iω for µ ' µc, with α < 0(>0) for µ < µc(> µc). The other
N − 2 eigenvalues ofJ all have strictly negative real parts with absolute values considerably
larger than 0. Hence near the HB, all thoseN − 2 modes will relax much faster, and the system’s
dynamics will be dominated by the slow motion on a 2D manifold tangent to the subspace
spanned by the eigenvectors ofλ±. Then by variable transformation, one can define a complex
amplitudeZ, which obeys the following ‘normal form’ equation,

dZ

dt
= (α + iω) Z + (Cr + iCi ) |Z|

2Z, (9)

whereCr andCi are constants determined by the nonlinear terms inFi = 1,...,N({xi }). We consider
that the HB are supercritical, such that the oscillation is stable andCr < 0.
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The linear transformation from the vectorx = (x1, . . . , xN) to Z is as follows. First,
calculate the eigenvectoru+ of λ+ = α + iω, normalize u+ so that its first nonvanishing
component is 1. Then, construct a matrixT= (Reu+, −Im u+, r3, . . . , rn), where(r3, . . . , rn)

are any set of realn-vectors which span the union of the generalized eigenspaces for
(λ3, . . . , λn). Finally, perform the change of variablesx = xs +Ty, wherexs = (xs1, . . . , xsN)

is the fixed point of equation (8), i.e. Fi = 1,...,N({xsi}) = 0, andy = (y1, . . . , yN) is a new state
vector. The result isZ = y1 + iy2. These steps are standard and one may turn to [28] for details.

We now turn to the CLE (7) which includes the internal noise terms. Due to the presence of
noise, one should be careful during the variable transformation. One notes that to be consistent
with the master equation, equation (7) must be interpreted in the Ito manner. To facilitate the
variable transformation, one should first transform it into a Stratonovich form, which allows for
normal calculus [27]:

dxi

dt
= F ′

i ({xi }) +
1

√
V

M∑
ρ = 1

νiρ
√

wρ ◦ ξρ(t), (10)

where◦ stands for the Stratonovich interpretation, and

F ′

i ({xi }) = Fi ({xi }) −
1

4V

N∑
j = 1

 M∑
ρ = 1

νiρν jρ
∂wρ

∂x j

. (11)

It is clear that the difference resulting from this transformation is of the order of 1/V .
Although the physical concept should be clarified here, qualitatively, this small correction can
be neglected. We thus will simply setF ′

= F in equation (10) in the following analysis.
For the deterministic part of equation (10), we can then follow the standard procedure to

get the normal form. During this process, the noise terms also undergo a linear transformation.
After some tedious but not difficult manipulation, one finally obtains the following ‘stochastic
normal form’ [ 29] for Z,

dZ

dt
= (α + iω) Z + (Cr + iCi ) |Z|

2Z +
1

√
V

∑
ρ

(
ν̃1ρ + iν̃2ρ

)√
wρξρ(t). (12)

Herein, coefficients̃ν1ρ and ν̃2ρ are the elements of the transformed stochiometric matrix
(ν̃)iρ = (T−1ν)iρ. Writing Z = r eiθ , wherer andθ can be viewed as the amplitude and phase
of the oscillation respectively, we have,

dr

dt
=
(
αr + Cr r

3
)

+
1

√
V

∑
ρ

χrρ ◦ ξρ(t),
dθ

dt
=
(
ω + Ci r

2
)

+
1

√
V

∑
ρ

χθρ ◦ ξρ(t), (13)

whereχrρ = (ν̃1ρ cosθ + ν̃2ρ sinθ)
√

wρ andχθρ = (−ν̃1ρ sinθ + ν̃2ρ cosθ)
√

wρ/r .
In the vicinity of the supercritical HB (|α| � 1), the time scale forr and θ can be

separated. This fact makes it possible to use the ‘stochastic averaging’ procedure [30], which
can approximate the system as Markov processes in the long time limit. Consequently, one can
approximate equation (13) by the following Ito stochastic differential equations:

dr

dt
=

[
αr + Cr r

3 +
K (r )

V

]
+

εr
√

V
ξr (t) ,

dθ

dt
=

[
ω + Ci r

2 +
K (θ)

V

]
+

εθ

r
√

V
ξθ(t), (14)
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where

K (r ) =
1

2π

∑
ρ

∫ 2π

0
dθ
(
χrρ∂r χrρ +χθρ∂θχrρ

)
,

(15)

