
Chinese Physics B
     

GENERAL

Adaptive co-evolution of strategies and network
leading to optimal cooperation level in spatial
prisoner's dilemma game
To cite this article: Chen Han-Shuang et al 2010 Chinese Phys. B 19 050205

 

View the article online for updates and enhancements.

Related content
Time-and-space resolved measurements
of the emission uniformity of carbon fibre
cathode in high-current pulsed discharge
Liu Lie, Li Li-Min, Xu Qi-Fu et al.

-

Robust adaptive synchronization of
uncertain and delayed dynamical complex
networks with faulty network
Jin Xiao-Zheng and Yang Guang-Hong

-

Dual-band left-handed metamaterials
fabricated by using tree-shaped fractal
Xu He-Xiu, Wang Guang-Ming, Wang Jia-
Fu et al.

-

Recent citations
Coevolution of Structure and Strategy
Promoting Fairness in the Ultimatum
Game
Deng Li-Li et al

-

This content was downloaded from IP address 114.214.205.221 on 29/03/2021 at 14:22

https://doi.org/10.1088/1674-1056/19/5/050205
http://iopscience.iop.org/article/10.1088/1674-1056/19/3/032902
http://iopscience.iop.org/article/10.1088/1674-1056/19/3/032902
http://iopscience.iop.org/article/10.1088/1674-1056/19/3/032902
http://iopscience.iop.org/article/10.1088/1674-1056/19/8/080508
http://iopscience.iop.org/article/10.1088/1674-1056/19/8/080508
http://iopscience.iop.org/article/10.1088/1674-1056/19/8/080508
http://iopscience.iop.org/article/10.1088/1674-1056/21/12/124101
http://iopscience.iop.org/article/10.1088/1674-1056/21/12/124101
http://iopscience.iop.org/0256-307X/28/7/070204
http://iopscience.iop.org/0256-307X/28/7/070204
http://iopscience.iop.org/0256-307X/28/7/070204


Chin. Phys. B Vol. 19, No. 5 (2010) 050205

Adaptive co-evolution of strategies and
network leading to optimal cooperation
level in spatial prisoner’s dilemma game∗

Chen Han-Shuang(陈含爽)a), Hou Zhong-Huai(侯中怀)a)b)†,

Zhang Ji-Qian(张季谦)c), and Xin Hou-Wen(辛厚文)a)

a)Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
b)Hefei National Laboratory for Physical Sciences at Microscale, University of Science and

Technology of China, Hefei 230026, China
c)College of Physics and Electronic Information, Anhui Normal University, Wuhu 241000, China

(Received 30 July 2009; revised manuscript received 28 October 2009)

We study evolutionary prisoner’s dilemma game on adaptive networks where a population of players co-evolves

with their interaction networks. During the co-evolution process, interacted players with opposite strategies either

rewire the link between them with probability p or update their strategies with probability 1 − p depending on their

payoffs. Numerical simulation shows that the final network is either split into some disconnected communities whose

players share the same strategy within each community or forms a single connected network in which all nodes are

in the same strategy. Interestingly, the density of cooperators in the final state can be maximised in an intermediate

range of p via the competition between time scale of the network dynamics and that of the node dynamics. Finally, the

mean-field analysis helps to understand the results of numerical simulation. Our results may provide some insight into

understanding the emergence of cooperation in the real situation where the individuals’ behaviour and their relationship

adaptively co-evolve.
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1. Introduction

Complex networks have received considerable at-

tentions in recent years. They occur in a large variety

of real-world systems ranging from ecology and epi-

demiology to neuroscience, socioeconomics and com-

puter science.[1−4] So far, two major topics of network

research can be explicitly discriminated: the first one

is associated with the dynamics of networks. Here,

the topology of the network itself is considered as a

dynamical system, and it evolves in time according to

some special rules. Studies in this area have shown

that certain evolution rules give rise to peculiar net-

work topologies. Notable examples include the forma-

tion of small-world network (SWN)[5] and scale-free

networks (SFN).[6,7] The second topic of network re-

search focuses on the dynamics of networks in which

nodes represent dynamical units and links stand for

the interactions between them. Many studies have

shown that network topology plays a crucial role in the

system’s dynamics (see, for example, a recent review[4]

and references therein).

