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Revealing degree distribution of bursting neuron networks

Yu Shen,' Zhonghuai Hou,"?? and Houwen Xin'

1Depcmfmemf of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026,

People’s Republic of China

2Hefei National Lab of Physical Science at Microscale, University of Science and Technology of China,

Hefei, Anhui 230026, People’s Republic of China

(Received 27 September 2009; accepted 7 January 2010; published online 8 March 2010)

We present a method to infer the degree distribution of a bursting neuron network from its dynam-
ics. Burst synchronization (BS) of coupled Morris—Lecar neurons has been studied under the weak
coupling condition. In the BS state, all the neurons start and end bursting almost simultaneously,
while the spikes inside the burst are incoherent among the neurons. Interestingly, we find that the
spike amplitude of a given neuron shows an excellent linear relationship with its degree, which
makes it possible to estimate the degree distribution of the network by simple statistics of the spike
amplitudes. We demonstrate the validity of this scheme on scale-free as well as small-world net-
works. The underlying mechanism of such a method is also briefly discussed. © 2010 American

Institute of Physics. [doi:10.1063/1.3300019]

The relationship between the topology and dynamics on
complex networks has been an intriguing and interesting
topic in recent decades."” On the other hand, the phe-
nomena of spike and burst are of particular importance
in the neuronal system. A lot of models have been pro-
posed to understand the inner mechanisms and dynami-
cal behaviors of spiking and bursting neurons. How-
ever, how the topology of a neuron network would
influence its spiking or bursting activity is still an open
question. In this article, we have studied the collective
behavior of an ensemble of coupled Morris—Lecar (ML)
neurons. We found that when the neurons are burst syn-
chronized, the spiking amplitude of a given neuron is lin-
early dependent on its degree. Such a nice property pro-
vides us a useful way to derive the degree distribution of
a bursting neuron network from its bursting activities.

In the past decade, the physics of network has gained
great research attention'” ever since the pioneer work of
Watts and Strogatz5 about the collective properties of small-
world networks and that of Albert and Barabasi® about the
emergence of scale-free degree distribution in many real-
world networks. A central issue of this interdisciplinary sci-
ence has been how the network topology would influence the
dynamics taking place on it.” For instance, synchronization
of coupled chaotic oscillators is usually much easier on
small-world or scale-free networks than on a regular one,t
epidemic thresholds are absent on scale-free networks,” spa-
tiotemporal chaos can be tamed by random shortcuts on
small-world networks,' to list just a few. For many real
systems, such as networks of neurons, interacting proteins or
genes, however, important aspects of the network structure
are largely unknown. Therefore, “reverse engineering” meth-
ods to probe the network topology by studying various dy-
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namic behaviors prove to be very useful and have gained
growing attention recently.1 14 Yo er al! developed an ana-
lytical and numerical approach to estimate the topology of a
network based on the dynamic evolution on it. Arenas et al.
found that the transition process to synchronization can be
used to detect the community structure in a hierarchical net-
work. Timme'? showed that one can recover the topology of
a coupled oscillator network by investigating its response to
local stimulations. Bu ez al."* demonstrated that one can ro-
bustly estimate the degree distribution of coupled chaotic
oscillator networks via analysis of the time series. These
works have opened many perspectives in this direction and
developments of new methods applied to real systems are
still interesting and of ubiquitous importance.

In our previous work,15 we have studied the transition
from spatiotemporal chaos to burst synchronization (BS) of
coupled Hindmarsh-Rose (HR) neurons on small-world net-
works. We found “more degree, more spikes per burst” and
two transition mechanisms (“spike adding” and “‘change in
bursting type”) between different types of BS patterns. These
results indicate that a neuron’s degree plays a very important
role on its dynamics. Thus a very interesting question comes
to us: can we use this kind of relationship between the degree
and dynamics of a given neuron to perform reverse engineer-
ing, i.e., revealing degree distribution of a given neuron net-
work from the dynamics?