K (θ) =
1

2π

∑
ρ

∫ 2π

0
dθ
(
χrρ∂r χθρ +χθρ∂θχθρ

)
,

resulting from the coupling betweenr and θ . ε2
r =

∑
ρ

∫ 2π

0 χ2
rρdθ/2π and ε2

θ/r 2
=∑

ρ

∫ 2π

0 χ2
θρ dθ/2π are the averaged noise intensities associated with the two ‘new’ independent

Gaussian white noisesξr andξθ . Note that we can expand the reaction rateswρ in the following
way (because the state variablex is related tor andθ via the linear transformation),

wρ =

n∑
k + l = 0

w(kl)
ρ (r cosθ)k (r sinθ)l . (16)

If the reactions are ‘elementary’ processes and assuming the validity of the mass-action law,
n will be the maximal ‘order’ of the reactions which is usually not greater than 3. Sometimes
the reactions in equation (1) are combined from many elementary steps via quasi-steady state
approximation and the mass-action law does not hold,n could be arbitrary. However, sincer
is small near the HB, only a few leading terms contribute towρ. Substituting equation (16)
into (15), we can easily find thatK (θ) is zero and only those coefficients with evenk + l have
nonzero contributions toK (r ), ε2

r andε2
θ . The latter ones all have the formε2 +

∑(kl)
γ (kl)r k+l ,

where the summation runs over terms with evenk + l only, γ (kl) are constants determined by
w(kl)

ρ and

ε2
=

∑
ρ

(
ν̃2

1ρ + ν̃2
2ρ

)
w(00)

ρ /2. (17)

For small internal noise level,r 2
� 1 and it is a good approximation to neglect the terms with

k + l > 2. Therefore, equations (14) finally reduce to a rather simplified form,

dr

dt
=

(
αr + Cr r

3 +
ε2

2Vr

)
+

ε
√

V
ξr ,

dθ

dt
=
(
ω + Ci r

2
)

+
ε

r
√

V
ξθ . (18)

We may call this equation the ‘stochastic averaged normal form equation(SANFE)’ of the
CLE (7).

2.3. NIO and coherent resonance

The SANFE already shows new features of the system’s dynamics. In the first equation, a ‘new’
deterministic termε2/2Vr appears, which vanishes in the macroscopic limitV → ∞. Even
for α < 0, where no oscillation happens in the macroscopic system, one can still have nonzero
solution forαr + Cr r 3 + ε2/2Vr = 0, which is

rs =

[(√
α2 − 2Cr ε2/V +α

)
/(−2Cr )

]1/2
. (19)

Therefore, some kind of oscillation happens that is ‘induced’ by the internal noise, say, NIO.
In addition to a finite system sizeV , it is shown that a nonzerow(00)

ρ is also necessary for
the occurrence of NIO. This is always true for chemical reactions with nonzero steady state
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concentrationsxs. Therefore, NIO is a ‘universal’ behavior for mesoscopic chemical systems
staying outside, but close to, the deterministic supercritical HB.

From the SANFE, we can readily write down the Fokker–Planck equation for the
probability distribution function ofr ,

∂t p(r, t) = −∂r

[(
αr + Cr r

3 +
ε2

2Vr

)
p

]
+

ε2

2V
∂2

r p. (20)

By setting∂t Ps(r, t) = 0, we can get the stationary distribution function

ps(r ) = C0r exp

(
2αr 2 + Cr r 4

2
(
ε2/V

) )
, (21)

whereC0 is a normalization constant.ps(r ) has a maximum atr = rs, hence in the stationary
state, the system will most probably stay around the noise-induced limit cycle. Approximately,
we may then replacer 2 andr −1 in the second equation of (18) by r 2

s andr −1
s respectively.θ is

then Gaussian distributed with mean and variance,

〈θ(t)〉 =
(
ω + Ci r

2
s

)
t ≡ ω1t,

〈
θ(t)2

〉
− 〈θ(t)〉2

2
=

ε2

2Vr2
s

t ≡
1

τc
t. (22)

Using 〈eiθ
〉 = ei〈θ〉−[〈θ(t)2

〉−〈θ(t)〉2]/2 for Gaussian random variable [27], and after some
straightforward mathematical manipulations, we can get the auto-correlation function (ACF)
for cosθ as following,

Cθ (τ ) = lim
t→∞

〈cosθ(t) cosθ (t + τ)〉 =
1
2 cos(ω1τ) exp(−τ/τc) . (23)

The ACF is a typical damped oscillation, with frequency given byω1 and correlation time given
by τc. As for the ACFC(τ ) of the state variabley1 ' r cosθ , we can simply multiplyCθ(τ ) by
r 2

s , to keep the leading term (one can also keep the terms of higher order, but that only lead to
minor quantitative correction and is not necessary). By Fourier transformation ofC(τ ), we can
get the power spectrum density (PSD),

