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Abstract 

Considering the gas-phase fluctuations in the Monte Carlo simulation, we construct a stochastic differential equation and the 
corresponding Fokker Planck equation to describe the state evolution of the dimer-monomer (DM) surface reaction model. We 
find that the well-known first-order irreversible phase transition characteristic of the DM model may be viewed as a noise-induced 
transition. © 1998 Elsevier Science B.V. 
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The subject of reaction kinetics and irreversible 
phase transitions (IPTs) in surface catalysis 
has gained increasing attention in recent years. 
The dimer-monomer (DM)  model:A + ½Bz---~AB , 
which is also known as the ZGB model, has been 
extensively studied since the work of  Ziff, Gulari 
and Barshad [1,2]. This model is based upon the 
Langmuir-Hinshelwood (LH)  mechanism, i.e. 
both the reactants are adsorbed on the surface. It 
is assumed that the reaction occurs according to 
the following steps: 

A g + S ~ A a ,  B z + 2 S ~ 2 B a ,  A , + B ~ A B g + 2 S ,  

where subscript g and a refer to gaseous and 
adsorbed species, respectively, and S denotes an 
empty site. In a Monte Carlo simulation (MCS), 
the monomer A adsorbs at single empty sites with 
rate YA, the dimer B 2 adsorbs at adjacent pairs of  
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empty sites with rate YB = 1 --YA, and the reaction 
between different species adsorbed at adjacent 
pairs of  sites occurs instantaneously. The most 
distinctive feature of  the DM model is the occur- 
rence of a first-order A-poisoning IPT at high 
ya=Y2 and a second-order B-poisoning IPT at 
low YA =Yl" When evolving from an initial lattice 
half empty and half saturated by A, y2=0.525; 
while for initially empty lattice, y2=0.5277 [3,4]. 
For both cases, the second-order IPT exists at 
Yl =0.3905. 

Some theoretical approaches have also been 
proposed to describe the DM model [5-17]. Exact 
rate equations for site concentrations and the 
probability of  various larger configurations to 
which they couple, can be readily obtained after 
accounting for all adsorption or reaction events 
which create or destroy these configurations. 
However, near the first-order IPT, where the 
steady-state correlation length is finite, approxi- 
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mate treatment of the spatial ordering usually 
produces reasonably accurate results. Such treat- 
ments include site approximation (SA) [5,7-11] 
which neglects all correlations, pair approximation 
(PA) [5-8,11,12] accounting for nearest-neighbour 
correlations, the Kirkwood or superposition 
approximation (KA)[7], the Mamada-Takano 
approximation (MTA) [13-15] and the complete 
stochastic ansatz [13-17] which considers long- 
range correlations. Better predictions of the 
second-order IPT-value Yl are obtained if higher- 
order correlations are accounted for, which indi- 
cates that long-range correlations are very impor- 
tant near Yl. All these treatments, however, predict 
the same spinodal point, ys=0.561, for the DM 
model (the first-order IPT occurs here according 
to these treatments), showing that long-range cor- 
relations are not so important in the neighbour- 
hood of the first-order IPT. 

One notes, however, the MCS value of the 
first-order IPT y2=0.525 is substantially below 
ys=0.561. According to the discussion in the last 
paragraph, this discrepancy is not due to the 
approximation of the correlations. One may argue 
that the effect of the initial condition should be 
accounted for, say, a half empty initial lattice is 
used to determine Y2 in MCS [1,2] while y~ is 
obtained from an initially empty lattice. When 
using an initially empty lattice in the MCS, one 
obtains y2=0.5277 rather than 0.561. However, 
on the other hand, although for X°A =X0s=0.5 
(here x°j represents the initial coverage of/j-pairs), 
PA-MFT predicts y2=0.5241 [5] which is in 
agreement with the MCS. Evans [7] argued that 
this may be an artifact of the MFT approximation 
and the results should be viewed with scepticism. 
Further works [6,12] using PA-MFT also indicated 
that it cannot be uniformly determined which 
initial condition to choose in the MFT approxima- 
tion to maintain consistency with the MCS results. 
Evans has proposed the epidemic analysis and 
scaling approach [7] to study the critical behaviour 
near Y2. He argued that the DM model has some- 
what "bistable" feature [10] between a low XA 
reactive state and the A-poisoning state and when 
YA goes across Y2, the stable reactive state predicted 
by MFT becomes "metastable" and, therefore, a 
first-order phase transition occurs, for example the 

system jumps into the more stable A-poisoning 
state. 