Until recently, the two topics of network research

were reported almost independently in the literature.

In most real-world networks, however, network topol-

ogy and the state of node are both dynamic enti-

ties rather than static ones, and the evolution of

network topology is often correlated to the state of

node and vice versa. Some notable examples are:

in acquaintance networks, people are more likely to

maintain a social connection if their views and val-

ues are similar. In an artificial neuronal network,

the network topology can be improved in the course

of training depending on the state of the nodes and

then modified topology determines the dynamics of

the state in the next trial. In transportation net-

works, the network topology has a direct influence

on traffic flow. For an usually congested road, some

new roads will be likely to build so as to allevi-

ate congested circumstance. Studies on such adap-

tive co-evolution mainly include synchronisation,[8]

opinion dynamics,[9−13] game theory[14−27] and epi-
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demic spread[28,29] on adaptive networks. These stud-

ies have indicated adaptive co-evolution of network

and individual dynamics could bring some nontrivial

results.[30]

Game theory provides a useful framework for de-

scribing the evolution of systems consisting of self-

ish individuals.[31−33] One simple game, the prisoner’s

dilemma game (PDG), has attracted most attention

in theoretical and experimental studies.[34,35] Since

Nowak and May showed that the PDG on a simple

spatial structure could lead to the emergence and per-

sistence of cooperation,[36] much attention has been

paid to evolutionary game on different graphs.[37,38]

Especially, the advance of graph theory and achieve-

ment of complex networks have provided a natural

and meaningful framework to describe the popula-

tion structure on which the evolution of cooperation

is studied. The nodes represent players, while the

edges denote links between players. Extensive stud-

ies indicated that games on many real networks (e.g.

SWN and SFN) were far different from that on regular

networks.[39−48] Most notably Ref. [45] has recognised

SFN as extremely potent promoters of cooperative be-

haviour in the PDG as well as another famous game,

the snowdrift game. For a comprehensive review of

this field of research see Ref. [49]. On the other hand,

the significance of investigating the PDG on adap-

tive networks has been addressed recently.[14−27] In

such adaptive networks, according to some reward-

ing and punishment rules, cognitive players can cut

their partnerships or rebuild new social links so as

to improve their competitive position. For example,

Zimmermann and Egúıluz[16] have demonstrated a co-

evolution model leads to more robust cooperation than

fixed networked games, and shed some light on what

network type is adaptively appropriate for coopera-

tion to emerge. When node and network topology

both adaptively evolve, two time scales are identified:

one is associated with node dynamics, and another is

associated with network dynamics.

In the present work, we consider a co-evolution

model described as follows. At first a pair of connected

players with opposite strategies is randomly selected.

Then the underlying network updates its topology via

rewiring their link with probability p; and with com-

plementary probability 1− p one player at the end of

this link will change its strategy if its payoff is smaller

than the other. Note that p and 1− p are time scales

of the network dynamics and node dynamics, respec-

tively. An interesting question is therefore how co-

operation level of the whole network would depend on

the relative time scale of the network dynamics to that

of the node dynamics. Interestingly, we find that the

density of cooperators in the final state, characteris-

ing the overall gain of the game, can be maximised

at an intermediate value of the relative ratio of the

two time scales. Mean-field analysis is used to help to

understand the simulation results.

This paper is organised as follows. In Section

2, we propose the co-evolutionary model. Numerical

simulation results of the adaptive network structure

and cooperation behaviours are presented in Section

3. Mean-field analysis is put forward in Section 4 and

main conclusions are addressed in Section 5.

