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ARTICLE

Fluctuation Resonance of Feed Forward Loops in Gene Regulatory Networks
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Hefei National Lab for Physical Science at Microscale, Department of Chemical Physics, University of
Science and Technology of China, Hefei 230026, China

(Dated: Received on April 1, 2009; Accepted on April 19, 2009)

The feed forward loop (FFL), wherein a gene X can regulate target gene Z alone or cooper-
atively with gene Y, is one of the most important motifs in gene regulatory networks. Gene
expression often involves a small number of reactant molecules and thus internal molecu-
lar fluctuation is considerable. Here we studied how an FFL responds to small external
signal inputs at gene X, with particular attention paid to the fluctuation resonance (FR)
phenomenon of gene Z. We found that for all coherent FFLs, where the sign of the direct
regulation path from X to Z is the same as the overall sign of the indirect path via Y, the
FR shows a regular single peak, while for incoherent FFLs, the FR exhibits distinct bimodal
shapes. The results indicate that one could use small external signals to help identify the
regulatory structure of an unknown FFL in complex gene networks.
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I. INTRODUCTION

Gene networks constitute one of the most important
types of biological networks [1]. The nodes represent in-
dividual genes, which provide the blueprint for the syn-
thesis of proteins through the key steps of transcription
and translation. The proteins and their complexes act
as regulatory molecules through binding to appropriate
regions of the DNA and control initiation of gene tran-
scription. The directed link from regulating gene to reg-
ulated gene is either activating or repressing in nature.
The major topological features of the gene networks can
be learned from the databases of some simple organisms
like E. coli and S. cerevisiae [2,3]. For instance, the
gene networks are “ultra-small”, i.e., the average path
length between nodes is proportional to lg(lgN ), where
N is the number of nodes in the network [4]. Another
important feature is dissortativity: many real biologi-
cal networks contain significantly recurring wiring pat-
terns termed “network motifs” [2,5,6], and the compo-
nent within one motif does not connect to that of other
one directly. One of the most well-known and important
motifs appearing in gene networks is the feed forward
loop (FFL) [7,8], which contains three genes X, Y, and
Z (Fig.1). Protein-X synthesized from gene-X regulates
the expression of gene-Y and gene-Z, and protein-X and
protein-Y also jointly regulate the expression of gene-Z.
Each of the three transcriptional regulatory interactions
in an FFL has either positive sign (activation) or nega-
tive sign (repression), and thus the motif can be in eight
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possible configurations which are of two types: coher-
ent and incoherent. In a coherent (incoherent) FFL,
the sign of the direct regulation path from x to z is the
same as (different from) the overall sign of the indirect
regulation path via y. As shown in Fig.1, one may also
use an inducer, whose concentration can be periodically
modulated, to control the expression of X, which pro-
vides a reasonable way to input an external signal into
the FFL.

In recent years, the study of inherent or external noise
in gene expression process has gained great interest [9–
17]. For recent reviews, please see Ref.[9]. As pointed
out by McAdams et al., the gene expression process
is a “noisy business” [10]. This “noise” has an inter-
nal source due to the inherent molecular fluctuations
as a result of stochastic reaction events in transcription
and translation processes, as well as environmental ex-
ternal source [11,12]. Currently, most studies in this
field focus on where the internal noise comes from, how
to characterize it and what its effect is, through both
experimental and theoretical studies. For instance, it
was reported that the internal noise in the gene expres-
sion in prokaryotes mainly comes from the translation
process [13]; while for eukaryotes, transcription process

FIG. 1 FFL. Transcription factor X regulates transcription
factor Y, and both jointly regulate Z. Sx is the inducer of
X, whose concentration can be periodically modulated.
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contributes a great level to the noise in the clonal popu-
lation [14]. Particularly, the properties of intrinsic noise
in complex gene networks [15] have been studied theo-
retically using stochastic chemical kinetics, and a gen-
eralized summing rule was proposed by Paulsson [16,17]
that successfully accounts for the propagation of noise
in gene regulatory networks [18]. Moreover, since the
circadian clock system is mainly regulated by gene ex-
pression processes at the molecular level, the internal
noise effect on circadian oscillation is also remarkable
[19]. For example, it was found that the circadian oscil-
lation would become highly irregular, characterized by
rapid vanishing of autocorrelations, when the maximum
numbers of mRNA and protein molecules are relatively
small [20]. To resist the destructive effects of internal
noise, the circadian system may show robustness to in-
ternal noise by feedback loops or redundancy [21]. It
is also worthy to mention that internal noise may also
play constructive roles via inducing oscillations which
are not present in the deterministic model [22–24].

