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Synchronization and Pattern Dynamics of Coupled Chaotic Maps on Complex
Networks
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Hefei National Lab for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and

Technology of China, Hefei 230026
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The synchronization and pattern dynamics of coupled logistic maps on a certain type of complex network,
constructed by adding random shortcuts to a regular ring, is investigated. For parameters where an isolated
map is fully chaotic, the defect turbulence, which is dominant in the regular network, can be tamed into ordered
periodic patterns or synchronized chaotic states when random shortcuts are added, and the patterns formed on
the complex network can be grouped into two or three branches depending on the coupling strength.

PACS: 05. 45.−a, 05. 45.Ra

The dynamics of complex networks have gained
great research interest in recent years.[1] Of most in-
terest are the small-world (SW) networks proposed
by Watts and Strogatz,[2] and the scale-free (SF) net-
works put forward by Barabási and Albert.[3] The
SW network is characterized by a short average path
length between the network nodes and a large cluster-
ing coefficient, and the SF one has a power-law degree
distribution. It has been shown that network topology
plays a crucial role in a system’s dynamics, and a vast
of literatures have been devoted to this topic. For in-
stance, synchronization can be considerably improved
on SW or SF networks,[4,5] any spreading rate can
lead to whole infection of disease on SF networks,[6]

the SF network shows high tolerance to error but
not to attack,[7] SW neuron networks show fast re-
sponse and enhanced coherent motion,[8] spatiotem-
poral chaos can be tamed by random shortcuts,[9] SW
topology can eliminate oscillator death,[10] to list just
a few.

In the present work, we have studied the syn-
chronization and pattern dynamics of coupled logis-
tic maps on a type of complex network, constructed
by randomly adding shortcuts to a regular ring. Al-
though the dynamics of chaotic maps on complex net-
works have already been investigated by many oth-
ers, most results reported only accounted for spatial
synchronization,[11−15] and it was shown that coupling
topology and delay strongly influence the synchroniza-
tion ability. Here we find that coupling topology also
strongly influences the pattern dynamics. We set the
parameter such that each isolated map is in fully de-
veloped chaos and defect turbulence is the dominant
pattern in the regular network. We show that the
defect turbulence can be tamed when random links
are added, and the patterns formed on the SW-like
network can be grouped into two or three branches,
depending on whether the system is synchronizable or
not.

We consider a coupled map lattice of the form

xn+1(i) = f(xn(i)) +
ε

Ki

∑
j∈Ω(i)

[
f(xn(j))

− f(xn(i))
]
, (i = 1, . . . N), (1)

where f(x) = ρx(1 − x) stands for the logistic-map
which is often cited as an archetypal example of how
complex, chaotic behaviour can arise from very sim-
ple non-linear dynamical equations. Here ε ∈ (0, 1)
is the coupling strength, the summation of j runs
over the neighbours of node i (denoted by Ω(i)), Ki

is the degree of node i, and N = 256 is the num-
ber of nodes. We choose the control parameter as
ρ = 3.825, which is at the edge of the chaotic zone of
a single map. The complex networks are constructed
by adding M random links to a regular ring with pe-
riodic boundary condition (the largest allowed value
of M is N(N − 3)/2). When M is not too large, the
resulting network has SW feature as proposed by New-
man and Watts,[16] and the random added links play
the roles as shortcuts.

The main motivation of the present paper is to
elucidate the interrelation between the network topol-
ogy and the spatiotemporal dynamics of the system.
We use the fraction of random links q = M/[N(N −
3)/2] to characterize the network’s topology, and q
is changed from 0 to 1 in the simulation runs. For
each value of q, random initial condition is chosen and
the simulation is repeated after enough long transient
time. In contrast to most previous studies that mainly
focused on spatial synchronization, we also take into
account the temporal regularity of the patterns. As
usual, we introduce the standard deviation σ to mea-
sure the de-synchronization:

σ =

〈√√√√[
N∑

i=1

x2
i

N
−

( N∑
i=1

xi

N

)2
]
/(N − 1)

〉
, (2)
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where the brackets mean the averaging over time. Ob-
viously, a smaller σ means more synchronization, and
σ = 0 when the system is completely synchronized.
As to the temporal regularity, we use the characteris-
tic correlation time τc defined as[16]

τc =
1
N

N∑
n=1

1
T

∫ T

0

c2
n(τ)dτ, (3)

where cn(τ) =
∑T

i=1 xn(i)xn(i + τ)/x2
n(i) is the nor-

malized autocorrelation function of xn(i) with lag τ ;
T is the time interval to calculate cn(τ) which can
be chosen somewhat arbitrarily if being long enough.
Apparently, a pattern periodic in time will have much
larger τ than a chaotic one. Note that even when the
pattern is not synchronized in space, τc could also be
large because cn(τ) is calculated before averaging over
different sites n. Combining the information from σ
and τc, one may obtain more qualitative information
about the patterns.