PSD(ω) = 2
∫

∞

0
C(τ )e−iωτdτ =

r 2
sτc

1 +(ω − ω1)
2 τ 2

c

, (24)

which has a Lorenzian-like form. Clearly, the PSD has a peak atω = ω1, whose heightH and
half-height width1ω are given by

H = r 2
sτc, (25)

1ω = 1/τc. (26)

In the literature, the performance of the NIO is often characterized by the effective SNR,
which is defined as the peak height divided by the half width [4], hence,

SNR= H/1ω = (rsτc)
2
= 4r 6

s V2/ε4. (27)

It is easy to verify that∂rs/∂V < 0 and∂τc/∂V > 0. Therefore, when the internal noise level
increases (system sizeV goes small), the amplitude of the NIO becomes larger, while the
correlation time decreases. In other words, the strength of the NIO is enhanced, but the regularity
is reduced. One may expect that for some optimal system sizeV , the ‘trade-off’ between the
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strength and regularity of the NIO gives a maximal SNR. By∂(SNR)/∂V = 0, the optimal
system size reads,

Vopt =
−Cr ε

2

4α2
. (28)

It is interesting to note that at this optimal size, the radiusrs of the NIO fulfill the equality
(αrs = Cr r 3

s )V=Vopt i.e. the linear and nonlinear terms contribute equally to the evolution ofr in
the original deterministic normal form equation.

We conclude that the above procedures apply to any reaction system with supercritical
HB. One can just follow some easy steps to use the theory. To begin, write down the
deterministic dynamics equation and find the HB by use of any convenient bifurcation software
or just computer simulation, put your control parameter close to the HB but in the steady
state region. Then, calculate the eigenvectors of the Jacobi matrix, which can be easily
done by Matlab or self-written codes. After that, construct the transformation matrixT =

(Reu+, −Im u+, u3, . . . , uN), and calculate the matrix̃ν = T−1ν; this gives the values̃ν1ρ and
ν̃2ρ for ρ = 1, 2, . . . , M . Finally, equations (21)–(28) give the final results.

Before ending this section, we would like to emphasize that the stochastic normal form
and averaging procedure have been used to study many stochastic dynamic systems in the
literature ([29] and references therein). Nevertheless, no studies so far have considered the
behavior of NIO and INCR. An important point is that our study is based on a real chemical
reaction system, rather than a general mathematical model. Recalling the procedures above, we
know that the termε2/2Vr plays the key role for NIO and INCR. Based on the expression
ε2

=
∑

ρ(ν̃
2
1ρ + ν̃2

2ρ)w
(00)
ρ /2, this term will be exactly zero if the equilibrium pointsxs are zero.

For chemical reactions,xs stand for steady state concentrations of some species and cannot
be zero. This is why NIO and CR were not reported in some literature regarding stochastic
perturbed HB like [31], because a zero fixed point was assumed ‘without loss of generality’
therein and the only consequence of noise was a slight shift of the Hopf point. Therefore, our
analysis reveals that NIO and INCR are features of real chemical oscillating systems rather than
of an arbitrary mathematical model.

3. Application to circadian clock system

In this section, we will apply our theory to a circadian clock system. Most living organisms use
circadian clocks to keep an internal sense of daily time and adapt their behavior accordingly. It
is now known that the circadian clock system is regulated by a gene network on the molecular
level, such that internal noise must be considered. Actually, many studies have been made of this
issue, but most works so far have assumed that the internal noise is destructive and they mainly
focus on the robustness or resistance of circadian oscillations to such internal noise. Back in
1963, Goodwin had considered the effect of intrinsic noise in genetic oscillator models and he
noted that a minimum number of molecules was required for the clock robustness [32]. In [33],
Gaspard performed a theoretical study on the robustness of mesoscopic chemical clocks, and
he found that a minimum number of molecules is required for the mesoscopic oscillations to
remain correlated in time. Barkai and Leibler argued that the sensitivity to internal noise and
the robustness to such uncertainties were probably decisive factors in the evolution of circadian
clocks, and should be reflected in the underlying oscillation mechanism [34]–[36]. In a recent
paper [3], on the other hand, we have focused on the ‘constructive role’ of internal noise and
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Table 1. Reaction channels involved in the circadian clock model.