2. Model description

In the standard PDG, the players can adopt ei-

ther cooperation (C) or defection (D); two interacting

players are offered a certain payoff, the reward R, for

mutual cooperation and a lower payoff, the punish-

ment P , for mutual defection. If one player cooper-

ates while the other defects, then the cooperator gets

the lowest sucker’s payoff S, while the defector gains

the highest payoff, the temptation to defect T . Thus,

we have T > R > P > S. It is easy to see that defec-

tion is the better choice irrespective of the opponent’s

selection. For this reason, defection is the only evolu-

tionary stable strategy in well-mixed populations.[33]

We describe the state of a player, C or D, by a state

vector s = (1, 0) or s = (0, 1), respectively. Each

player interacts with its neighbours and collects pay-

off depending on the payoff parameters. The total

payoff of a certain player i can be expressed as

Pi =
∑

j∈Ωi

siJs
T
j , (1)

where si and sj denote the strategy of node i and j,

the sum runs over all the neighbouring sites of i (this

set is indicated by Ωi) and the payoff matrix is given

by

J =

R S

T P

 . (2)

Following common studies,[15,16,20,36,50,51] we also

start by rescaling the game such that it depends

on a single parameter, i.e., we can choose R = 1,

P = S = 0, and T = 1+r (0 ≤ r ≤ 1) representing the

advantage of defectors over cooperators (or the temp-

tation to defect), without any loss of generality of the

game.
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There are three possible pairwise interactions in

the network. Two C players connected by a link (C–

C link) will try to maintain the interaction because

both players benefit from the trade process. Though

two D players connected by a link (D–D link) receive

the minimum payoff, either of them may expect an-

other player to change the present strategy such that

he will receive the highest payoff. When a C player

and a D player are connected by a link (C–D link), the

C player’s payoff is much lower than the D player’s.

In this case, it is reasonable that this link is broken by

the C player and then rewired, or they update their

strategies. Therefore, the evolutionary updating only

occurs at C–D link. Due to lack of prior knowledge of

the new neighbour’s strategy, the target node a new

rewired link points to is selected at random.

According to the above reasonable hypothesis, the

evolution runs as follows. At each step, each individ-

ual plays the PDG with the same current state with

all its neighbours, and collects an aggregate payoff.

Then, a pair of connected players (i, j) is chosen at

random from the whole population. If both players

have the same strategy, nothing happens. Otherwise,

an attempt to rewire the link is made with probability

p (for the sake of convenience we suppose i is a cooper-

ator, and its neighbour j is a defector): a new player k

is then chosen at random and the link (i, j) is rewired

to (i, k) with probability q or to (j, k) with probability

1−q. With complementary probability 1−p, strategy

updating takes place: the two players compare their

payoff, and the player with less payoff imitates the

strategy of another player. The evolutionary process

ends up till all C–D links die out.

3. Monte carlo simulation

Initially, N individuals locate on the nodes of the

Erdös–Rényi (ER) random graph with average con-

nectivity ⟨k⟩, and they are randomly assigned to be

either strategy C or D with equal probability 1/2. We

perform Monte Carlo (MC) simulation for the course

of co-evolution of the network and strategy updating

described in detail in the above section.

It is clear that the model moves toward to de-

crease the number of C–D links such that no C–D

link survives in the ultimate network. Thus, the net-

work may be separated to a set of disconnected com-

munities, each of which all individuals share the same

strategy. The primary interest in our model is how

cooperative phenomenon arises via the process of the

adaptive co-evolution.

We first consider the case for q = 1. We depict the

density of cooperators ρC as a function of p for sev-

eral different values of r, as shown in Fig. 1, in which

each dot corresponds to an average over 100 realisa-

tions of initial network and initial condition. For a

given value of r, ρC increases rapidly when p exceeds

a certain value and then decreases as p is increased

again, thus indicating the existence of maximal ρC for

an intermediate range of p in the studied networked

PDG. In a word, the co-evolution of individual strat-

egy and interacted network can promote cooperation

among selfish individuals, and there exists a optimal

p for which the cooperation level is maximised.

Fig. 1. The density of cooperators ρC as a function of

p for several different values of r. Other parameters are

N = 500, ⟨k⟩ = 20, and q = 1.

