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Coarse-grained Simulations of Chemical Oscillation in Lattice Brusselator
System

Ting Raoa, Zhen Zhanga, Zhong-huai Houa,b∗, Hou-wen Xina

a. Department of Chemical Physics, University of Science and Technology of China, Hefei 230026,
China
b. Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology
of China, Hefei 230026, China
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The oscillation behavior of a two-dimension lattice-gas Brusselator model was investigated.
We have adopted a coarse-grained kinetic Monte Carlo (CG-KMC) procedure, where m×m
microscopic lattice sites are grouped together to form a CG cell, upon which CG processes
take place with well-defined CG rates. Such a CG approach almost fails if the CG rates
are obtained by a simple local mean field (s-LMF) approximation, due to the ignorance of
correlation among adjcent cells resulting from the trimolecular reaction in this nonlinear
system. By proper incorporating such boundary effects, thus introduce the so-called b-LMF
CG approach. Extensive numerical simulations demonstrate that the b-LMF method can
reproduce the oscillation behavior of the system quite well, given that the diffusion constant
is not too small. In addition, the deviation from the KMC results reaches a nearly zero
minimum level at an intermediate cell size, which lies in between the effective diffusion
length and the minimal size required to sustain a well-defined temporal oscillation.

Key words: Chemical oscillation, Coarse-grained, Kinetic Monte Carlo

I. INTRODUCTION

When driven far from thermal equilibrium, hetero-
geneous surface chemical reaction systems often show
a variety of complex dissipative structures such as os-
cillations, turing patterns, spiral waves and turbulence
[1–10]. Traditionally, these phenomena are mainly
observed at macroscopic scales ranging from a few
to several hundred micrometers, but recent studies
showed that they are also present in nanoscale sys-
tems. At the present time, two different theoretical
approaches are used to describe these nonlinear be-
haviors of surface reactions. Mean field determinis-
tic equations (MFDE), like the reaction-diffusion equa-
tion, can provide good qualitative description of spa-
tiotemporal dynamics [11, 12]. However, they are essen-
tially phenomenological and neglect microscopic mech-
anisms such as lateral interactions between adsorbate
molecules. In addition, MFDE also ignores the molec-
ular fluctuations which may play important roles in
mesoscopic systems. Another approach, microscopic
lattice models, takes explicitly into account the adsorp-
tion, desorption, diffusion, and reaction processes as
random events, and one can use kinetic Monte Carlo
(KMC) methods to yield detailed valuable information

∗Author to whom correspondence should be addressed. E-mail:
hzhlj@ustc.edu.cn

about the microscopic reaction properties [13–18]. This
microscopic method can account for the molecular inter-
actions and fluctuations directly, however, memory and
speed of available computers limit the maximal spatial
size of the system, which renders the direct KMC simu-
lation of nanoscale spatiotemporal structures and popu-
lations a difficult task. Therefore, a promising way is to
develop coarse-grained (CG) approaches, bridging the
gap between those two, aiming at significantly reducing
the degree of freedom to accelerate the simulation on
large length scale while properly preserving the micro-
scopic fluctuation information and correct dynamics.

