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We investigate the effect of topological disorder on a system of forced threshold elements, where
each element is arranged on top of complex heterogeneous networks. Numerical results indicate
that the response of the system to a weak signal can be amplified at an intermediate level of
topological disorder, thus indicating the occurrence of topological-disorder-induced resonance. Us-
ing mean field method, we obtain an analytical understanding of the resonant phenomenon by
deriving the effective potential of the system. Our findings might provide further insight into the
role of network topology in signal amplification in biological networks. © 2009 American Institute
of Physics. �DOI: 10.1063/1.3211131�

Many social, biological, and physical phenomena have
been well understood on the topology of complex net-
works. Wide studies of complex networks have shown
that dynamics taking place in heterogeneous networks is
dramatically different from that in homogenous net-
works, such as epidemic spreading, synchronization pro-
cess, and percolation. In view of this, it is necessary that a
new type of topological disorder should be introduced.
However, there is lack of unique definition of topological
disorder at present. Alternatively, we propose a definition
of topological disorder via measuring the disparity of de-
gree distribution. We numerically and analytically dem-
onstrate an interesting phenomenon, topological-
disorder-induced resonance, by using coupling forced
threshold elements on complex networks. Our results
might have potential importance in understanding the
role of network topology in the process of signal amplifi-
cation of real biological networks such as neural network.

I. INTRODUCTION

It is well known that many social, biological, and physi-
cal systems can be properly described by complex networks
whose nodes represent dynamical individuals and links
mimic the interactions among them.1 The study of complex
networks has indicated that many real-world networks ex-
hibit small-world2 and scale-free �SF� �Ref. 3� features that
are neither regular nor completely random. On the other
hand, many authors have laid their attentions to dynamical
process happening on top of complex networks. Specially,
vast researches in this field have shown that dynamical be-
havior on heterogeneous networks is dramatically different
from that on homogeneous networks.4 For instance, topologi-
cal disorder could lead to a vanishing percolation threshold,5

the whole infection of disease with any small spreading rate,6

the Ising model to be ordered at all temperatures,7 the tran-
sition from order to disorder in voter models,8 synchroniza-
tion to be suppressed9 and different path toward
synchronization10 in oscillator network, spatiotemporal chaos
to be tamed,11 cooperative behavior to be enhanced in evo-
lutionary game,12 etc.13

In such complex systems, there exists an important kind
of disorder, namely, topological disorder. Although a great
many investigations have recognized the importance of this
kind of disorder, there is lack of unique definition so far. In
fact, one of the most major sources of topological disorder is
the disparity of node degree, where node degree is the num-
ber of edges connecting with the node. Therefore, it is fea-
sible to characterize the topological disorder by standard de-
viation of node degree, as an alternative definition of the
topological disorder. Disorder sometimes plays a counterin-
tuitive role, for example, noise sometimes changes its role of
conventional nuisance to a benefit. This is well known as
stochastic resonance �SR�,14 in which the right amount of
noise is able to make a nonlinear dynamical system behave
more regularly. Seminal works within the context of SR have
been related to a weak forced bistable system15 or excitable
media16 together with noise. When referring to the topologi-
cal disorder, it is natural to ask whether the topological dis-
order induces a resonant behavior. In particular, in Ref. 17 it
has been shown that the response of a SF network of bistable
elements to weak external signals could behave a resonant
phenomenon with the increment of coupling strength. It was
also pointed out that network heterogeneity or topological
disorder should be responsible for such a resonance effect. In
this paper, we wish to demonstrate that a resonant behavior is
solely induced by topological disorder under the condition of
without changing any other parameters. To the end, we here
consider a system of coupled threshold elements, where the
state of each element takes a binary value 0 or 1, which is
simultaneously decided by the states of its neighbors as well
as an external signal. The system is modeled via a networkeda�Electronic mail: hzhlj@ustc.edu.cn.
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structure where nodes denote threshold elements and links
connect them. We find that collective response of the system
to the weak signal can be amplified at an intermediate range
of the topological disorder, thus indicating the occurrence of
topological-disorder-induced resonance.

The rest of this paper is organized as follows. In Sec. II,
we propose the model and the approach to construct net-
works. Numerical simulation results of the model are pre-
sented in Sec. III. Mean field analysis is put forward in Sec.
IV and main conclusions and discussion are addressed in
Sec. V.