For small p, i.e. the probability of rewiring C–D

links is little, few C–D links become C–C ones and

thus the average degree of C players is approximately

equal to that of D players. In this case the defector’s

payoff is generally higher than cooperator’s as a re-

sult of the prevalence of defector. For very large p,

almost all C–D links quickly convert to C–C ones in

the process of rewiring, which results in little chance

of updating strategy. Thus, in this case the density of

cooperators in the final state is evidently close to ini-

tial level. Most importantly, an intermediate range of

p can ensure that the balance between rewiring events

and strategy updating. This balance leads to the for-

mation of hub (node with high connectivity), which

plays a dominant role in promoting cooperation in the

underlying network.[16,45,52]

In order to confirm this point, we use the nor-

malised degree variance to measure the heterogeneity

of the networks defined as σ2
k =

(⟨
k2
⟩
− ⟨k⟩2

)
/⟨k⟩. A

larger σ2
k implies the more heterogeneity of the net-

work. From Fig. 2, one can see that, when the value
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of p is relatively small the degree distribution of the

resulting network approaches the Poisson distribution

so as to σ2
k ≃ 1, similar to the initial one. When

p increases, σ2
k rapidly increases to a maximum and

then decreases. The inset of Fig. 2 shows degree dis-

tribution P (k) of the maximal community of the final

network for three typical values of p. There is a sig-

nificant difference from the other two cases in the case

p = 0.75 corresponding to a broad degree distribution.

Interestingly, we find the degree distribution appears

to follow a power law P (k) ∼ k−γ over a significant

part of its range. Therefore, a optimal p should ex-

ist for maximal cooperation level. Furthermore, this

optimal p is dependent on the temptation to defect

r; in detail, it becomes larger for a larger r. With

increasing r, the rewiring event must be sufficiently

frequent to guarantee the survival of cooperation. In

particular, for relatively large r, the probability that

an individual chooses for rewiring social ties should

exceeds that of strategy updating in order to ensure

the sustainability of cooperators.

Fig. 2. Normalised degree variance σ2
k as a function of p.

The inset depicts degree distribution of the giant compo-

nent of the ultimate network for different p with a log–log

scale. For p = 0.75 the distribution appears to follow a

power law for part of its range, with exponent 4.0 ± 0.1,

as indicated by the dotted line. Other parameters are

N = 500, ⟨k⟩ = 20, r = 0.5, and q = 1.

One recalls that the ultimate network may be split

into some disconnected communities, each of which

all agents share the same strategy. In real-world

biological or social systems, segregation phenomena

play a crucial role in sustaining diversity at many

levels-cellular, functional, organisational, ecological,

cultural.[53] For example, in human societies many

sub-populations or communities may exhibit mutu-

ally conflicting cultural traits such that interactions

between these communities are scarce, and thus can

be effectively considered as disconnected from each

other.[54] It is concerned how the number of communi-

ties and the size of the maximal community dependent

on p. Figure 3 shows normalised size of the maximal

community S/N and the number of communities NC

as a function of p, for some various values of r. For

each value of r, we find that, beyond a critical value

pc, S/N continuously decreases from one, as shown

in Fig. 3(a), and NC increases from one and then de-

creases, as shown in Fig. 3(b). That is, the network

begins to split when p > pc. Contrasting with Fig. 1,

one can notice that the location that the density of

cooperators begins to increase from zero as p is varied

just happens at p = pc.

Fig. 3. Normalised size of the maximal community S/N

and the number of communities NC as a function of p,

for several different r. Other parameters are N = 500,

⟨k⟩ = 20, and q = 1.

Fig. 4. The density of cooperators ρC as a function of

p for several different values of q. Other parameters are

r = 0.3, N = 500, ⟨k⟩ = 20.

We now consider the case for q ̸= 1. Figure 4

shows the density of cooperators ρC as a function of

p for several different values of q, with other relevant
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parameters r = 0.3, N = 500, ⟨k⟩ = 20. For any q,

there also exists an intermediate range of p for which

the cooperation level is maximised. As q is decreased,

the location for the maximal ρC shifts to right. We

also calculate the cases for some other values of r, and

find that there is no essential difference in the main

results.