Very recently, two kinds of CG methods based on
lattice-gas model have been proposed. One is the con-
tinuum mesoscopic modeling devoloped by Mikhailov
et al. which is derived from CG of the underlying mi-
croscopic master equation to get the functional Fokker-
Planck equation and its corresponding stochastic partial
differential equations (SPDE) [19–24]. The other is a
discrete CG approach proposed by Vlachos and cowork-
ers [25–32], which is a kind of CG-KMC algorithm by
grouping the microscopic lattice sites into coarse cells
and the CG system evolves by a sequence of CG events
associated with the microscopic processes. By numeri-
cally solving the SPDE, Mikhailov has successfully in-
vestigated the nucleation of single reactive adsorbate
in one-dimension (1D) and two-dimension (2D) systems
[19], the formation of stationary microstructures for sin-
gle species with attractive lateral interactions in a 2D
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system [20] and the formation of traveling nanoscale
structures in a model of two different species on 2D
reaction surface [21]. Vlachos et al. had in-depthly
investigated the validity of the CG-KMC approach in
1D conceptional systems with different potential form
[26, 27], the 1D Ising system with spin exchange [28],
prototype model of 1D diffusion through a membrane
[29], steady pattern formation of simple reaction model
on 2D surface [30], and so on. Furthermore, the au-
thors had also discussed the possibility for the extension
of CG-KMC to complex lattices, multicomponent sys-
tems [31], and heterogeneous plasma membranes [32]. It
has been shown that both CG methods enable dynamic
simulations over large length and time scales and can
accurately capture transient and equilibrium solutions
as well as noise properties especial for long-ranged po-
tentials.

In this work, we use an effective CG-KMC method to
investigate the nonlinear oscillation behaviors of surface
chemical system which has already been developed into
a field of very active research [10, 33]. Here, we adopt
a 2D lattice-gas Brusselator model, which is a typical
oscillatory system with a nonlinear autocatalytic tri-
molecular reaction. To preserve the microscopic infor-
mation correctly and accelerate the simulation at the
same time, a CG-KMC algorithm by grouping m×m
microscopic sites into a CG cell is adopted. Numer-
ical results show that such a CG method is actually
not a good approximation if the CG rates are obtained
by a simple local mean field (s-LMF) approximation,
because the correlation among adjacent cells resulting
from the trimolecular reaction cannot be neglected. We
thus proposed a b-LMF approach, which has properly
accounted for the boundary corrections to the CG reac-
tion rates. Extensive numerical simulations show that
the b-LMF method can reproduce quite well the oscil-
lation behaviors, obtained from the KMC simulations
on the microscopic lattice. To quantitatively investi-
gate the accuracy of the CG methods, we introduce
deviation coefficients γA for the oscillation amplitude
and γT for the oscillation period between the CG-KMC
and KMC, respectively. We find again that the b-LMF
is remarkably better than s-LMF, and there is an in-
termediate CG cell size where the deviation reaches a
nearly zero minimal level. We suggest that for the CG
method to work, the cell size should lie between the ef-
fective diffusion length and the minimal size required to
sustain a well-defined temporal oscillation.

In this work, we present the lattice Brusselator
model and describe the methods in detail, including
the KMC and CG-KMC procedures. We mainly focus
on the comparison between KMC and CG-KMC by
investigating the deviations in the oscillation amplitude
and period as functions of the control parameter.

FIG. 1 The scheme of spatial coarse graining is plotted.
Here, a 18×18 microscopic lattice (dash line) is divided into
a 3×3 CG lattice (solid line) by uniformly grouping 6×6
microscopic sites to a CG cell. At the microscopic level,
the reaction 2U+V→3U can only take place on orthogor-
nal UVU configurations (a), (b), and (c), but not on line
configuration (d).

II. MODEL AND METHOD

A. The Brusselator model

We consider a modified Brusselator model on the 2D
surface lattice as follows:

Ug + ∗ K1−−→ Ua (1)

Ua
K2−−→ ∗+ Ug (2)

Ua
K3−−→ Va (3)

Va
K4−−→ ∗+ Vg (4)

2Ua + Va
K5−−→ 3Ua (5)

Ua + ∗ K6−−→ ∗+ Ua (6)