From the above discussions, one concludes that 
another factor rather than long-range correlation 
and initial condition should be responsible for the 
occurrence of the metastability and the discrepancy 
between Y2 and Ys. In fact, noise often plays an 
important role in non-equilibrium nonlinear sys- 
tems. The fluctuations of the control parameters 
can lead to multiplicative noise which may result 
in noise-induced transitions [18,19]. For example, 
noise can induce bistability in the monomer-mon- 
omer model, while a MFT description of which 
deterministically predicts monostability [20]. Very 
recently, a study of the Brusselator model has 
shown that noise can induce new spatial and 
temporal structures [21]. Note that in the MCS of 
the DM model, the fluctuation of the adsorption 
rate of A o r  B 2 is unavoidable, which should be 
considered in the descriptions of the state-evolu- 
tion of the system. This fluctuation may result in 
a loss of stability of the reactive state at another 
spinodal point y~ < 0.561 and one expects that the 
first-order IPT obtained by MCS may be viewed 
as a noise-induced phase transition. 

Since correlation is not so important close to 
Y2, we can begin with the SA-MFT deterministic 
equations of motion: 

dXA 

dt 
- -  =yAXs(1--X~) 4 --2yBX2[1 --(1 --XA)3], (1) 

d x  B 

dt 
- 2yBx2(1 --XA) 3 --yAXs[1 --(1 -- XB)4], (2) 

where xi ( i=A,  B or S) stands for /-site concen- 
tration and Xs = 1 -  XA--XB. Note that in the pre- 
sent paper, we will consider YA as a stochastic 
variable and assume that it is modulated by an 
additive Gaussian white noise (see the text below). 

To construct the Langevin equation and, accord- 
ingly, the Fokker-Planck equation, we will first 
reduce the two coupled nonlinear equations to the 
state evolution equation of XA. Note that in the 
steady state, the sticking probability of A and B 2 

are exactly equal: 

YA XS --- 2yB X~. (3) 
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Therefore, near the steady state, one expects that 
Eq. (3) also holds approximately, say 

)' A XS -- 2yB X~ = e, (4) 

where e is a small quantity near zero. Hence one 
has 

YA e 
x~ - (5 )  

2y8 YA 

Substituting Eq. (5) back into Eqs. (1) and (2), 
we obtain 

dXA 
=YAXs[(1 -- XB) 4 +(1 -- Xa) 3 -- 1] (6) 

dt 

+e[1 --(1 --XA)3], 

dx8 
- -  y A.fS[(  1 - -  XB ) 4 "4- ( 1 - - X A )  3 - -  1] - e (  1 - -  X A) 3 . 

dt 

(7 )  

Note that near the A-poisoning IPT point, XA 
and x~ are anti-correlated, i.e. dxA/dt  and dxB/dt 
have contrasting signs. If YA is very close to Y2, 
both MCS and PA-MFT show that before the 
system is poisoned by A or reaches the reactive 
steady-state, there exists a long relaxation time 
when Xs hardly varies [5,22]. Thus, one can reason- 
ably assume that, near Y2 and near the steady 
state, 

dXA dxB 
- - +  -~0. (8) 

dt dt 

Finally, we obtain the deterministic equation of 
motion with respect to XA: 

d x  A 
- -  = Ya Xs [(XA JV NS)4 

dt 

+(1 - x A )  3 - 1 ] +¢(1 --XA) 3, (9) 

where Xs is given by Eq. (5). Note that this equa- 
tion only holds close to Y2 and close to the steady- 
state. Based on Eq. (9), one can take into account 
fluctuations ofyA and then determine the influence 
of noise on the bifurcation character of  the system. 

We can now account for the fluctuation of the 
adsorption rate of A simply by replacing YA by 
YA + F(t) ,  where F(t)  is the Gaussian white noise 

with: 

( F ( t ) )  =0,  ( F ( t ) F ( t ' ) ) = 2 D b ( t - - t ' ) ,  (10) 

where D denotes the noise intensity. Here, the use 
of a Gaussian white noise is a standard procedure, 
for in most situations the magnitudes of external 
fluctuations are distributed according to Gaussian 
distribution which can be understood as a conse- 
quence of the central limit theorem. One should 
note that this may result in certain problems due 
to the unlimited fluctuations associated with 
Gaussian white noise. However, one expects that 
this would not affect the conclusion of the pre- 
sent paper. 