Recently, Lipan and Wong presented a theory by
which the structure of a genetic network can be un-
covered by studying its response to external stimuli [25].
The use of an oscillatory signal is proved to be more ad-
vantageous than a step or impulse signal. The scheme
was based on a new phenomenon, called fluctuation res-
onance (FR). For a single gene expression process, the
fluctuation of the protein number would be also periodic
in time if the transcription is subject to external peri-
odic signal. FR reveals that the deviation from Pois-
son process would reach a clear-cut maximum when the
frequency of the external signal is at an intermediate
value. In the present work, we consider a stochastic
genetic FFL, with an oscillatory signal stimulating the
gene X, with particular attention paid to the FR be-
haviors of all the three genes. We find that for the first
gene X, pure FR was observed at ω=2ω0 with ω0 as
a natural frequency determined by the parameters of
gene X, which is consistent with the theoretical predic-
tion. For the second gene Y which is regulated by X,
the main FR occurs at nearly 1.5ω0, and when X is an
activator, there is an additional small FR peak at about
0.3ω0 which is absent if X negatively regulates Y. More
interestingly, we find that the response of the gene Z
clearly reflects the coherent properties of the system,
with a single peak in coherent types of FFL and dou-
ble peaks in incoherent FFLs, indicating that one could
use a small external signal to help identify the regu-
latory structure of an unknown FFL in complex gene
networks.

II. MODEL AND METHODS

A. Deterministic kinetics

Although we are mainly concerned with the fluctua-
tion properties of the FFL, a deterministic description
would be helpful to understand its regulatory dynamics.

In the deterministic limit, the state of the FFL can be
described by the concentrations of mRNA and protein
of species X, Y, and Z. Generally, the kinetic equations
are

dRx

dt
= αx + kxfx (Px)− γR,xRx + A cos (ωt)

dPx

dt
= βxRx − γP,xPx

dRy

dt
= αy + kyfy (Px)− γR,yRy

dPy

dt
= βyRy − γP,yPy

dRz

dt
= αz + kzG (Px, Py)− γR,zRz

dPy

dt
= βzRz − γP,zPz

(1)

Here, Ri and Pi (i=x, y, z) denote the concentrations
of mRNA-i and protein-i, respectively; the (α, β, γ)-
parameters denote the transcription, translation, and
degradation rates of corresponding species, respectively,
and the ki denote the regulation strength on the tran-
scription of gene-i. A and ω are respectively the ampli-
tude and frequency of the external signal input into X.
The function fx(Px) describes the feedback-regulation
of X-protein on the transcription of its own gene, which
generally has the form of Hill-functions. For a positive
feedback (activator),

fx (Px) = f+ (Px) ≡ (Px/Kx)n

1 + (Px/Kx)n (2)

and for a negative regulation (repressor),

fx (Px) = f− (Px) ≡ 1
1 + (Px/Kx)n (3)

where Kx is the dissociation constant that specifies the
threshold protein concentration at which the regulation
strength is at half its maximum value, and n is the Hill
coefficient. Similarly, fy(Px) denotes the regulation of
X-protein on the transcription of gene Y, which can be
f+ or f− depending on the sign of the regulation. The
gate function G(Px, Py) describes the regulation of X
and Y protein on the transcription of gene Z, and is
formulated as

G (Px, Py) = gx (Px;Py) + gy (Py;Px) (4)
gi (Pi;Pj) = g+ (Pi;Pj)

≡ (Pi/Ki)
n

1 + (Pi/Ki)
n + (Pj/Kj)

n (5)

for an activator and

gi (Pi;Pj) = g− (Pi;Pj)

≡ 1
1 + (Pi/Ki)

n + (Pj/Kj)
n (6)
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for a repressor with Ki and Kj the corresponding dis-
sociation constants. For a suitable choice of parameters
and in the absence of the external signal, i.e. A=0,
we assume Eq.(1) admits a steady state solution u=u∗

with du∗/dt=0, where

u = (Rx, Px, Ry, Py, Rz, Pz)T (7)

denotes the state vector.