Va + ∗ K7−−→ ∗+ Va (7)

herein, the reactions under consideration are assumed
to run on a N×N square lattice. Sites are either vacant
(denoted by *) or occupied by single U or V particles
(Fig.1(a)). The subscripts “g” and “a” represent the
species in gas phase and adsorbed on the surface, re-
spectively. Process (1) denotes the adsorption of species
U, process (2) the desorption of U, process (3) the con-
version from adsorbed U to V, and process (4) the des-
orption of V, respectively. Process (5) is the autocat-
alytic reaction wherein an adsorbed V molecule with
two nearest neighbor U molecules converts to U. The
parameters Kα (α=1, . . ., 5) represent dimensionless
rate constants. Process (6) and (7) denote the diffusion
processes of U and V, respectively, where K6 and K7 are
the corresponding diffusion constants. In Table I, these
processes and their corresponding propensity functions
are listed. Herein, wiα (α=1, . . ., 7) represent the
propensity function of the αth process taking place at
site i. The occupation function σφ

i (where φ=U or V)
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TABLE I Stochastic processes and corresponding reaction rates in KMC simulation for the lattice-gas Brusselator model.

Process description State change KMC rate

U adsoprtion σU
i : 0→ 1 wi1=K1(1− σU

i − σV
i )

U desoprtion σU
i : 1→ 0 wi2=K2σ

U
i

U conversion to V σU
i : 1→ 0, σV

i : 0→ 1 wi3=K3σ
U
i

V desorption σV
i : 1→ 0 wi4=K4σ

V
i

2U+V reaction σV
i : 1→ 0, σU

i : 0→ 1 wi5=K5σ
V
i σU

j σU
k

U diffusion σU
i : 1→ 0, σU

j : 0→ 1 wi6=K6σ
U
i (1− σU

j − σV
j )

V diffusion σV
i : 1→ 0, σV

j : 0→ 1 wi7 = K7σ
V
i (1− σU

j − σV
j )

denotes the state of a given surface site i: σφ
i =1 if site

i is occupied by species φ and 0 otherwise. Note that a
vacant site is necessary for the adsorption of U or the
diffusion processes. In the reaction process (5), both
sites j and k must be the nearest neighbors of site i.

B. MF description

Assuming that the surface is well-mixed by the diffu-
sion process, one may describe the system dynamics by
the following MF deterministic equations,

du

dt
= w1 − w2 − w3 + w5 (8)

dv

dt
= w3 − w4 − w5 (9)

where u and v are respectively the surface coverage
of species U and V. wα=1, . . ., 5 denote the rate of
reaction-α with

w1 = K1(1− u− v), w2 = K2u,

w3 = K3u, w4 = K4v, w5 = K4vu2 (10)

In the present work, we use this MF equation to deter-
mine the bifurcation diagram of the system. In certain
parameter ranges, the system can undergo a Hopf bi-
furcation, where stable limit cycle emerges.

The MF equation does not take into account internal
fluctuations inherent in chemical reaction systems. For
small systems, such fluctuations may play important
roles. To account for the internal noise while keep the
MF approximation, one may use the chemical Langevin
equations as follows,

du

dt
= w1 − w2 − w3 + w5 +

1
N

[
√

w1ξ1(t)−
√

w2ξ2(t)−√w3ξ3(t) +
√

w5ξ5(t)] (11)
dv

dt
= w3 − w4 − w5 +

1
N

[
√

w3ξ3(t)−
√

w4ξ4(t)−√w5ξ5(t)] (12)

where ξα=1,...,5(t) are Gaussian white noises associ-
ated with the reaction channels, obeying 〈ξα(t)〉=0 and
〈ξα(t)ξβ(t′)〉=δαβδ(t−t′). The items in the bracket with

ξα(t) give the internal noises, scaling as 1/N , which
are closely coupled with the reaction kinetics. In the
macroscopic limit N→∞, the internal noise items can
be ignored and the CLE recovers the deterministic Eqs.
(8) and (9).

C. KMC simulations

Given the processes and their propensity functions as
listed in Table I, one can then perform KMC to study
the dynamics. In the present work, we adopt a null-
event KMC procedure. The main steps can be outlined
as follows. (i) Determine which process α to happen.
To do this, we first draw a random number r1 from the
uniform distribution in the unit interval, and then take

α as the smallest integer satisfying
α∑

β=1

Kβ>r1W0, where

W0=
7∑

β=1

Kβ denotes the total maximum transition rate.