In our simulation, we find that the final patterns
observed depend strongly on whether the system can
be synchronized or not. Therefore, we will firstly con-
sider the synchronization problem. Actually, the syn-
chronization of coupled chaotic oscillators, either de-
scribed by continuous differential equations or by dis-
crete maps, has been extensively investigated in the
literature, and it is now generally accepted that the
eigenvalues of the Laplacian matrix A of the network
play a key role, rather than the coupling strength
alone. For example, the local stability of the full-
synchronized state is decided by the well-known ‘mas-
ter stability function’, which characterizes how the
Lyapunov exponents of the synchronized manifold de-
pend on the coupling strength and the spectrum of
the Laplacian matrix.[4] By definition, Aij = −Ki,
(i = 1, 2, . . ., N) are the negative degrees of node i,
Aii = 1 if node i and j are connected, and 0 other-
wise.

For the system (1) considered in the present work,
the necessary condition for the local linear stability of
the synchronized state (SS) reads[14]

1 − e−µ0

λ1
< ε <

1 + e−µ0

λK
, (4)

where µ0 is the Lyapunov exponent of the map func-
tion f (for ρ = 3.825 in the present work, µ0 ≈ 0.41);
λ1 and λK are the smallest and largest nonzero eigen-

values of the matrix L defined as Lij =
1

Ki
Aij , where

Aij are the elements of the Laplacian matrix A. With
the increment of q from 0 to 1, λ1 increases mono-
tonically from 0 to 1 and λK decreases monotonically
from 2 to 1. By direct calculations we can check that
if the first equality in Eq. (4) holds, so does the sec-
ond one. Therefore, Eq. (4) defines a boundary line,
ελ1 = 1 − e−µ0 , in the ε ∼ λ1 plane (as also in the

ε ∼ q plane), below which no SS occurs. The validity
of this condition is shown in Fig. 1, where numerical
results (open circles with error-bars) agree well with
the theoretical predictions (the solid line).

One should note that the above discussions only
address the local stability of the SS. This is the nec-
essary condition for synchronization, but not a suf-
ficient one, which requires that the system will defi-
nitely achieve the SS no matter what the initial con-
dition is. By direct numerical simulations, we have
also obtained the boundary of global stability in the
ε − q plane as indicated by the line with squares in
Fig. 1. Therefore, we can divide the ε − q parameter
plane into three regions, as shown in Fig. 1. SS surely
occurs above the upper line (squares), and it cannot
happen below the lower line. A transient region lies
between them, where the final state depends on the
initial condition.
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Fig. 1. Synchronization boundary for the coupled logistic-
map lattice (see the context for details). For ε < εc1

or q < qc, no synchronization can be attained. The
dashed line separates the region with three branches to
two branches in the non-synchronizable region. Here
ρ = 3.825.

We now turn to the question how the system’s dy-
namics evolves when the network topology changes
with q from 0 to 1. Clearly, the coupling strength plays
an important role. According to Fig. 1, for ε > εc2,
the system will fall into the SS if q exceeds some crit-
ical value qc, while for ε < εc1, no SS can be achieved
even if the network is globally coupled. We find that
whether the system can be synchronized or not plays
a crucial role in the observed branching behaviour as
described in the following.

In the synchronizable case (ε > εc2), the only sta-
ble state for q > qc is the SS, for which σ is 0 and τc is
very small. However, for q < qc, the patterns observed
clearly branch into two types, for one the order param-
eters σ and τc both become larger (upper branch), and
for the other they both decrease (lower branch). The
upper branch terminates at a certain value of q, and
the remaining lower branch changes continuously to
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the SS. An example of such branching behaviour for
ε = 0.9, which is larger than εc2, is shown in Fig. 2.
We depict the scattering distribution of τc and σ for
100 simulation runs. Clearly, both quantities show
two distinct branches. The upper branch has large τc

and σ, i.e., the pattern is rather regular in time but
not in space; while the lower branch has much smaller
τc and σ, which becomes more and more chaotic in
time and synchronized in space until finally it reaches
the SS when q goes across qc. Note that the higher
branch disappears for q ≈ 0.013 that is still away from
qc ≈ 0.027. Typical patterns observed in this case are
shown in Fig. 3. Figure 3(a) gives the defect turbu-
lence observed in a regular network (q = 0). Figure
3(b) shows the SS for large q. Figure 3(c) presents
the pattern of the higher branch with large τc and σ.
Figure 3(d) is of the lower branch. In Fig. 3(c), each
site in the lattice is already periodic in time, but the
period is different for different nodes.
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Fig. 2. Dependence of (a) distribution of τc, (b) distribu-
tion of σ on q. The coupling strength is ε = 0.9.