B. Master equation

As stated in the introduction, molecular fluctuations
are considerable for gene regulatory networks. To be-
gin, we first consider the case where the external signal
is absent. Due to the presence of noise, the species con-
centrations will now fluctuate around the steady state
u∗. Generally, one can use linear noise approximation
(LNA) [15,26] to investigate the noise properties. By
performing Taylor expansions of the regulation func-
tions fx, fy, and G at u∗ and keeping only to the linear
terms, one can obtain a linear differential equation gov-
erning the time evolution of species numbers n=uV (V
is the system volume) written in a vector-matrix form,

dn
dt

= (W − Γ)n + c (8)

where W denotes the regulation matrix whose entry
Wij denotes the regulation coefficient of species j on
species i, Γ is a diagonal matrix with Γij=δijγi where
γi is the degradation constant of species i, and c is a
vector consisting of the constant parts in Eq.(1) after
the Taylor expansion. (From now on, we will use bold-
capital letters for matrix and bold-lowercase ones for
vectors). Note that the entries of W can be positive or
negative depending on the sign of the regulation. Such
a linear approximation corresponds to a linear birth-
death reaction network as follows,

ni → ni + 1 (with rate
∑

j

Wijnj + ci) (9)

ni → ni − 1 (with rate γini) (10)

for i=1, . . . , 6. These processes are discrete, ran-
dom and Markovian, and can be described by the
following master equation governing the time evo-
lution of the joint probability distribution function
P (n1, ..., n6; t)≡P ({ni}; t)

∂P ({ni}; t)
∂t

=
∑

i

{
(<i

−1 − 1)
[( ∑

j

Wijnj + ci

)
·

P ({ni; t})
]

+ (<i
+1 − 1) ·

[γiniP ({ni; t})]
}

(11)

where the operator <i is defined as

<±1
i f ({ni}; t) = f (n1, ..., ni ± 1, ..., n6; t) (12)

C. Fluctuation equations

Usually, the fluctuation of ni is characterized by its
variance σi=〈n2

i 〉–〈ni〉2 where 〈·〉 means expectation.
For gene expression problems, one often use the so-
called Fano factor, defined as ϕi=σi/〈ni〉, that char-
acterizes the deviation of the stochastic process from
a Poisson one for which ϕi=1. To calculate σi, it is
convenient to use the method of generating functions
as shown in Ref.[26]. We will not go into details, but
outline the main idea here.

We can define a generating function as

F ({si}; t) =
∑

{ni}

(∏

i

si
ni

)
P ({ni}; t) (13)

which, according to Eq.(11), satisfies

∂F ({si}; t)
∂t

=
∑

i

(1− si)
[
γi(∂iF )−

∑

j

Wijsj(∂jF )− ciG
]

(14)

wherein we have used ∂j to represent the partial deriva-
tive of the variable sj . Notice that F |1= 1,

∂iF |1 = 〈ni〉 (15)
∂iiF |1 = 〈ni

2〉 − 〈ni〉 (16)
∂ijF |1 = 〈ninj〉 (17)

where |1 means evaluating the expression at (si=1,∀i).
By calculating first derivative of si on both sides of
Eq.(14) and evaluating at 1, one can reach the equation
for the expectation values 〈ni〉,

d 〈ni〉
dt

=
∑

j

Wij 〈nj〉−γi 〈ni〉+ ci (18)

and in the matrix-vector form,

d 〈n〉
dt

= (W − Γ) 〈n〉+ c (19)

Note that Eq.(19) is the same as Eq.(8). By taking the
second derivative, we can obtain the evolution equation
of the matrix B={Bij=∂ijF |1} as

dB
dt

= (W − Γ)×B + B×
(W − Γ)T +

(
L + LT

)
(20)

where Lij = (Wij + ci) 〈nj〉 (21)

