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Abstract:  Taking into account the existence of internal noise in small scale biochemical reaction systems, we studied how the 
internal noise would influence the detection of weak external signal in the cell system using chemical Langevin equation. The weak 
signal was too small to, separately, fire calcium spikes for the cell. We found that, near the Hopf bifurcation point, the internal noise 
could help the calcium oscillation signal cross a threshold value, and at an optimal internal noise level, a resonance occurred among 
the internal noise, the internal noise-induced calcium oscillations, and the weak signal, so as to enhance intensively the ability of the 
cell system to detect the weak signal. Since the internal noise was changed via the cell size, this phenomenon demonstrated the 
existence of an optimal cell size for the signal detection. Interestingly, it was found that the optimal size matched well with the real 
cell size, which was robust to external stimulus, this was of significant biological meaning. 
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Noise is usually considered a nuisance, degrading the per-
formance of dynamic systems. But in some nonlinear systems, 
the presence of noise can enhance the ability of the system to 
detect weak signals. This phenomenon of noise-enhanced de-
tection of weak signals has been studied experimentally and 
theoretically in various systems. For example, this phenome-
non was reported in the mechanoreceptive system in cray-
fish[1,2] and dogfish[3], human tactile sensation[4], visual per-
ception[5], cricket sensory system[6], human brain system[7,8], 
chemical reaction system[9], neuron system[10,11], hair bundle 
system[12] and so on. The uniform feature in these systems is 
the concurrence of a threshold, a subthreshold stimulus, and 
the noise. There exists an optimal level of noise that results in 
the maximum enhancement, whereas further increases or de-
creases in the noise intensity only degrade detectability or in-
formation contents. The threshold is ubiquitous in nature, es-
pecially in some biological systems, and these systems may 
receive external stimulus all the time. Usually, the stimulus is 
by itself below the threshold, never crosses it, and is therefore 
undetectable, whereas when the system is embedded with 
noise, threshold crossing occurs with great probability so as to 

intensively enhance the ability of the system to detect weak 
signals. 

However, most of the studies so far only account for exter-
nal noise. With the recent development of studies in mesos- 
copic chemical oscillation systems, an even important source 
of noise, internal noise, has attracted considerable attention, 
which results from the random fluctuations of the stochastic 
reaction events in systems. It is generally accepted that the 
strength of the internal noise scales as 1/ Ω , where Ω is the 
system size. In the macroscopic limit where Ω is infinite, the 
internal noise can be ignored. However, in small systems, 
such as cellular and subcellular systems, the number of reac-
tion molecules is very low, so the internal noise must be taken 
into account. Recently, the important effects of internal noise 
in chemical oscillation reaction systems have gained growing 
attention. For example, Shuai and Jung[13,14] demonstrated that 
optimal intracellular calcium signaling appeared at a certain 
size or distribution of the ion channel clusters. Ion channel 
clusters of optimal sizes can enhance the encoding of a sub-
threshold stimulus[15,16]. In recent studies, Xin′s group also 
found such a phenomenon in the Brusselator model[17], cir-
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cadian clock system[18], calcium signaling system[19,20], neuron 
system[21], synthetic gene network[22], catalysis system[23] and 
so on. There exists an optimal system size (that is internal 
noise value), at which the stochastic oscillation shows the best 
performance. They call this phenomenon “internal noise sto-
chastic resonance” or “system size resonance”. Therefore, a 
basic question is: will the internal noise influence the signal 
detection in small systems? 

In the present article, via the inositol 1,4,5-trisphosphate- 
calcium cross-coupling (ICC) cell model, we investigated how 
the internal noise would influence the detection of weak sig-
nal. 

