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Explosive Synchronization and Emergence of Assortativity on
Adaptive Networks *

JIANG Hui-Jun(江慧军), WU Hao(吴昊), HOU Zhong-Huai(侯中怀)**

Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of
Science and Technology of China, Hefei 230026

(Received 17 January 2011)
We report an explosive transition from incoherence to synchronization of coupled phase oscillators on adaptive
networks, following an Achlioptas process based on dynamic clustering information. During each adaptive step of
the network topology, a portion of the links is randomly removed and the same amount of new links is generated
following the so-called product rules (PRs) applied to the dynamic clusters. Particularly, two types of PRs
are considered, namely, the min-PR and max-PR. We demonstrate that the synchronization transition becomes
explosive in both cases. Interestingly, we find that the min-PR rule can lead to disassortativity of the network
topology, while the max-PR rule leads to assortativity.

PACS: 68.35.Rh, 89.75.Fb, 05.45.Xt DOI: 10.1088/0256-307X/28/5/056802

The explosive transition of network structure has
gained considerable attention[1−13] since the pioneer-
ing work by Achlioptas et al.[1] Therein, they pro-
posed a stochastic percolation procedure using prod-
uct rule (PR) yielding a first-order percolation tran-
sition which is characterized by the sharp emergence
of a giant cluster. Friedman and Landsberg[2] demon-
strated that this simple strategy is sufficient for chang-
ing the behavior of the percolation transition. Fol-
lowing the work of Achlioptas et al., the PR rule has
been applied to percolation on many network mod-
els, as well as regular lattices.[3−8] Meanwhile, many
other studies tried to propose alternative rules to ob-
tain explosive percolation. For instance, a weighted
rule where bonds are occupied according to a cer-
tain probability,[9,10] an acceptance method where new
bonds are selected randomly and occupied according
to a certain weight,[11] etc. The explosive character of
the percolation transition on the human protein ho-
mology network was also reported.[12] Although there
are some debates on the nature of the explosive perco-
lation transition very recently,[13] this phenomenon is
undoubtedly very interesting and important and de-
serves more studies.

Notice that, however, almost all the explosive
phase transitions reported so far only concern the
phase transition of the topological structure of a
network, i.e., the percolation transition. For many
real-world networks, there are phase transitions not
only of network structure but also of dynamics tak-
ing place on them, which are often associated with
the formation of a giant dynamic cluster (DC).
Examples include synchronization of coupled phase
oscillators,[14] epidemic spreading and consistent opin-
ion formation,[15,16] order-disorder transition in the
Ising model,[17] etc. In many systems, such dynamic
phase transitions are of second order, i.e., the largest
dynamic cluster grows continuously as the control pa-

rameter changes. Meanwhile, a well-defined order pa-
rameter increases continuously from 0. Therefore, an
interesting question arises: If we apply the PR rule to
the evolution of dynamic clusters, can such dynamic
phase transitions be explosive or not?

We study the synchronization process of coupled
phase oscillators on adaptive networks, where the net-
work topology coevolves with the dynamics by apply-
ing PR based on the dynamic clustering information.
We assume that the network changes via the natural
death of old links and birth of new ones. Specifically,
the new links are added following the dynamic PRs:
For each new link, we choose the one which minimizes
(min-PR) or maximizes (max-PR) the product of the
sizes of the two DCs it joins. We present evidences
that explosive synchronization does happen, i.e., the
size of the largest DC or the order parameter increases
discontinuously at the onset of synchronization. In
addition, we have also investigated the characteristic
topological features of the resulting networks, finding
that the min-PR (max-PR) can automatically lead to
disassortativity (assortativity), respectively. There-
fore, our model may also be interpreted as a possible
mechanism that explains the emergence of assortativ-
ity on real networks, which is a common property of
real networks.[18]

Here we consider the Kuramoto model, which has
been widely used to study synchronization of coupled
phase oscillators.[19] The Kuramoto model consists of
a population of 𝑁 coupled phase oscillators, described
by time-dependent phase 𝜃𝑖(𝑡) and natural frequencies
𝜔𝑖, which are picked up from a given probability dis-
tribution 𝑔(𝜔). The dynamic equation reads