4. Mean-field analysis

In order to understand above-mentioned results

on adaptive network, we here provide some analyt-

ical illustration by using mean-field (MF) approxi-

mation. First of all, we introduce some quantities

to characterise the state of system: (i) the magneti-

sation m = ρC − ρD, where ρD is the density of

defectors; (ii) the number of links joining agents in

the strategy C, NlCC; (iii) the number of links join-

ing agents of opposite strategies, i.e., of active links

NlCD = NlDC. Since conservation rules ρC + ρD = 1,

lCC+ lCD+ lDD = ⟨k⟩ /2, the system’s dynamical state

can be expressed by the vector X = (m, lCD, lCC)
T.

According to the model’s definition, the vector X

can evolve via four routes at each elementary update:

X → X + να, α = 1, 2, 3, 4 with respective transition

probabilities wα. The displacement vectors and the

associated probabilities are readily written: Nν1 =

(0,−1, 1), w1 = 2lCD ⟨k⟩−1
pqρC; Nν2 = (0,−1, 0),

w2 = 2lCD ⟨k⟩−1
p(1 − q)ρD; Nν3 = (2, kDD −

kDC, kDC), w3 = 2lCD ⟨k⟩−1
(1 − p) Pr(PC > PD);

Nν4 = (−2, kCC − kCD,−kCC), w
4 = 2lCD ⟨k⟩−1

(1 −
p) Pr(PC < PD). Here kCD = lCD/ρC is the aver-

age number of D neighbours of a C agent. Likewise,

kCC = 2lCC/ρC, kDC = lDC/ρD, kDD = 2lDD/ρD.

Pr(·) denotes probability, and PC and PD are the av-

erage payoffs of a cooperator and a defector, respec-

tively, which can be calculated by MF approximation

as

PC = kCCR+ kCDS = kCC,

PD = kDCT + kDDP = kDC(1 + r). (3)

The first two routes correspond to a rewiring event.

The first route occurs whenever a C–D link is rewired

to a C–C link. The probability that this route happens

is proportional to the density of C–D links, 2lCD/ ⟨k⟩,
times the probability that a C–D link is rewired to

C–C link, pqρC. The second route takes place when-

ever a C–D link is rewired to a D–D link. The

other two routes correspond to strategy updating, for

which the change in magnetisation (±2/N) is associ-

ated with changes in the densities of all types of links.

For example, for the fourth route, when a C agent

changes its strategy to D, its C–C links become D-

C and its C–D links become D–D ones, and thus the

changes of m, lCD, lCC are −2/N , (kCC − kCD)/N ,

−kCC/N , respectively. Furthermore, the probability

of the fourth route is proportional to the density of

C–D links, 2lCD/ ⟨k⟩, times the probability that a C

agent changes its strategy, (1−p) Pr(PC < PD). Thus,

dynamical equations ruling the evolution of X can be

written as dX/dt =
∑

α ναwα. Figure 5 shows the

result obtained by numerical integration of the evolu-

tion of X, compared with the results of simulations

presented in the former section. It is clear that mean-

filed approximation analysis qualitatively predicts the

trends that ρC changes with p, r and q.

Fig. 5. Mean-field results: (a) the density of cooperators

ρC as a function of p for several different values of r with

q = 1 fixed; (b) the density of cooperators ρC as a func-

tion of p for several different values of q with r = 0.3 fixed.

Other parameters are N = 500, ⟨k⟩ = 20.

5. Conclusions

In conclusion, we use MC simulations and MF

analysis to investigate evolutionary PDG on adaptive

network topologies where a population of players co-

evolve with their interaction network. Our model de-

scribes that interacted players with opposite strate-

gies either rewire their link or update their strategies

depending on the payoff during the co-evolutionary

process. We select a quantity p to regulate the time
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scales of network evolution and node dynamics. Inter-

estingly, for a moderate range of p, the density of coop-

erators in the final state can be maximised, which at-

tributes to competitive balance of the two time scales

such that the emergence of so-called hub providing suf-

ficient condition for cooperation to dominate. Since

real social network itself is dynamic instead of static,

our results may provide some insight into understand-

ing the occurrence of cooperative behaviours in the

real world.
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