(ii) Randomly select a surface site i with equal probabil-
ity pi=1/N2. (iii) Determine whether the selected pro-
cess α can take place on site i or not. This is given by
a so-called participation index [34] εiα=wiα/Kα, which
takes value 0 or 1, corresponding to the propensity func-
tions wiα shown in Table I. Note that this index depends
on the local configuration around site i and varies with
time. For the desorption process (2), for instance, εi2=1
if site i is occupied by U and 0 otherwise. For the dif-
fusion of U (or V), εiα=1 if the site i is occupied by U
(or V) and a randomly selected nearest neighbor j is
vacant. For the reaction process (5), the index reads
1 if site i is V , and two succeedingly selected nearest
neighbors j and k are both U. Note here we have used
the same rule for this process as that proposed by Zhad-
nov [35], as shown in Fig.1, reaction can only happen
among orthogonal configurations, such as those shown
by (a), (b), and (c), but not within line configurations
such as (d). (iv) Execute the process α if εiα = 1, and
terminate the trial otherwise. (v) Repeat process (1) to
(4).

In the present work, we start the KMC run from a
clean surface. The time advancement can be measured
in terms of τKMC=1/W0. The KMC results are assumed
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to be correct, and we use them to check the validity of
other methods, especially that of the CG-KMC.

D. The CG-KMC methods

In this work, we adopt a CG procedure originally in-
troduced by Vlachos et al. [28]. Since the diffusion
processes are usually faster than other slow processes,
it is reasonable to assume that particles are well-mixed
in a comparatively large domain, whose scale is deter-
mined by the diffusion length, over short time scales.
Therefore, one can divide the micro-lattice into several
coarse cells, wherein each particle is assumed to have an
equal probability of occupying any microscopic lattice
site, and no spatial correlation exists. Obviously, the
most natural way for such a spatial coarse graining on
2D surface is to group m×m sites into a CG cell. For
instance, Fig.1 shows the coarse-graining of a 18×18
micro-lattice into a 3×3 CG lattice, wherein each CG
cell contains m2=36 sites (hereafter, we use “site” for
the micro-lattice and “cell” for the CG lattice).

To perform CG-KMC, one needs to define the CG
processes taking place on the CG lattice and obtain
the corresponding CG rates. We now introduce the
CG variables to denote the number and coverage of φ-
species in the µth CG-cell Cµ, respectively.

ηφ
µ =

∑

i∈Cµ

σφ
i (13)

η̄φ
µ =

ηφ
µ

m2
(14)

Considering the micro-process (1), for example, the CG
process is defined as the adsorption of one U particle
in any site i inside a CG-cell Cµ. Since U-adsorption
only involves one surface site, there is no spatial corre-
lation between different adsorption events inside a cell,
therefore the rate of the CG adsorption process easily
reads

wµ1 =
∑

i∈Cµ

K1(1− σU
i − σV

i )

= m2K1(1− η̄U
µ − η̄V

µ ) (15)

Following this simple rule, one can readily obtain the
CG rates for the single-site processes (1) to (4).

For the diffusion processes (6) and (7), one must bear
in mind that the diffusion constant between two adja-
cent CG cell, K̃6 (K̃7), is not identical to that between
two adjacent micro-sites, K6 (K7). To establish the re-
lationship between these two rates, we can adopt the so-
called “flux-consistency” rule, which requires that the
average flux across the boundary of two adjacent CG
cells, calculated from the CG diffusion process, should
be the same as that calculated from averaging over the
micro-diffusion process. By using this criterion and
considering the maintenance of detail-balance [27], one

must have K̃6=K6/m2 and K̃7=K7/m2. Finally, the
rate for the CG diffusion process of U is

wµ6 =
∑

i

K̃6〈σi
U(1− σU

j − σV
j )〉i∈Cµ,j∈Cν

=
K6

m2
ηU

µ (1− η̄U
ν − η̄V

ν ) (16)

herein, 〈〉 means ensemble average. In the final equa-
tion, we have ignored the correlation between different
cells and simply replaced the ensemble average of σφ

i
inside Cµ by η̄φ

µ [26, 27]. The rate for CG diffusion of
V can be obtained in a similar way.