The variance and Fano factor read

σi = Bii − 〈ni〉2 + 〈ni〉 (22)

ϕi = 1 +
Bii − 〈ni〉2

ni
(23)
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In the absence of external signal, Eqs.(19) and (20) ad-
mit steady state solutions,

〈n〉∗ = − c
W− Γ

(24)

B∗ = Lyap
(
W − Γ,L + LT

)
(25)

where Lyap(M,N) denotes the solution of Lyapunov
matrix equation

M×X + X×MT + N = 0 (26)

We now consider that a small external signal with
0<A¿1 is input into X. In this case, both the expec-
tation values and variances are periodic functions. For
a single gene expression process, it is still possible to
analytically obtain the equation of the periodic fluctua-
tions as done in Ref.[25]. For the FFL considered here,
however, such a purely analytical treatment is not pos-
sible. Nevertheless, thanks to the fact that A is fairly
small, one may still perform linear noise approximation
as shown above. It is reasonable to assume that ni (t)
will oscillate with a small amplitude around ni

∗, and
to the lowest order of approximation, one can still ob-
tain Eqs.(19) and (20), given that the vector c is now
replaced by

c (t) = {ci (t) = ci,0 + δi1 ·A cos (ωt)} (27)

We can thus perform numerical simulations of Eqs.(19),
(20), and (27) to investigate the fluctuation properties
under the stimulus of a small input signal.

III. RESULTS

In Ref.[25], the authors have shown that a single
gene expression process with negative self-regulation
and subject to periodic external signal can show FR
behavior. In the case of a single gene, one mainly ac-
counts for the fluctuation properties of the protein P .
As stated above, the expectation value 〈P 〉 and variance
σP of the protein number are both periodic functions
of time with the same frequency as that of the signal.
One can use

δP (t) = σP (t)− 〈P (t)〉 (28)

to represent the deviation from a Poisson process, and
it is also a periodic function. We may write

〈P (t)〉 = P0 + Xp cos (ωt) (29)
σP (t) = σ0 + XPP cos (ωt) (30)

then FR tells that the factor

ηp =
|Xpp|
|Xp| (31)

shows a clear resonance effect with the signal frequency,
i.e., ηp reaches a maximum when ω=2ω0 with the char-
acteristic frequency

ω0 =
√

k1kp + γRγP (32)

where kp is the translation coefficient, γR and γP are re-
spectively the degradation constants of the mRNA and
protein, and k1>0 is the negative regulation coefficient
of the gene itself.

In the present work, the dynamics of gene X is not
affected by those of gene Y and Z. Therefore, X should
show the same FR behavior as above. We note that the
resonance condition ω=2ω0 was obtained analytically
in [25], and we thus can use it to test the validity of
Eqs.(19), (20), and (27). In our notation, we can write

〈ni (t)〉 = ni,0 + Xi cos (ωt) (33)
δi (t) = δi,0 + Xii cos (ωt) (34)

for i=1,. . .,6, and the characteristic frequency should be

ω0 =
√

γ1γ2 −W12W21 (35)

in the case of negative self-regulation on gene X, W12<0.
The numerical results are shown in Fig.2, where

η2 =
|X22|
|X2| (36)

here the subscript ‘2’ refers to the second component
of the state vector, i.e., Px. Eq.(32) shows a clear
peak exactly at 2ω0, which demonstrates that validity
of Eqs.(19), (20), and (27).

We now consider the fluctuation properties of the Y-
mRNA and protein. Note that protein X can act as an
activator or repressor for the transcription of gene Y.
The results are shown in Fig.3 for typical parameters,
where η4 for protein Y is depicted for X to be an ac-
tivator (a) and a repressor (b). FR is still observed in
both cases; however, the resonance peak now appears