According to Eq. (9), the stochastic differential 
equation (Langevin equation) reads (we rewrite 
X A by x): 

dx 
- -  = f ( x ,  e )+g(x ,  e)F(t) ,  (11) 
dt 

where 

J~X, 6)= - - y a X s [ ( X + X s )  4 

+(1 --x)  3 -- 1)] +e(1 --x)  3, 

g ( x , c ) -  
yA(2- -yA)  

2(1 -ya )  2 
[(x + Xs) 4 + ( l  - x )  3 - 1] 

Ii 1 + 4yA~S (X + £S) 3 . 
1 --yA) 2 y2A 

The corresponding Fokker-Planck equation 
reads 

ap(x, t) a 

8t 8x 
If(x, e)p(x, t)] 

+ D - -  
#x 

0 
Ig(x ,  e )~xg (X ,  e)p(x, t ) l ,  

(12) 

where p(x,  t) is the probability density. To obtain 
the steady state solution, one sets e =0  and 3p(x, 
t)/St =0. Here, we would like to explain the role 
of  e used in the present paper. In fact, we first 
take advantage of e to reduce the two coupled 
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nonlinear equations to the evolution equation 
of xA, Eq. (9), which is used to construct the 
Langevin equation and the corresponding 
Fokker-Planck equation. Finally, since we only 
consider the steady-state bifurcation character of 
the system, we reset e to zero. 

Hence the steady-state solution is given by 

p S t ( x ,  e = O )  = 

N e x p { ~  f(y'E=O)-Dg(y'e=O)g'(y'e=O)Dg2(y, e=O) dy }, 

(13) 

where N is a normalization constant and g'(x, e) 
denotes the derivative of g(x, e) with respect to its 
argument x. The extrema )~ of the steady-state 
density obey the following equation (notice the 
maxima of pSt(x, e = 0 )  correspond to the steady- 
state coverage of A species): 

f(X, e=O)-Dg(£ ,  e =0)g'(~, e = 0 )  =0.  (14) 

For small values of YA there are two solutions 
for Eq. (14), £< and ~>(ff< _<if>), in the interval 
[0, 1], which coalesce when YA:Ys, where Ys 
denotes the spinodal point. The lower branch 
(:~<) is stable and the higher branch (2>) unstable. 
Therefore, when YA increases from 0, the system 
evolves into a low- .~  a reactive steady-state until 
YA=Ys, it jumps into the A-poisoning state such 
that a first-order transition occurs. If D = 0  and 
e = 0, one finds that in the reactive steady-state 
satisfies 

(X S .q_ ~)4 -~'- ( 1 - - . ~ A )  3 - -  1 =0,  (15) 

such that a spinodal point exists at y~=0.561. This 
is in agreement with Ref. [5]. If D ~ 0  and e=0 ,  
we find a left-shifting of  the spinodal point. In 
Fig. 1, we show the solutions of Eq. (14)  for 
different values of D. When D ~-0.0022, the spino- 
dal point exists at y~-~0.525, which coincides with 
the MCS value of  the first-order IPT. 

In the present paper, we have considered the 
fluctuation ofyA in the DM model and constructed 
a stochastic differential equation and the corre- 
sponding Fokker-Planck equation for the state 
evolution of  the system, especially in the vicinity 
of the first-order A-poisoning transition point. The 
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Fig. 1. The extrema of the steady-state density pSt(x, e) for three 
different values of D and e = 0. The dash branches denote the 
maxima and the solid branches the minima. At the spinodal 
point the two branches coincide. (1) D=0, ys=0.561; (2) D= 
0.0022, ys=0.5258; (3) D=0.005, ys=0.5033. 

maxima of the probability density with respect to 
XA gives the steady-state coverage of A species. We 
find the spinodal point Ys is left-shifted if the noise 
intensity D is increased. For a rather small noise 
intensity D-~ 0.0022, Ys changes from 0.561, which 
is the spinodal point of the deterministic equations 
of motion, to 0.525, which is obtained by Monte 
Carlo simulation. From this point of view, we 
argue that the occurrence of the metastability, 
proposed by Evans, results from external noise in 
the gas-phase and, therefore, the first-order IPT in 
the DM model may be viewed as a noise-induced 
phase transition. 
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