II. MODEL

We consider a model of N coupled elements on underly-
ing networks, where the states of nodes si=0, 1, i
� �1, . . . ,N� are binary. The state is updated according to the
following rule:18

si�t + 1� =��� 	
j��i

sj�t� − Kh
 , w.p. 1 − �f�t��

��f�t�� , w.p. �f�t�� ,
� �1�

where w.p. denotes “with probability,” �i is the set of neigh-
bors of node i, and �� · � is the Heaviside step function.
f�t�=A sin �t is the input signal, where A and � are the
amplitude and frequency of the signal, respectively. h is the
threshold and K is average degree. The model is a rather
general paradigm for many real systems. The two states can
be interpreted as being in favor of an opinion or not, a neu-
ron being firing or not, a gene being expressed or not, or
several others.

We first construct a network where node degree follows
Gaussian distribution. The network is generated according to
the Molloy–Reed model:19 Each node is assigned a random
number of stubs k that are drawn from a specified degree
distribution. Pairs of unlinked stubs are then randomly
joined. This construction eliminates the degree correlations
between neighboring nodes. We ensure that the average de-
gree K keeps constant and let the standard deviation of de-
gree �g as the measure of topological disorder. Initially, each
node is randomly assigned a state s�0�=0 or s�0�=1 with
equal probability 1/2. We perform numerical calculations by
Monte Carlo simulation. At each run, the first 104 time steps
are discarded to achieve steady state and the following 104

time steps are used to investigate the system’s dynamics.

III. NUMERICAL SIMULATION

In Fig. 1, we plot the time evolution of the mean field
m�t�=N−1	i=1

N si�t� for different �g, with relevant parameters
N=1000, K=20, h=0.5, A=0.28, and �=0.05. One can no-
tice that m oscillates with different fashions for different �g.
For �g=0 or relatively small values of �g, m oscillates
around the value one �or zero when the initial value m�0�
�0.465� with the amplitude close to that of the input signal
A. As �g increases, e.g., for �g=6, m oscillates nearly in the
whole allowable range �0, 1� so as to dramatically increase
the amplitude of the oscillations. With �g increasing again,

m�t� oscillates around a certain center value irrespective of
m�0�, and both the amplitude and center value decrease as �g

increases.
To quantify the response of the system to the input sig-

nal, we calculate the spectral amplification factor R, defined
as the ratio of the output to input power at the corresponding
driving frequency20

R = 
 4

A2 ���m�t�e−i�t���� , �2�

where ��¯ �� and �¯ � denote average over time and initial
conditions, respectively. The dependence of R on �g for dif-
ferent A is shown in Fig. 2 with relevant parameters N
=1000, K=20, h=0.5, and �=0.05. Here the amplitude of
the input signal is set to be subthreshold, i.e., without topo-
logical disorder the response of the system to the signal is
very faint. Each datum is obtained via averaging over 50
different initial conditions and network realizations. With an
increment of �g, R reaches a maximum Rc and then de-
creases, with Rc corresponding to a moderate magnitude of
topological disorder, and thus indicating the occurrence of

FIG. 1. �Color online� Time evolution of mean field m for different �g on
heterogeneous networks with Gaussian degree distribution. The other pa-
rameters are N=1000, K=20, A=0.28, �=0.05, and h=0.5.

FIG. 2. �Color online� R as a function of �g on heterogeneous network with
Gaussian degree distribution for different A with relevant parameters N
=1000, K=20, h=0.5, and �=0.05. Symbol and solid line correspond to
simulation result and analytical one, respectively. The inset depicts R as a
function of � with A=0.28 and �g=5 fixed.
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topological-disorder-induced resonance. As the magnitude of
the signal A increases, the resonant peak becomes broader,
the maximal height of the peak becomes lower, and the lo-
cation of the peak slightly shifts to left. As � increases, R
decreases monotonously and then vanishes when � becomes
rather large, as shown in the inset of Fig. 2.

We now introduce a quantity � to characterize the syn-
chronization behavior of the model, which is defined as

� = ����t��� with ��t� =�	i=1
N �si�t� − m�t��2

N − 1
, �3�

where � · � stands for averaging over time and � · � denotes
averaging over different network realizations for each data
point. Large ��t� represents large deviation between the ele-
ments, and small ��t� better synchronization. The extreme of
��t�=0 indicates complete synchronization. Figure 3 depicts
the dependence of � on �g for different A. One can see that
the value of � increases monotonously with �g for A=0.28
and A=0.3. While for A=0.32, the value of � begins to de-
crease slightly and then increases as �g increases. Contrast-
ing with Fig. 2, one can notice that the best synchronization
just happens near Rc.