However, we find that the answer to this question is not
trivial. Actually we failed to deduce the degree distribution
of a HR network from its BS behavior. After a detailed in-
vestigation, we figured out that the failure is mainly due to
the nonstationarity of the HR neuron in the spiking zone, i.e.,
a neuron with more degree may attain more spikes through
dual pathways, one via spike adding and the other via bifur-
cation from fold-homoclinic (FHC) bursting to fold-Hopf
(FH) bursting. Therefore, we turn to ML model in the present
work, where the intrabursting behavior is more stationary.
Similar to the HR model, the ML neurons can also reach BS
state under the weak-coupling condition, where all the neu-
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rons start and end bursting almost simultaneously.16 In the
BS state, the bursting properties of a given neuron, such as
the number of spikes per burst, the bursting period, and the
spike amplitude Agy. of a given neuron, are shown to be
mainly dependent on its degree k. Interestingly, we find that
Agpike 18 an excellent decreasing linear function of £, i.e., the
more neighbors a neuron has, the smaller its spike amplitude
is. Such a linear relationship makes it possible to estimate the
network’s degree distribution by simply investigating the dis-
tribution of Agy.. Since real neuron networks often have
complex topology,l7 we have demonstrated the validity of
our scheme in scale-free networks with different scaling ex-
ponents vy as well as in small-world networks. We would like
to emphasize here that the present work addresses a different
problem as that in Ref. 15, i.e., revealing topology of a net-
work from its dynamics, and the linear relationship between
the degree and spike amplitude is a novel phenomenon that
was not observed in the coupled HR networks."

The ML model is a simplified version of the Hodgkin—
Huxley model which describes the spiking and refractory
properties of real neurons. For a single neuron, the trans-
membrane current is composed of the voltage-gated calcium
(Ca*) and potassium (K*) currents, the leaky current and a
slowly adapted external current. The diffusively coupled ML
models can be written as

av;
C—= = gcamo(V) (Ve = Vi) + gV = V)

dt
+g(Vi=V) + 1+ 8Ejeﬂ(i) (V;= V),
d(x)i
- = oo(Vi)(woc(Vi) - wi)7 (1)
dt
dl, (1 )
e
dt 5
where i=1,2,...,N (N is the total number of neurons) and

m,(V) = 0.5(1 + tanh

b
b}

\%
1 (V—w)
Aoo(V) = —cosh )
3 2V,

Herein, V;, w;, and I; denote the transmembrane action po-
tential, the activation of the K* current, and the external
stimulus current of neuron i, respectively. w=0.005 is a
small parameter which makes the time scale of I much lower
than that of V or w. The system parameters V,, Vg, and V,
represent equilibrium potentials of Ca®**, K*, and leak cur-
rents, respectively, and gc,, gk, and g; denote the maximum
conductance of corresponding ionic currents. The last term in
the first line of Eq. (1) represents the interaction between
neurons with coupling strength &, where the summation of j
runs over the neighbors of neuron i denoted by €(i). The
parameter set we used in our simulation is C=1 uF cm™,

gca=12 mScm™2, gg=20 mScm™2, g=05 mScm>,

%)
Vi
w,(V) = 0.5( 1+ tanh( Ve
Va
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FIG. 1. Transition from spatiotemporal chaos (left panel) to BS (middle
panels) and then to complete synchronous (right panel) on coupled scale-
free ML networks with N=400 and y=3. From left to right, the coupling
strength is 0, 0.004, 0.005, and 0.5, respectively.

Vc,=0.84 mV, Vg=-1.1 mV, V,=-0.5 mV, V,=-0.01 mV,
V,=0.15 mV, V.=0.1 mV, and V,;,=0.05 mV. For a de-
tailed explanation of the parameters, please see
Ref. 18.

Many coupled neuron systems experience a (some) spa-
tiotemporal ordered bursting synchronized state(s) before
they are fully synchronized with increasing couplin%7 strength
or number of random links on complex networks. 31920y
Fig. 1, we show the spatiotemporal behavior of V,(r) on a
scale-free network, generated by assigning degrees randomly
to the network nodes according to the power law distribution
p(k)~k~7, with N=400 and y=3 for four increasing cou-
pling strengths. Different gray levels correspond to different
values of the action potential, i.e., V;(r) is larger in the
brighter region. In the absence of coupling, each neuron is
chaotic and the pattern is irregular. In the presence of a rather
weak coupling, for instance, £=0.004 and 0.005, an ordered
BS state can be observed. In this state, each neuron shows a
rather regular bursting behavior in time, as shown in Fig. 2,
where the action potential alternates, on a slow time scale,
between a quiescent state and fast repetitive spiking. In ad-
dition, bursts start and end almost simultaneously throughout
the network, while spikes inside the bursts are incoherent
among the neurons. The BS pattern is almost periodic in
time, and the period represents the time scale of the burst.
With increasing coupling strength, spike coherence between
the neurons is enhanced and the system finally reaches a
complete chaotic synchronization when e is large enough.
We note here that the transition from spatiotemporal chaos to
ordered BS state has also been observed in coupled network
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FIG. 2. Bursting behavior of a neuron in the BS state is shown. Two bursts
with different number of spikes Ngpg are presented. The spike amplitude
Agpike and bursting period Ty, are labeled.
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FIG. 3. (Color online) Number of spikes per burst and bursting period
presented as functions of the neuron degree k for two different scale-free
networks and two coupling strengths for each network.

of neurons described by HR model™® and a two-
dimensional coupled-map-lattice model,”! and it was shown
to be relevant with the mechanism of the central pattern gen-
erator.