11  Model 

The model used in the present article describes the dynam-
ics of calcium ions in cytosol, which was first produced by 
Meyer and Stryer in 1991[24]. If the internal noise is ignored, 
the time evolution of the species is governed by the following 
macroscopic kinetics[25]: 
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where x, y, u represent the concentration of three key species: 
the cytosolic Ca2+ (Cai), the calcium ions sequestered in an in-
tracellular store (Cas), and the inositol 1,4,5-trisphosphate 
(IP3), respectively; v denotes the fraction of open channels 
through which the sequestered calcium is released into cytosol; 
D, Fv, and Ev are constants that are relative to the variable u 
and v; the flux Jchannel is associated with the release of seques-
tered calcium from an internal store, the fulx Jpump corresponds 
to calcium sequestration, kPLC is the rate of IP3 production, 
which are given by 
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where A, B, C, K1, K2, and K3 are constants. Choosing R, 
which represents the fraction of activated cell surface recep-
tors, as an adjustable parameter. See Ref.[25] for the detailed 
descriptions and values of the parameters in Eqs.(1) and (2). 

However, for a typical living cell, such a deterministic de-
scription is no longer valid due to the existence of consider-
able internal noise. Instead, a mesoscopic stochastic model 
must be used. To investigate the effect of internal noise, basi-
cally, one can describe the reaction system as a birth-death 
stochastic process governed by a chemical master equation. 
But there is no procedure to solve this master. A widely used 
simulation algorithm has been introduced by Gillespie[26], 
which stochastically determines what is the next reaction step 
and when it will happen according to the transition rate of 
each reaction process. For the current model, the reactions in 

the cell can be grouped into four elementary processes ac-
cording to Ref.[27], the processes and their reaction rates are 
defined in Table 1 (note that the reaction rates are proportional 
to the system size Ω), where X=xΩ, U=uΩ. X and U are the 
numbers of the cytosolic Ca2+ (Cai) and the IP3 production, 
respectively. 

This simulation method is exact because it exactly accounts 
for the stochastic nature of the reaction events, but it is rather 
time-consuming if the system size is large. To solve this 
problem, Gillespie developed chemical Langevin equation 
(CLE)[28]. We have also shown that it is applicable to use the 
CLE to qualitatively study the effect of the internal noise[17−20]. 
According to Gillespie[28], the CLE for the current model is as 
follows: 
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where ξi(t) (i=1, 2, 3, 4) are Gaussian white noises with 
<ξi(t)>=0 and <ξi(t)ξi(t′)>=δijδ(t−t′). Because the reaction rates 
(ai) are proportional to Ω, the internal noise item in the CLE 
scales as 1/ Ω . 

Now, we consider that the cell system is subjected to a 
weak periodic signal, which probably comes from an external 
stimulus. Then, the system′s dynamics can be described as: 
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where M and ϖ  are the amplitude and frequency of the 
weak signal, respectively. In the following parts, we will use 
equations (4a−4c) as our stochastic model for numerical 
simulation to study the effect of the internal noise on the de-
tection of the weak signal. 

2  Simulation and results 

We tune the control parameter R=0.605, which is very close 
to the Hopf bifurcation point designated by the macroscopic 
kinetics, but the deterministic system does not sustain oscilla-
tions (see Ref.[25] for more detailed description of the bifur-

Table 1  Stochastic processes and corresponding rates for 
intracellular Ca2+ dynamics 

Stochastic process Reaction rate 

X→X+1 a1=ΩνJchannel 

X→X−1 a2=ΩJpump 

U→U+1 a3=ΩkPLC 

U→U−1 a4=ΩDu 
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cation action). One should note that it is always near this 
critical point, at which noise can play constructive roles. For 
the weak periodic signal, we choose M=1.5 and ω= cϖ =0.505 
Hz, cϖ  is the frequency of the intrinsic oscillation of the cell. 
This signal itself is too weak to excite calcium spikes sepa-
rately (the threshold we choose here is x=1.2 μmol·L−1) and is 
therefore undetectable. Whereas when the internal noise is 
considered, threshold crossing occurs with great probability, 
and at an optimal noise level, a resonance occurs among the 
noise, the noise-induced oscillation, and the signal so as to in-
tensively enhance the ability of the cell system to detect the 
weak signal. Fig.1 shows the time series of the variable x for 
different system sizes. For large system size Ω, corresponding 
to the low level of internal noise, the system exhibits sub-
threshold oscillations with small amplitude (Fig.1(a)). Irregu-
lar superthreshold spikes appear occasionally when Ω de-
creases (Fig.1(b)). When Ω decreases further, the superthresh-
old spikes appear with great probability, and the regularity of 
the spikes remains well (Fig.1(c)), below which the spikes 
become irregular again (Fig.1(d)). 