𝜃𝑖 = 𝜔𝑖 + 𝜎

𝑁∑︁
𝑖=1

𝑎𝑖𝑗 sin(𝜃𝑗 − 𝜃𝑖), 𝑖 = 1, · · · , 𝑁, (1)

where 𝜎 is the coupling strength and 𝑎𝑖𝑗 is the ele-
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ment of adjacency matrix of the underlying network,
which is 𝑎𝑖𝑗 = 1 if nodes 𝑖 and 𝑗 are connected and
𝑎𝑖𝑗 = 0 otherwise. For this model, synchronization
is conveniently measured by the time-averaged order
parameter,

𝑅 = lim
𝑡→∞

1

𝑡

∫︁ 𝑡

0

𝑟 (𝑡) = lim
𝑡→∞

1

𝑡

∫︁ 𝑡

0

1

𝑁

𝑁∑︁
𝑗=1

𝑒𝑖(𝜃𝑗(𝑡)−𝜓(𝑡)),

where 𝜓(𝑡) = 1
𝑁

∑︀
𝑖 𝜃𝑖(𝑡) is the average phase and the

order parameter 𝑟 measures the coherence of oscilla-
tors. Clearly, 𝑟 = 0 if all the oscillators are totally
incoherent and 𝑟 = 1 if the oscillators are completely
synchronized. In the thermodynamic limit of 𝑁 → ∞,
a continuous transition from incoherence (𝑅 = 0) to
synchrony (𝑅 > 0) occurs via a supercritical bifur-
cation as the coupling strength 𝜎 passes through a
critical value 𝜎𝑐.

In our model, the co-evolution dynamics are de-
scribed as follows. We start from an Erdös-Rényi
random network with 𝑁 nodes and the connectiv-
ity probability 𝑝 and run the dynamics via numerical
simulation of Eq. (1) with a time step ∆𝑡. The node
frequencies are randomly picked up from a Gaussian
distribution with zero mean value and unit variance.
After every 𝑚 dynamic time step, the network evolves
one adaptive step. Since network topology usually
changes much more slowly than the dynamics on it,
we set 𝑚 ≫ 1. For each adaptive step, we consider
two processes: the natural death and biased birth of
links. We assume that the number of dead links and
new links are the same, given by 𝑛, to keep the to-
tal number of links unchanged. The former process
is realized simply by randomly deleting links, while
we apply Achlioptas dynamics to add new links: For
each new link, we first randomly choose two pairs of
candidate nodes which are not yet connected and then
link the pair which minimizes (min-PR) or maximizes
(max-PR) the product of the sizes of dynamic clusters
it joins. For comparison, we have also performed sim-
ulations for the case without preference (no-PR) when
adding a new link.

To define a DC, we introduce the time-averaged
frequency[20] of oscillator 𝑖 as

�̄�𝑖 =
1

𝑚∆𝑡

∫︁ 𝑡0

𝑡0−𝑚Δ𝑡

𝜃𝑖(𝑡)𝑑𝑡,

where 𝑡0 is the time when we run the adaptive step.
We can say that two oscillators 𝑖 and 𝑗 are in the same
DC if |�̄�𝑗 − �̄�𝑖| ≤ 𝛿0, where 𝛿0 is a given small thresh-
old value. Then, the size of a DC can be conveniently
measured by the number of nodes within it. In the
following, we fix the time step ∆𝑡 = 0.005, connectiv-
ity probability 𝑝 = 0.15, time steps between successive
adaptive step 𝑚 = 400, the number of deleted/added
links 𝑛 = 0.1𝑝𝐶2

𝑁 and frequency threshold inside a
DC 𝛿0 = 0.001. The network size is 𝑁 = 500 if not

otherwise stated. The robustness of our main results
against the choice of the above parameters will be dis-
cussed later.
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Fig. 1. (Color online) Dependences of (a) 𝑅, (b) 𝑆𝑑 and
(c) 𝐶max/𝑁 (see the text for definition of these parame-
ters) on the coupling strength 𝜎.