As shown in Fig. 2, a burst can be characterized by the
average spiking amplitude Ay, the bursting period Ty
and the number of spikes inside a burst Ngpg. Ay is calcu-
lated as an average difference between successive local
minima and maxima inside a burst. We are interested in how
these properties of a given neuron depend on its degree k. In
Fig. 3, we find that both Ngpg and Ty, increase with k,
indicating that a neuron with larger degree will have more
spikes inside a burst and longer burst duration. Coupling
strength also plays a strong role and both quantities increase
with it. The network topology does not matter much. Figure
4(a) shows the relationships between A and & for differ-
ent v and e. Interestingly, they are excellent decreasing lin-
ear functions, hence a neuron with more neighbors will have
a smaller spike amplitude. Again, the data for different y
nearly collapse, while those for different & do not. The slopes

0.45 T T T 0.45 T T T

0.44 0.44
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FIG. 4. (Color online) (a) Dependences of the spike amplitudes and neu-
ron’s degree on scale-free networks with different y and e. (b) Spike ampli-
tude presented as a function of a=gk obtained from the simulation data in
(a) (symbols) and the perturbed Eq. (4) (line).
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of the linear fits seem to be proportional to the coupling
strength. We draw A as a function of a=ek in Fig. 4(b),
and all the data in Fig. 4(a) collapse very well to a single
straight line. A linear fit gives

AiZAO—CSki (2)

with Ay=0.447 and ¢=0.2.

To get a qualitative understanding of the above linear re-
lationship between A and «, we may write the first line in
Eq. (1) in the form

dVi 1/
C; = F(Vi7wi’1i) + sk,-(Vi - Vj); (3)

F(V;, 0, 1) =gcgneo(V) (Vg = V) + gk 0 (Vk = V)
+g/(V,=V)+1, k; is the degree of neuron i, and V,
=(1/k)2jcq(V; defines a local mean field. Therefore, the
dynamics of neuron i is fully determined by the parameter
a;=¢k; and the local mean field V,. The term ek,(V,—V))
denotes an inhibitory feedback, which drags the action po-

where

tential of neuron i to the local mean field V;, and «; measures
the strength of such a dragging. We note that in the BS state,
all the neurons burst simultaneously from quiescent states to
repetitive spikes. In the quiescent zone, V;—V;=0 and the
coupling term in Eq. (3) can be neglected, we thus pay at-
tention to V; in the spiking zone. An important feature in the
BS state is that the spikes inside a burst are incoherent
among different neurons. Therefore for a neuron with a large
degree, this spike incoherence among its neighbors will re-
sult in random evolution of V,(r). When the coupling strength
is small, «; is also small and one may, to the lowest order of
approximation, neglect this “noisy” term and describe the
dynamics of any given neuron by a perturbed system,

dV d(,l)l'
—=F\V,0,])-aV, —=
dt dt

dl _ (1+V)
a- MsTY)

(V)(@(V) - w),

)

The spike amplitude of such a perturbed system as the func-
tion of « is presented in Fig. 4(b), which shows a good
consistency with the simulation data when « is small. When
a is large, the perturbed system (4) has a little deviation from
those obtained by simulation. It is reasonable that the analy-
sis based on Eq. (4) will lose validity for large «, and the
surprising linear relationship for large « observed in the
simulations deserves more study and physical intuition. In
short, the inhibitory coupling between neurons leads to a
kind of “shrinking” of the spike amplitude of neuron depend-
ing on the number of its neighbors and the coupling strength.

Because of the nice linear relationship between the spike
amplitude and degree, we may derive the degree distribution
of the network from the distribution of the spike amplitudes.
Consider a scale-free network with a power law degree dis-
tribution p(k) ~ k™7, the fraction of nodes with k;>k, would
be P(k> k)= fﬁgaXp(k)dkz kY™'/y=1 given that ky,, is large
enough. According to Eq. (2), this is also the fraction of
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FIG. 5. Distribution of (a) AA for £=0.004 (triangles) and &=0.005
(squares) and (b) degree k on a scale-free network with N=400 and y=3.
The lines in (a) are used to guide the eyes and their slopes are both —3.

nodes with spike amplitude A; <A,—cek,. It is then readily
that the variable AA;=A;—A; also obeys the same power-law
distribution as k, i.e.,

p(AA) ~ (AA)™Y. (5)

Therefore, by simply calculating the statistics of AA, we can
get the scaling exponent 7.