For ε < εc1, no synchronization can occur even
when q = 1. In this case, three branches are observed,
indicating some kind of multi-stability of the system’s
dynamics (Fig. 4). The upper branch has large τc and
σ, which resembles the high branch for ε = 0.9. When
exceeds some value, this branch of pattern becomes
exactly periodic in time, for which τc is exactly 1.
The lower branch has small τc and σ, which also looks
like the lower branch for ε = 0.9, but no synchroniza-
tion in space can be attained when q increases. Of
more interest is the middle branch that appears for
the case that q exceeds a certain value, not observed
in the strong-coupling case. This branch of pattern
has rather large τc (about 0.8) and small σ, indicating
that it is nearly periodic in time and synchronized in
space. It is also shown that the middle branch is the

only allowed one for a globally coupled lattice (q = 1),
while the other two disappear in the vicinity of q = 1.
Typical patterns for ε = 0.3 is shown in Fig. 5. Figure
5(a) is the defect turbulence for q = 0, 5, Fig. 5(b) is
the nearly periodic and synchronized pattern of the
middle branch, Fig. 5(c) is the periodic but not syn-
chronized pattern of the upper branch, and Fig. 5(d)
is the disordered pattern of the lower branch.
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Fig. 3. Typical patterns observed for ε = 0.9. (a) De-
fect turbulence in the regular lattice. (b) Synchronized
chaotic state for q = 0.037. (c) The higher branch:
q = 0.0111, τc = 0.9429, σ = 0.2028. (d) The lower
branch: q = 0.0111, τc = 0.0437, σ = 0.0897. Note: the
time scale in (a) is 10 times larger than the others.
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Fig. 4. Dependence of (a) distribution of τc, (b) distribu-
tion of σ on q. The coupling strength is ε = 0.3.

The findings of present work reveal some interest-
ing roles of network topology on the pattern dynamics
of coupled chaotic maps. Although only defect turbu-
lence can be observed in the regular network (for the
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parameter ρ = 3.825), more features are found when
a certain fraction of random links are added. Depend-
ing on the coupling strength and number of additional
links, one may observe ordered periodic patterns or
synchronized chaotic patterns. Therefore, we demon-
strate a further example that ‘random shortcuts can
tame spatiotemporal chaos’, as already reported in
our previous studies on coupled differential dynami-
cal systems.[9,18]
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Fig. 5. Typical patterns observed for ε = 0.3: (a) defect
turbulence in the regular lattice, (b) the middle branch:
τc = 0.76, σ = 0.086, (c) the high branch: τc = 1,
σ = 0.19, (d) the low branch: τc = 0.070, σ = 0.078.
For (b)–(d), q = 0.32. Note: The time scale in (a) is 10
times larger than the others.

According to Ref. [19], there are mainly six types of
patterns for one-dimensional coupled logistic lattice,
i.e., frozen random pattern, pattern selection, defect
chaotic diffusion, defect turbulence, pattern compe-
tition intermittency, and fully developed turbulence,
depending on the parameter values of ε and ρ. All the
six patterns have their attractive basins, the bound-
aries between which are not that sharp. According
to this picture, Figs. 3(c) and 5(c) can be classified
into a pattern selection, Figs. 3(d) and 5(d) belong to
fully developed turbulence, and Figs. 3(a) and 5(a) are
defect turbulence. Hence, it seems that topological
disorder has induced somewhat transition from defect
turbulence to fully developed turbulence or pattern

selection. In addition, Figs. 3(b) and 5(b) are not ob-
served in regular network, indicating that new types
of pattern can be formed on complex networks.

In summary, we have studied the pattern dynam-
ics of coupled logistic-maps on small-world like net-
works, constructed by adding random links to a regu-
lar ring. The parameter is chosen such that spatiotem-
poral chaos is observed in the original regular network.
We define the characteristic time τc and spatial devia-
tion σ as a quantitative measure of the spatiotemporal
order of the pattern. With the increasing number of
random links, the distribution of τc and σ show two or
three branches depending on the coupling strength, in-
dication multi-stability of the dynamics and new types
of patterns are formed by taming the chaos. It is our
hope that the present work could open more perspec-
tive on the study of pattern dynamics on complex net-
works.
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J A 2000 Phys. Rev. Lett. 84 2758
[9] Qi F, Hou Z H, and Xin H W 2003 Phys. Rev. Lett. 91

064102
[10] Hou Z H and Xin H W 2003 Phys. Rev. E 68 055102
[11] Atay F M and Jost J, Wende A 2004 Phys. Rev. Lett. 92

144101
[12] Masoller C and Mart́ı A C 2005 Phys. Rev. Lett. 94

134102
[13] Gade P M and Hu C K 2000 Phys. Rev. E 62 6409
[14] Jost J and Joy M P 2001 Phys. Rev. E 65 016201
[15] Lind P G, Gallas J A C and Herrmann H J 2004 Phy. Rev.

E 70 056207
[16] Newman M E J, Moore C and Watts D J 2000 Phys. Rev.

Lett. 84 3201
[17] Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80

2109
[18] Wang M S, Hou Z H and Xin H W 2006 Chem. Phys.

Chem. 7 579
[19] Kaneko K 1989 Physica D 34 1