IV. MEAN FIELD ANALYSIS

In order to unveil the possible mechanism behind the
above resonant phenomenon, we define mk as the probabili-
ties that a node with degree k is in state s=1, and q as the
probability that for any node in the network, a randomly
chosen nearest neighbor node is in state s=1. Furthermore,
for any node the probability that a randomly chosen nearest
neighbor node has degree k is kPk /K, where Pk is degree
distribution defined as the probability that a node chosen at
random has degree k. It is supposed to be reasonable only in
networks without degree correlation. The probabilities mk

and q satisfy the relation

q�t� = 	
k

kPkmk�t�/K . �4�

Note that q�t� differs, in general, from m�t�=	kPkmk�t�. In
particular, for all nodes that are in state s=0 or in state s

=1, one has q=m=0 and q=m=1, respectively. Suppose q is
already known at a certain time t, one can calculate mk at the
next time step. According to the evolution rule defined by
Eq. �1�, in the absence of the external signal one has

mk�t + 1� = F�k,q� = 	
p=�Kh�

k

B�k,p,q� , �5�

where � · � is the ceiling function and B�k , p ,q�=k ! / p ! �k
− p!�qp�1−q�k−p is the binomial distribution. Thus, we insert
Eq. �5� to the right-hand side of Eq. �4�, which yields the
evolution equation of q,

q�t + 1� = �1�q�t�� = 	
k

kPkF�k,q�t��/K . �6�

The evolution equation of m is readily written as

m�t + 1� = �2�q�t�� = 	
k

PkF�k,q�t�� . �7�

We now add the external signal to Eqs. �6� and �7�, which
become

q,m�t + 1� = �1 − �f�t����1,2�q�t�� + �f�t����sin �t� . �8�

We iterate Eq. �8� and then calculate the spectral amplifica-
tion factor R as a function of �g, as indicated by line in Fig.
2. It is clear that the theoretical analysis well predicts the
trends that R changes with �g and A.

From time evolution of m �shown in Fig. 1�, there ap-
pears to be some clues which the system behaves bistable.
Actually, by iterating Eq. �7�, we find that for initial value of
the mean field m0�mb, m converges to one stable fixed point
mw1=0, or else another one mw2�0, which may imply the
system is of bistable. Also, the evolution equation �6� has
two stable fixed points qw1 and qw2, and an unstable one qb.
In Fig. 4�a�, we show these fixed points as a function of �g.
For any �g, one has mw1=qw1�0, mb=qb, and mw2	qw2. On
the other hand, as �g is increased, mb, qb, and mw2 monoto-
nously decrease, while qw2 decreases and then slightly
increases.

It is interesting to visualize the effective potential V�m�
of the system, which can be done by converting the mean

FIG. 3. �Color online� � as a function of �g on heterogeneous network with
Gaussian degree distribution for different A with relevant parameters N
=1000, K=20, h=0.5, and �=0.05.

FIG. 4. �Color online� �a� mb �qb�, mw1�qw1�, and mw2�qw2� as a function of
�g. �b� The effective potential of the system for three typical values of �g.
�c� The height between potential wells and potential barrier 
V �scheme in
�b�� as a function of �g.
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field equation to relaxational dynamics as dm /dt=m�t+1�
−m�t�=−�V�m� /�m. For this purpose, we replace q�t� in Eq.
�7� with m�t�+��t�, where ��t�=q�t�−m�t� can be calculated
by Eqs. �6� and �7�. Thus, the effective potential V�m� can be
expressed as

V�m� =
m2

2
− �m

	
k

PkF�k, �Kh�,m� + ��dm�. �9�

In Fig. 4�b�, the effective potentials for several typical values
of �g are shown with relevant parameters h=0.5 and K=20.
One can clearly distinguish that for �g=0 �homogeneous net-
work� there exist two asymmetric potential wells mw1, mw2,
separated by a potential barrier mb. If we apply an external
signal to the system and guarantee the signal is weak enough,
m will oscillate around one of the two potential wells �de-
pending on the initial condition� with the amplitude compa-
rable with that of the signal. As �g is increased from �g=0,
the potential barrier and the potential well locating at mw2

slightly shift to left, as shown in Fig. 4�a�. More importantly,
the potential barrier is lowered and the potential well locat-
ing at mw2 is raised, leading to the height decrease between
them, 
V1 and 
V2 �shown in Fig. 4�c��. Thus the system
may surpass it from one potential well to another such that
the response of the system to the weak signal is amplified.
When �g is further increased, 
V1 still decreases but 
V2

begins to increase. As a result, one potential well becomes
very shallow but another one becomes very deep. With time
evolution, the system quickly falls to the deeper potential
well, and thus the system may fail to surpass the potential
barrier again.