This scheme is fairly straightforward to apply. When the
system reaches the stable BS state, we just need to collect the
spike amplitudes, fit the linear relationship to get A,, and
then calculate the distribution of AA;=A,—A,;. Figure 5(a)
shows the distributions of AA; on a scale-free network with
N=400 and y=3 for £=0.004 (triangle) and 0.005 (squares),
and the corresponding degree distribution is shown in Fig.
5(b) for comparison. The body parts of the distribution of AA
show rather good power law features which fit well with
p(AA) ~ (AA)73 as guided by the lines. Figures 6 and 7 show
more examples on scale-free networks with different scaling
exponents and network size. As demonstrated, our method is
able to estimate the degree distributions in a good way.

One notes that this method is not limited to scale-free
networks. Actually, p(AA) is the same as p(k) up to normal-

0.1 °o
) OOOO
0.1k ] o
S s "
0.01 | %%%Q[D ]
@
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0.01 | ) J ) ‘ :
001 10 20 30
© ° (d)
o o]
[e]
o1 0.1F o J
3 J o,
- o
8 0O r=250, 8 O
£=0.0040 OO
A r=250, %
001k £=0.0050 ] 0.01 | © J
0.01 10 20
AA k

FIG. 6. Same as Fig. 5 but for different y and &. The slopes of the lines in
(a) and (c) are the same as —7y.
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FIG. 7. (Color online) Same as Fig. 5 but for different network size N and
v. The network sizes are 800 and 1600 for (a), (b) and (c), (d), respectively.
The slopes of the lines in (a) and (c) are the same as —7y.

ization. Figure 8 shows the application to two Watts—Strogatz
small-world networks, constructed by randomly rewiring
10% of the edges of regular network of 400 neurons whose
average degrees are 18 and 20. The left panel shows the
degree distribution and the right one gives the distribution of
AA, and the consistency is acceptable despite small quanti-
tative discrepancies.

One may then wonder whether the method proposed
above is model specific or universal. To answer this question,
we have also performed similar studies on coupled HR neu-
ron networks. We find that when the coupling is weak, BS
can be observed, and the linear relationship between the
spike amplitude and node degree still holds. Consequently,
the degree distribution can also be easily revealed via the
counting statistics of the spike amplitudes, as shown in Fig. 9
for scale-free networks with 400 HR neurons. However,
when the coupling strength is strong, the linear relationship
fails although BS still exists. As we already know,"® the
coupled HR system may undergo a bifurcation of the burst-
ing mechanism, from FHC type to FH type, with the incre-
ment of the coupling strength. Interestingly, we find Eq. (2)

0'3 T T T 0‘3 T T T T
@ (b)
0.2} g
<
<
N9
0.1+ g
L Ll _
0.004 0.006 0.008 12 16 20 24

AA k

FIG. 8. (Color online) Distribution of (a) neuron degree and (b) AA on two
small-world networks consisting of 400 nodes with average degrees 18
(backslash) and 20 (slash), respectively.
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different . The lines in (a) are used to guide the eyes and slopes of them are
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is valid for all the neurons with FHC bursting, while it fails
for neurons with FH bursting. This result indicates that it is
the bursting type that determines whether our method is valid
instead of the neuron model. If the bursting is FHC type, the
limit cycles of the fast subsystem have a little change from
fold bifurcation to homoclinic bifurcation, and the spiking
amplitudes are almost the same in a burst. However, if the
bursting is FH type, the limit cycles shrink to zero from fold
bifurcation to Hopf bifurcation, and the spiking amplitudes
are decreasing in the course of a burst. Therefore, the in-
traburst stationarity of spike amplitudes, which is good in
FHC bursting but bad in FH bursting, is the difference be-
tween these two types of bursting. Thus we can say the spike
amplitude stationarity in a burst may be the necessary con-
dition of the linear relationship of the neurons’ spiking am-
plitudes and the degree.

In summary, this study proposed an efficient method to
estimate the degree distribution of coupled bursting neuron
networks. It works based on the fact that the spike amplitude
of a given neuron shows an excellent decreasingly linear
relationship with its degree, when the system reaches BS. We
demonstrate the validity of this scheme on scale-free as well

Chaos 20, 013110 (2010)

as small-world networks. A simple local mean field analysis
shows that spike incoherence among the neurons possibly
plays a key role for the linear dependence. Although we have
mainly used ML model in the present work, we note that the
method proposed here may also apply to other bursting neu-
ron models of FH type. Since synchronous spike-bursting
activity is of particular importance in real neuron systems,
our study may find practical applications for reverse engi-
neering the topology of neuron networks.

The work was supported by the National Science Foun-
dation of China (Grant No. 20673106).
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