For the trimolecular reaction process (5), however,
strong correlation exists between neighboring sites. To
perform the CG simulation, we need to express the
ensemble-averaged rate of this process inside a cell by
a function of the CG-variables,

wµ5 = F (K5,m, η̄U
µ , η̄V

µ ) (17)

However, it is hard to decide the correct functional form
at this stage. It is worthy to note here that a seamless
approach has been proposed very recently to address the
validity of reaction-diffusion master equations [36]. The
authors argued that to make the master equation to be
consistent with the micro-model, the reaction constant
must be dependent on the coarse-size, here is m. They
demonstrated the success of this idea for a reversible
aggregation-dissociation reaction. Unfortunately, it is
rather difficult for us to work out a similar result for the
trimolecular lattice gas system considered here. There-
fore, to step forward, we have to make some approxi-
mations. To the lowest order, one may use the simple
local mean field (s-LMF) approximation as follows,

wµ5 = m2〈K5σ
V
i σU

j σU
k 〉′i,j,k∈Cµ

= m2K5η̄
V
µ (η̄U

µ )2 (18)

herein, 〈〉′ denotes the ensemble average over the or-
thogonal configurations inside Cµ. Given that the diffu-
sion process is fast and the cell size is smaller than the
diffusion length, this approximation, although crude,
might be acceptable.

Unfortunately, as we will show (see below), however,
this s-LMF scheme for the reaction process almost fails
to reproduce the KMC results, no matter how large
the coarse-size m and the diffusion constants K6 (K7)
are. It seems that the s-LMF loses some key compo-
nents that should be considered during the CG pro-
cedure. We note here that the s-LMF scheme totally
ignores the correlations between adjacent cells result-
ing from the trimolecular process. For instance, the
reaction configuration (Fig.1(b)) on the border of cell
µ involves two sites (U and V) in cell µ and one site
(U) in cell ν. If we use LMF for both cell µ and ν, the
ensemble averaged rate for this particular configuration
should read K5η̄

U
µ η̄V

µ η̄U
ν , which is different from the rate

DOI:10.1088/1674-0068/24/04/425-433 c©2011 Chinese Physical Society



Chin. J. Chem. Phys., Vol. 24, No. 4 Coarse-grained Simulations of Chemical Oscillation 429

TABLE II CG processes and rates associated with the CG cell Cµ.

Process description State change s-LMF rate b-LMF rate

U adsorption ηU
µ → ηU

µ + 1 wµ1=m2K1(1− η̄U
µ − η̄V

µ ) wµ1

U Desorption ηU
µ → ηU

µ − 1 wµ2=m2K2η̄
U
µ wµ2

U Conversion to V ηU
µ → ηU

µ − 1, ηV
µ → ηV

µ + 1 wµ3=m2K3η̄
U
µ wµ3

V Desorption ηV
µ → ηV

µ − 1 wµ4=m2K4η̄
V
µ wµ4

2U+V Reaction ηV
µ → ηV

µ − 1, ηU
µ → ηU

µ + 1 wµ5=m2K5η̄
V
µ (η̄U

µ )2 wb
µ5

U Diffusion ηU
µ → ηU

µ − 1, ην
U → ηU

ν + 1 wµ6=K6η̄
U
µ (1− η̄U

ν − η̄V
ν ) wµ6

V Diffusion ηV
µ → ηV

µ − 1, ηV
ν → ηV

ν + 1 wµ7=K7η̄
V
µ (1− η̄U

ν − η̄V
ν ) wµ7

for the reaction inside Cµ, K5η̄
V
ν η̄U

µ (η̄U
ν −1), when we

consider that concentration gradients exist between ad-
jacent cells. We argue that this effect should be taken
into account to compensate the discrepancy resulting
from the CG approximation. Similarly, the reaction
configuration (Fig.1(c)) at the corner of cell µ involves
sites in three adjacent cells. Therefore, instead of the s-
LMF, one may use a boundary-corrected LMF (b-LMF)
scheme by writing down the CG-rate of process (5) as
follows,