To measure the relative regularity of the calcium spike train 
quantitatively, we introduce a coherence measure (CM), which 
is defined as the mean value of the spike interval T normalized 

to the mean root, namely, 
2 2

CM T
T T

< >
=

< > − < >
[9]. Note 

that a spike occurs when the intracellular calcium concentra-
tion crosses a certain threshold value from below, and it turns 
out that the threshold value can vary in a wide range without 
altering the resulting spiking dynamics. The measure CM has 
been frequently used to quantify the regularity of stochastic 
spike trains, and it could be of biological significance because 
it is related to the time precision of information processing. A 
larger value of CM means more closeness of the spike train to 
a periodic one, where CM is obviously ∞. The dependence of 
CM on system size is plotted in Fig.2. A clear maximum is 

present for system size Ω (≈103 μm3), which demonstrates the 
occurrence of “system size resonance”. It is interesting to note 
that this size is of the same order as the living cells in vivo. 
From the CLE, one notes that the internal noise item is pro-
portional to 1/ Ω  if all other parameters are fixed. Therefore, 
an optimal system size implies an optimal level of internal 
noise. This constructive role of internal noise recalls one the 
well-known phenomenon of stochastic resonance (SR), so it 
also can be called “internal noise stochastic resonance”. The 
cell system is likely to exploit the internal noise to enhance the 
ability to detect weak signals with the aid of system size reso-
nance. 

In the case of a fixed threshold (here we choose x=1.2 
μmol·L−1) and variable system size, the detection of the weak 
signal in a cell system will be influenced mainly by three fac-
tors: the signal frequency, the signal amplitude, and the con-
trol parameter. Previous study[15] has shown that, in response 
to a weak signal, a resonance among the noise, the noise-in-
duced oscillation, and the signal can intensively enhance the 
ability of the system in detection of the weak signal, especially 
when the frequency of the signal is around that of the intrinsic 
oscillation of the system. And, because the frequency of the 
intrinsic oscillation can be adjusted by the internal or external 
modulations, the system can effectively detect and process 
signals with various frequencies. This is of significant bio-
logical meaning. In the following parts, we will mainly dis-
cuss the effect of the signal amplitude and control parameter 
on the signal detection. 

Fig.3 shows the dependence of CM on system size with 
various signal amplitudes. We can see that for three given 
amplitudes of the input weak signal, there all exists an optimal 
system size, and the position of the optimal size remains 
nearly unchanged at Ω≈103 μm3. 

We have also studied how the signal detection behavior 
depends on the value of control parameter (R). This is shown 
in Fig.4. When the distance from the deterministic Hopf bi-
furcation point increases, first, the maximum CM and the op-
timal system size become smaller; and then, when the control 
parameter becomes even larger, although the maximum CM 
continues to become smaller, the position of the optimal size 

 
Fig.1  Time series of the variable x for different system sizes (Ω) 

Ω/μm3: (a) 106, (b) 105, (c) 103, (d) 200; The broken line denotes 

the threshold chosen. 

 
Fig.2  Coherence measure (CM) as a function of system size 
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remains unchanged at Ω≈103 μm3. 

33  Conclusions 

To summarize, we have studied the influence of internal 
noise on the detection of the weak signal. We show that, near 
the Hopf bifurcation point, instead of trying to resist the in-
ternal molecular noise, living cell systems may have learned 
to exploit the internal noise to intensively enhance the ability 
to detect weak signals. The performance of calcium oscillation 
undergoes a maximum with the variety of the system size Ω, 
indicating the occurrence of “system size resonance”. Inter-
estingly, we find that the position of the optimal size remains 
at Ω≈103 μm3 for a wide range of signal amplitudes and con-
trol parameters, which is of the same order of real living cells 
in vivo. Since the internal noise in living cell systems cannot 
be ignored and the system may often receive weak signals, our 
findings may have quite significant implications for living cell 
systems and may imply the ubiquitous importance of internal 
noise in functioning processes in living organisms. 
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Fig.3  Dependence of coherence measure on system size with 

different signal amplitudes (M) 

 
Fig.4  Coherence measure as a function of system size for 

different control parameters (R) 