Index Reaction step Transition rate Description

1 G → R+ G w1 = vskn
I (kn

I + xn
3)−1 Transcription

2 R → w2 = vmx1(km + x1)
−1 R degradation

3 R → PC + R w3 = ksx1 Translation
4 PC → w4 = vdx2(kd + x2)

−1 Degradation ofPC

5 PC → PN w5 = k1x2 Translation ofPC into the nucleus
6 PN → PC w6 = k2x3 Translation ofPC out of the nucleus

demonstrated that INCR phenomena, as predicted theoretically in the previous section, did
happen in this system. Therefore, the main purpose here is to compare the simulation results
with the theory using this particular system.

The minimal model used in the present paper incorporates the transcription of the
gene(G) involved in the biochemical clock and transport of the mRNA (R) into the cytosol
where it is translated into clock proteins (PC) and degraded. The protein can also transport
into the nucleus (PN) where it exerts a negative regulation on the expression of its gene. Such
negative regulation forms the core mechanism of the oscillation behavior [18]. Based on this
mechanism, there are six reaction channels, as listed in table1.

To be consistent with the descriptions in section2, we have used(x1, x2, x3) to stand for the
concentration of(R, PC, PN), respectively.νs denotes the transcription rate of mRNA, and we
choose it as the control parameter. The other parameter values are:kI = 2.0 nM, Hill coefficient
n = 4, maximum rate of mRNA degradationνm = 0.3 nM h−1, Michaelis constant related
to mRNA degradationkm = 0.2 nM, translation rateks = 2.0 h−1, maximum rate of protein
degradationνd = 1.5 nM h−1, Michaelis constant related to protein degradationkd = 0.1 nM,
transport ratek1 = k2 = 0.2 h−1. According to these reaction steps, the stoichiometric matrices
read ν1 = (1−1 0 0 0 0), ν2 = (0 0 1 −1 −1 1), and ν3 = (0 0 0 0 1−1). The deterministic
equation (8) and the Langevin equation (7) can then be readily written down.

Following the procedures in the last section, we first need to locate the HB for the
deterministic system. By numerical simulation, we can easily locate the approximate region
where the bifurcation happens. Then, we carefully change the control parameter in this region,
calculate the fixed pointxs = (x1s, x2s, x3s) and the eigenvaluesλ± = α ± iω of the Jacobian
matrix. The HB can then be exactly located whenα passes zero. For the parameters chosen, we
find the HB atνHB

s = 0.25725± 0.00002, above which oscillation happens. NIO and coherent
resonance are expected to happen to the left-hand side ofνHB

s .
For a givenvs, the fixed pointxs, eigenvalues(λ± = α ± iω, λ3) and the corresponding

eigenvectors(u±, u3) of the Jacobian matrix are calculated. Via normalization, we can set
the first nonzero component ofu+ to 1. Write the eigenvectors asu± = (1a ± ibc± id)′,
u3 = (e f g)′ (here the superscript′ denotes vector transpose), the transformation matrix reads

T=

 1 0 e
a −b f
c −d g

.

One can then calculate the matrixT−1, and by ν̃ = T−1ν the coefficientsν̃1ρ and ν̃2ρ for
(ρ = 1, 2, . . . , 6) are obtained.Cr and Ci can be calculated numerically, and the result is
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Figure 1. (a) Stationary distribution of the radius of the internal noise-
induced limit cycle obtained from simulation (symbols) and equation (21) (---).
α = −0.00038, log(V) = 2, 3 and 4. (b) The most probable value of the
oscillation amplitude presented as a function of system sizeV , obtained from
simulation (symbols) and theory (line).

Cr ' −0.3474 andCi ' 0.5772. From these numerical values, the stationary probability
distribution Ps(r ), ACF Cθ(τ ), the correlation timeτc, and SNR can be obtained theoretically
from equations (21)–(23) and (27). These will be compared with direct numerical simulations
of the CLE (7).

Here are some details of the numerical simulations. For the CLE (7), the Ito interpretation
is used and numerical integrations are performed according to standard methods of stochastic
calculus [27]. We choose1t = 0.001 in our simulation. After a long transient time,r (t)
is calculated asr (t) =

√
y2

1(t) + y2
2(t), where the vectory = (y1, y2, y3) are transformed

from x = (x1, x2, x3) via y = T−1(x − xs). Accordingly, cosθ(t) = y1(t)/r (t). The probability
distribution ofr (t) is calculated over a long enough time period. PSD are calculated from the
time series ofy1(t) with 16 384 data points filtered by a Welch window. We perform a nearest-
averaging smoothing over 50 points on the PSD curves to estimate the SNR values.