In the following, we will consider other two types of
networks with node degree that follows uniform distribution
and power law distribution, respectively. In both types of
networks, a resonant behavior induced by topological disor-
der also appears. First, we construct a network with uniform
degree distribution in which node degree is randomly se-
lected in the range �K−
 ,K+
�, where 
 is an integer be-
tween 0 and K−1. Similarly, the standard deviation �u

=
 /�3 is the measurement of topological disorder. In Fig.
5�a�, we give simulation result and theoretical one of R as a
function of �u for different A, which show excellent agree-
ment between them. It is clearly shown that a maximum R
arises at an intermediate value of �u. No matter which type
of network we use, topological disorder always gives rise to
a resonant response. Moreover, we also find in this case the
system has bistable potential. As shown in Fig. 5�b�, we draw
the bistable potential for three typical values of �u. Figure
5�c� depicts the height between the potential barrier and the
two potential wells, 
V1 and 
V2, as a function of �u. The
obtained results show that the underlying phenomena and
mechanism in uniform-degree-distributed network are simi-
lar to those in Gaussian-degree-distributed network.

In addition, we consider the present model on SF net-
work whose degree distribution follows a power law Pk

�k−�, where � is the scaling exponent. As shown in Fig.
6�a�, R exhibits a resonant dependence on �, where � varies
from �=1 to �=10. The maximal R occurs at �=3. With the
increment of �, the standard deviation of node degree �sf, as
a measurement of topological disorder, decreases monoto-
nously with � �cf. Fig. 6�b��. As a result, the weak signal can
be amplified only at the intermediate level of topological
disorder. Using the above analytical formulas �8� and �9�, we
obtain the result about R as a function of � and the result
about 
V1 and 
V2 of the effective potential as a function of

FIG. 5. �Color online� �a� R as a function of �u on heterogeneous network
with uniform degree distribution for different A. Symbol and line correspond
to simulation result and theoretical prediction, respectively. �b� The effective
potential of the system for three typical values of �u. �c� The height between
potential wells and potential barrier 
V �scheme in Fig. 4�b�� as a function
of �u. The other parameters are N=1000, K=20, h=0.5, and �=0.05.

FIG. 6. �Color online� �a� R as a function of the scaling exponent � on SF
networks. Symbol and line correspond to simulation result and theoretical
prediction, respectively. �b� The standard deviation of node degree �sf as a
function of �. �c� The height between potential wells and potential barrier

V �scheme in Fig. 4�b�� as a function of �. The other parameters are N
=1000, K=20, h=0.5, A=0.28, and �=0.05.
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�. Figure 6�c� shows that 
V1 increases monotonously with
�, while 
V2 depends nonmonotonously on � and a minimal

V2 appears at �=3.

V. CONCLUSIONS AND DISCUSSION

In summary, we show the influence of topological disor-
der on the collective response of coupled threshold elements
to a weak signal on complex network, where topological
disorder exhibits the disparity of node degree on the under-
lying network. We find that the collective response to the
weak signal can be amplified at a moderate level of topologi-
cal disorder. We analytically formulate mean field equation
and find that the effective potential of the system is bistable
in which the potential has two asymmetric potential wells
separated by a potential barrier. As topological disorder is
increased, the height of one potential well always decreases,
while the height of another one first decreases and then in-
creases. Only at a moderate level of topological disorder, the
system surpasses the potential barrier such that the system
makes amplifying response to the signal. Thus we gain good
understanding of topological-disorder-induced resonant
behavior.

Topological disorder introduced in this paper stands for
the disparity of node degree on the subject of complex net-
works, which can be easily distinguished itself from tempo-
ral disorder such as noise and spatial disorder such as diver-
sity in spatially extended systems.21,22 Although both
noise15,16 and diversity22 also induce a resonant behavior in
bistable or excitable system, the starting point of our work is
a different kind of disorder, i.e., topological disorder. Since
the heterogeneity of degree is widespread in many biological
network, our findings might give further understanding to-
ward the influence of heterogeneous topological structure in
the ability to amplify weak external signals.

Our numerical results and analytical treatment are based
on the heterogeneous networks without degree-degree corre-
lation. However, real-world networks often exhibit degree
correlation feature.23 Previous studies have shown that such
degree mixing patterns have a significant influence in collec-
tive behavior of complex networks.23,24 Therefore, the effect
of topological disorder in degree correlation networks on the
present model deserves further investigation.
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