wb
µ5 = f1w̃intra + f2w̃border + f3w̃corner (19)

herein,

w̃intra = m2K5η̄
V
ν η̄U

µ (η̄U
ν − 1) (20)

w̃border = m2K5η̄
V
µ η̄U

µ

∑
ν

η̄U
ν

4
(21)

w̃corner = m2K5η̄
V
µ

∑

νν′

η̄U
ν η̄U

ν
′

4
(22)

which denote the average rate of process (5) inside, on
the border of, and at the corner of cell µ, respectively.
Note that the summation in Eq.(21) runs over the four
adjacent cells of Cµ, and that in Eq.(22) runs over adja-
cent cells of the four corners. The weighting factors f1,
f2, and f3 denote the possibility of finding an reaction
UVU configuration belonging to the three categories, re-
spectively, given that the V site is inside the current cell
Cµ. By simple manipulations, we have f1=(1−1/m)2,
f3=1/m2, and f2=1−f1−f3.

In Table II, the CG processes as well as their corre-
sponding CG rates are listed. Note that b-LMF and
s-LMF show difference only for the trimolecular reac-
tion. According to these processes and rates, one can
readily perform CG-KMC simulations. In this work,
we also use null-event procedure as that for the KMC.
The steps are outlined as follows. (i) Choose a process
similar to the first step used in the KMC, except that
now K6 and K7 should be replaced by K̃6=K6/m2 and
K̃7=K7/m2. Correspondingly, W0 should be changed
to WCG

0 . (ii) Randomly select a cell µ with equal prob-
ability. (iii) Calculate the reaction probability εµα for
the process α to happen associated with the current cell
µ. This probability simply equals to wµα/(Kαm2) for

1≤α≤5 and wµα/(K̃αm2) for α=6 or 7. (iv) Generate a
second uniformly distributed random number r2 in the
unit interval. If r2≤εµα, execute the process α, and the
trial ends otherwise. (v) Repeat the above steps.

In the present study, we start CG-KMC simulations
from the same initial conditions as in the KMC. To be
consistent with the KMC, the time increment should
read τCG=1/WCG

0 for each trial. We compare the CG-
KMC results with the KMC ones to check the validity
of CG approaches.

III. NUMERICAL SIMULATIONS AND DISCUSSION

In this work, the main parameters used in simula-
tions are K1=5.0×10−5, K2=1.0×10−3, K3=5.0×10−3,
and K4=6.0×10−5, while K5 and K6=K7=D are con-
trolled parameters. To compare the results of differ-
ent methods, we have generated time series u(t) or v(t)
with enough length and calculated the oscillation am-
plitude and period as a function of the control param-
eters. In Fig.2(a), the dependence of the oscillation
range of v on K5 is shown, obtained by the MFDE,
CLE, and KMC with different diffusion constant D.
Correspondingly the curves for the period are drawn
in Fig.2(b). The CLE results are obtained by numeri-
cal simulation of Eq.(11) and Eq.(12) with a time step
∆t=0.01 and N=256. All the KMC results are also
performed on a 256×256 square lattice. The solid line
obtained from MFDE corresponds to the bifurcation di-
agram. A Hopf bifurcation locates at K5c'2.15, below
which deterministic oscillation can be observed. Sev-
eral points can be addressed from this figure. First of
all, CLE and KMC show strong qualitative differences
with the MFDE: stochastic oscillations can be observed
even outside the deterministic oscillatory region, here
K5>K5c. This so-called noise induced oscillation phe-
nomenon has gained great attention in recent years and
may have important applications especially in circadian
oscillation systems. Secondly, the KMC results depend
strongly on the diffusion constant D. However, the re-
sults for D=10 and D=30 nearly collapse, indicating
that the KMC results may converge in the limit of large
D. In this latter case, the MFDE can reproduce the
KMC results when the parameter lies deep inside the
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FIG. 2 The oscillation range of (a) V-coverage and (b) pe-
riod are presented as functions of control parameter K5,
obtained by MFDE, CLE, and KMC with D=1, 10, 30,
respectively. K1=5.0×10−5, K2=1.0×10−3, K3=5.0×10−3