In figure1(a), the comparison of the stationary distribution ofr (t) between the theory and
numerical simulation, forνs = 0.257(α = −0.00038), is shown. Reasonable agreements are
observed, especially for small noise levels (large system size). With the increment of internal
noise level, the distribution becomes wider, and the most probable value of the NIOrs becomes
larger. The dependence ofrs on system sizeV is depicted in figure1(b), where simulation
and theory show excellent agreement. In figure2(a), the comparison is shown between the
ACF of cosθ(t) obtained from simulation and equation (23), for vs = 0.250(α = −0.0126),
and they also show reasonable agreement. By peak fitting the ACF from the numerical
simulation, we can estimate the correlation time as a function of the system size, as shown in
figure2(b). Also shown in figure2(b) is H = r 2

sτc, representing peak height in the PSD indicated
by equation (25). Good agreement between the theoretical predictions and simulation data can
be observed. Finally, the dependence of SNR on the system size is shown in figure3(a), by
numerical calculation, and figure3(b), by equation (27), for νs = 0.257 (α = −0.00038), νs =

0.255(α = −0.00355) andνs = 0.250(α = −0.0126), respectively. We note that the qualitative
features agree with each other, i.e. INCR appears and the optimal sizeVopt and the maximal
SNR both become larger when the distance from the HB decreases. Quantitatively, there are
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Figure 2. (a) A typical ACF of cosθ(t) obtained from the theoretical formula,
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Figure 3. Dependence of the effective SNR on the system sizeV from
(a) numerical calculations and (b) analytical results (equation (27)).

still discrepancies regarding the exact location of the optimal system sizeVopt and the maximal
value of SNR (note that the absolute values of the SNR do not make sense because the SNR
are in arbitrary units). The main reason is that correct numerical estimation of the PSD and
henceforth SNR of the noisy data is difficult. As a whole, we can draw the conclusion that our
theory reproduced well all the numerical results.

Before ending this section, it is worth emphasizing that although being widely used in
the literature, the so-called SNR defined as ‘peak height divided by the width’ is somewhat
misleading. Actually, it is not a ratio of signal to noise, but rather a measure of the performance
of the NIO. As already pointed out in the last section, the maximum in the SNR simply
represents a type of ‘balance’ between the regularity and strength of the NIO. According to
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the analysis there, both the strength (denoted by the peak heightH in the power spectrum or
the oscillation amplituders) and regularity (denoted by the correlation timeτ c or equivalently
‘width of the peak∆ω divided by the mean frequencyω1) of the NIO change monotonically
with the system sizeV without any ‘resonance’. For too small internal noise (largeV), rs is
very small and NIO can hardly be observed although the calculatedτ c could be large. On
the other hand, if internal noise is too large (smallV), NIO can hardly be distinguished from
‘random noise’ becauseτ c is too small. Only for intermediate noise levels (optimalV), may
the observed NIO have both considerable strength and long correlation time, corresponding to
INCR. In figure1(b) and2(b), we have shown thatrs, H , andτ c all change monotonically with
V , in contrast to the SNR drawn in figure3, where clear maxima exist.

4. Discussions and conclusions

In the literature, the effects of noise on mesoscopic chemical oscillations have also been studied
analytically by others. Vance and Ross [37] have investigated the fluctuations near the limit
cycle using a master equation approach. They reduced the master equation to a Hamiltonian–
Jacobi equation in the large size limit, and constructed approximate time-dependent as well
as stationary solutions to the master equation in the vicinity to the limit cycle. Gaspardet al
have studied the correlation time of mesoscopic chemical clocks also using the master equation
[33, 38], and an estimation was obtained for the minimum number of molecules required for
the chemical oscillations to remain correlated in time. However, their analysis mainly focused
on the parameter region where deterministic oscillations already exist, and internal noise was
considered to be destructive by inducing phase diffusion. It is worth noting that their analysis
may fail when bifurcation happens, as pointed by Gaspard, while our theory only applies to
the vicinity of the bifurcation point. Therefore, combining those studies and the present work,
one may be able to have a deeper understanding of the effects of internal noise in mesoscopic
chemical oscillating systems.

To conclude, we have developed a theory for NIO and INCR in mesoscopic chemical
oscillation systems, by using a stochastic normal form equation and stochastic averaging
procedure. The analysis is quite general, and can be applied to any chemical reaction system
with supercritical HB. We apply the theory to a circadian clock system, and the theory and
numerical simulation show reasonable agreement. Since chemical oscillations are of ubiquitous
importance in nature, especially in living systems, the analysis in the present paper could find
applications in many other systems.
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