FIG. 2 Fluctuation resonance of gene X in the FFL. The
factor η2 for the protein X is depicted as a function of
ω/ω0. The matrix or vector elements are transcription rate
c1=0.01 s−1, translation rate W21=5.8×10−3 s−1, degrada-
tion constants for X-mRNA γ1=0.2×10−3 s−1 and X-protein
γ2=0.1×10−3 s−1, the negative regulation constant W12=–
0.5×10−4 s−1, and W11=W22=c2=0. The characteristic fre-
quency is ω0, as shown in Eq.(35) from now on. The signal
amplitude is A=0.05.
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FIG. 3 Fluctuation resonance of gene Y in the FFL. The factor η4 for the protein Y is depicted as a function of external
frequency ω/ω0. (a) X is an activator. (b) X is a repressor. The parameters for gene Y are the same as those for X, i.e.,
c3=0.01 s−1, W32=5.8×10−3 s−1, γ3=0.2×10−3 s−1, γ4=0.1×10−3 s−1 and W33=W44=c4=0. The regulation constant is
W34=±0.5×10−4 s−1 depending on the sign of regulation. A=0.05. The lines are drawn to guide the eyes.

FIG. 4 Fluctuation resonance of gene Z for four coherent types of FFL. The parameters for gene X and Y are the
same as in Figs. 2 and 3. The translation and degradation rates for Z are also the same as those for X and Y, i.e.,
W65=5.8×10−3 s−1, γ5=0.2×10−3 s−1, γ6=0.1×10−3 s−1. The parameters associated with the regulations are: regulation
strength kz=0.5×10−4 s−1, hill coefficient n=2, c5=0.01 s−1, W55=W66=c6=0. The lines are drawn to guide the eyes.

near ω=1.5ω0. In addition, for X to be an activator,
the main peak is accompanied by a much smaller one
at ω≈0.3ω0. Since an analytical expression for η4 is not
available, the locations of the peaks cannot be exactly
identified. For other choice of parameters, the observed
phenomena are qualitatively similar.

The situation for gene Z is much more complicated
because it is regulated by both gene X and Y. Our main

finding is that the overall FR behavior of protein Z de-
pends on whether the FFL is coherent or not. We may
use the three regulation signs (SX→Z, SX→Y, SY→Z) to
characterize the FFL type, where S is +(–) for a pos-
itive (negative) regulation. Figure 4 and 5 show the
FR behaviors for protein Z for all the eight types of
FFLs. The four coherent FFLs are then denoted by
(+++), (−−+), (+−−), and (−+−), respectively, and
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FIG. 5 Fluctuation resonance of gene Z for four incoherent types of FFL. The parameters are the same as in Fig.4. The
lines are drawn to guide the eyes.

those four incoherent types are (++–), (−−−), (−++),
and (+−+), respectively. The regulation constant W56

is obtained from Taylor expansion of the Hill function
G (Px, Py) around the steady state. Interestingly, for all
coherent FFLs, the η6 factor for protein Z shows a sin-
gle remarkable peak at an intermediate frequency, how-
ever, for all incoherent FFLs, the η6 exhibits a clear-cut
bimodal shape. In addition, types 2 and 4 (either co-
herent or incoherent) show much larger η-factors than
those of types 1 and 3, which remains an open ques-
tion to us. Such observations are robust to parameter
choices, given that a steady state can be achieved in the
absence of the external signal. Therefore, the FR be-
havior of the Z protein provides a useful way to deduce
the coherent structure of the FFL, which might be of
practical interest in the reverse engineering of real gene
regulatory networks.

IV. CONCLUSION

In summary, we studied the fluctuation properties of
a feed forward loop (FFL) motif subject to small ex-
ternal signal, by using a chemical master equation and
linear noise approximation. In an FFL, a gene X can
regulate the target gene Z alone or cooperatively with
gene Y, and it can be coherent or incoherent depend-

ing on the signs of the regulations. Particular attention
is paid to the so-called fluctuation resonance (FR) be-
haviors, which describe to what extent the fluctuation
of the protein number deviates from that of a Poisson
process, of the three proteins involved in the FFL. Most
interestingly, we find that FRs of the target gene Z show
regular bell-shapes for coherent FFLs, while they show
distinct bimodal shape for incoherent FFLs. Such a
finding indicates that one might use a small external sig-
nal to identify the coherent structures of an FFL which
could be of practical interest in reverse engineering gene
regulatory networks.
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