and K4=6.0×10−5, N=256.

oscillatory region, see the range K5<2.1. If D is small,
both MFDE and CLE show large discrepancies with the
KMC results, no matter the range of the control param-
eter. Finally, we would like to point out here that the
CLE cannot reproduce the KMC results accurately even
for large D, although they share some qualitative fea-
tures, e.g., noise induced oscillation to the right side of
the Hopf point.

In the following part, we mainly consider a system
with size N=256 and diffusion constant D=10. We
have also performed some KMC simulations on larger
systems, e.g., N=512, but the main conclusions are the
same. Since we are mainly interested in the validity of
CG methods and extensive simulations are required to
compare the results of different methods, we have fixed
N=256 throughout this work. CG-KMC simulations
are performed according to the CG processes and rates
listed in Table II. In Fig.3, the oscillation amplitude
and period obtained by using s-LMF rates are shown,
for different sizes of the CG cell. Apparently, the s-LMF
approach almost fails to reproduce the results of KMC,
even qualitatively. For small m, the s-LMF totally loses
the whole bifurcation features of the KMC dynamics.
We show in Fig.4, however, that the b-LMF behaves
much better than the s-LMF. Firstly, the b-LMF can
reproduce the global bifurcation feature quite well, even
for small m. In addition, for an intermediate value of

FIG. 3 The oscillation range of (a) V-coverage and (b) pe-
riod obtained from the s-LMF CG approach with different
coarse size m. The diffusion constant is D=10 and the other
parameters are the same as in Fig.2.

FIG. 4 The oscillation range of (a) V-coverage and (b) pe-
riod obtained from the b-LMF CG approach with different
coarse size m. The diffusion constant is D=10 and the other
parameters are the same as in Fig.2.
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FIG. 5 TOF as a function of time t on the coarse cell size m obtained from the KMC (solid line), b-LMF (dash line), and
s-LMF (dot line), respectively.

m, say, m=8 here, the b-LMF results show excellent
consistent with the KMC results, in both the oscilla-
tion amplitude (Fig.4(a)) and the period (Fig.4(b)). It
seems that the b-LMF approach does catch some key
factors during the CG procedure.

In Fig.5, we have plotted the dependence of the
turnover frequency (TOF) as a function of time for dif-
ferent coarse size m obtained from the KMC, b-LMF,
and s-LMF. The TOF is defined as the occurrence of
the trimolecular reaction process (5) per surface site
per unit time. Clearly, the b-LMF with m=8 matches
the KMC quite well, while that with smaller or larger
m may capture some qualitative features of the TOF
but with apparent quantitative differences. The s-LMF,
however, almost loses the temporal information associ-
ated with the TOF.

To further demonstrate this quantitatively, we intro-
duce a deviation coefficient for the oscillation range as
follows. According to Fig.3 and Fig.4, each bifurcation
diagram contains two branches, the upper branch and
the lower one corresponding to the averaged maximum
and minimum values of v(t), respectively. As can be
seen from the figures, both branches obtained from the
CG-KMC methods show discrepancies with the KMC
values. Denote the upper branch value of v, obtained
by CG-KMC, at a certain control parameter K5 by vu

k ,
and that obtained by KMC by vu

k0, then γu
A measures

the relative discrepancy of the upper branch.

γu
A =

1
2Nk

∑

k

|vu
k − vu

k0|
vu

k0

(23)

where Nk is the number of control parameters used in

the calculation. Similarly, we can calculate the discrep-
ancy of the lower branch γl

A. In the present work, we
have used Nk=20 points inside the range K5∈(1.75, 2.5)
to obtain γu

A and γl
A.

In Fig.6(a), the dependence of γA=(γu
A + γl

A)/2 on
the size m of CG-cell is shown, for the b-LMF with dif-
ferent diffusion constant D and the s-LMF with D=10.
In Fig.6(b), the curves for γT , the relative discrepancy
in the period, are shown. Clearly, the s-LMF method
shows relatively large discrepancies, while the b-LMF
works much better. The s-LMF is even worse than the
MFDE, shown by the dash lines in Fig.6 for D=10.
One notes that both γA and γT exhibit a clear-cut min-
imum of about zero at m=8 for large D when b-LMF
is used. We also note that if D is small, say D=1 here,
the b-LMF also fails. This is not surprising because CG
method which assumes well-mixing in a CG-cell should
not work if diffusion is too slow.

In the above results, we see that the CG results for
small m do not match the results of KMC, even for
the b-LMF. This is in contrast to the CG-KMC meth-
ods used by Vlachos et al. to account for the dynam-
ics of 2D lattice gas Ising model [27−32]. Note that
for the Ising model, one mainly considered the equilib-
rium states. For the Brusselator model considered here,
however, we want to reproduce the temporal oscillation
behavior. To reproduce the oscillation features on the
whole surface, the temporal correlation of the time se-
ries must be properly maintained during the CG proce-
dure. When we perform the CG procedure by dividing
the lattice into CG cells, we are dealing with N c×N c

coupled CG oscillators, where N c=N/m is the size of
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FIG. 6 The dependence of the deviation coefficient for (a) the oscillation amplitude γA and (b) oscillation period γT on the
coarse cell size m obtained from the s-LMF and b-LMF methods. Parameter are the same as in Fig.2 and N=256.

the CG lattice. The coupling between these CG oscilla-
tors are realized by the diffusion and the boundary cor-
relation considered in the b-LMF. If the CG cell is too
small, however, the time-correlation inside each cell will
be lost due to strong fluctuations and the time evolu-
tion of ηφ(t) cannot be viewed as an oscillation. As dis-
cussed by Gaspard, a minimum number of well-mixed
molecules is required to produce correlated oscillations,
such that the auto-correlation time of the time series is
not smaller than T/2π [35]. Therefore, it seems that a
seamless CG approach to reproduce temporal dissipa-
tive structures like chemical oscillation is a large chal-
lenge. On the other hand, for any CG method within
LMF scheme to work well, the scale of a CG cell should
not be larger than the diffusion length, as emphasized
by Mikhailov and others [19, 27]. The compromise be-
tween these two factors, i.e., to keep time autocorrela-
tion and to be smaller than the diffusion length, may be
the reason of appearance of an optimal m for the b-LMF
approach. We note that this reasoning is not applicable
to the s-LMF, for which the discrepancies monotoni-
cally decrease with increasing m, since the s-LMF does
not work for the present system.

IV. CONCLUSION

We have tried to apply a CG-KMC approach to sim-
ulate the oscillation behavior on the surface lattice-gas
Brusselator model. Owing to the correlations between
adjacent cells resulting from the nonlinear trimolecu-
lar reaction, the CG approach based on simple LMF
approximation almost fails. By properly taking into ac-
count the boundary corrections, we have introduced a
so-called b-LMF CG-KMC approach, which can repro-
duce the microscopic KMC results quite well, given that
the diffusion is not too slow and the CG cell size is op-
timally chosen. Our work thus unravels the very role of
reaction correlations which should be carefully consid-
ered in any CG approach and mesoscopic modeling for
nonequilibrium spatiotemporal dynamics at nanoscales.
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