In Fig. 1(a), the ensemble-averaged order param-
eter ⟨𝑅⟩ as a function of the coupling strength 𝜎 is
present. Here ⟨·⟩ stands for averaging over 30 differ-
ent initial network realizations. In the thermodynamic
limit 𝑁 → ∞, ⟨𝑅⟩ is zero for 𝜎 < 𝜎𝑐, and increases
from 0 at 𝜎𝑐. For a finite system, however ⟨𝑅⟩ cannot
be exactly zero for 𝜎 < 𝜎𝑐 due to fluctuations. Hence
to locate the transition point, one can calculate the
standard deviation 𝑆𝑑 of 𝑟 over time and ensemble
which usually shows a clear-cut peak at 𝜎𝑐. We use
this as a criterion to define 𝜎𝑐 for finite systems in the
present work. In Fig. 1(b), 𝑆𝑑 is plotted as a function
of 𝜎. Apparently, the peak for both the cases of min-
PR and max-PR are much more pronounced and sharp
than that for the no-PR case. This observation hints
that the synchronization transition with PRs may be-
come explosive compared to that without PR. To be
consistent with this, the ratio of the largest dynamic
cluster size, 𝐶max, to the total number of nodes 𝑁 ,
increases sharply from 0 as shown in Fig. 1(c).

Although the above results suggest that the syn-
chronization transition may become discontinuous,
more evidence is necessary. To this end, we have used
the fact that for a finite system with first-order like
transition, the probability distribution of the order
parameter within the transition region should be bi-
modal rather than unimodal. Accordingly, we have
calculated the distribution of 𝑟 over different initial
network realizations and time at different coupling
strengths and the results are shown in Fig. 2. Clearly,
if 𝜎 is away from the transition point 𝜎𝑐, the distri-
butions are all unimodal whether PRs are applied or
not. However, in the very vicinity of 𝜎𝑐, bimodal dis-
tributions are found for both min-PR and max-PR

056802-2

Chin. Phys. Lett.
References

http://cpl.iphy.ac.cn


CHIN. PHYS. LETT. Vol. 28,No. 5 (2011) 056802

cases, while the distribution is still unimodal for the
no-PR case. The peak at a small 𝑟 value indicates
an incoherent state and the peak at large 𝑟 denotes a
phase-locked synchronization state. The presence of
two main peaks shows the coexistence of the incoher-
ent and synchronized states, which is a characteristic
of the first-order or discontinuous transition for a fi-
nite system.[21] Therefore, we believe that the tran-
sition from incoherence to synchronization becomes
explosive under both min-PR and max-PR dynamics.
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Fig. 2. (Color online) Distribution of the order parameter
𝑟 for (a) no-PR, (b) min-PR and (c) max-PR. Within the
transition range, the distribution shows bimodal shape for
the latter two cases. Note that in (b), the 𝑃 (𝑟) data shown
for 𝜎 = 0.03 has been divided by 2.
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Fig. 3. (Color online) Dependence of 𝑘𝑐 on system size
𝑁 under no-PR, min-PR and max-PR dynamics. Sym-
bols: simulation results. Red and blue lines: fitting by
exponential growth. Black line: Drawn to guide the eyes.

The above results are obtained for a network of
size 𝑁 = 500. Rigorously speaking, to reach the
conclusion undoubtedly, one should perform simula-
tions on networks of much larger sizes. However, di-
rect simulation of the coevolution dynamics on a net-
work of a very large size is rather expensive. Never-
theless, one may design some alternative approaches
to further demonstrate the explosive feature of the
transition without simulations on very large networks.
We have carefully investigated the fast transition re-
gion for different system sizes. One expects that the

transition will become extremely sharp as the sys-
tem size goes to infinity. To show this, we have in-
troduced a parameter, 𝑘𝑐, to characterize the sharp-
ness of transition, which may be explicitly defined as
𝑘𝑐 = lim

𝜎→𝜎𝑐

(𝑅−𝑅𝑐)/(𝜎−𝜎𝑐). The dependences of 𝑘𝑐 on

the system size𝑁 are shown in Fig. 3. We can see that,
for the min-PR and max-PR cases, 𝑘𝑐 increases mono-
tonically with the system size 𝑁 and both the curves
can be well-fitted by exponential growth functions.
For the no-PR case, however, 𝑘𝑐 is nearly unchanged
with 𝑁 . Therefore, an infinite slope will present as
𝑁 → ∞ in both the min-PR and max-PR situations,
which gives further evidence that the synchronization
transition does become discontinuous.

As stated above, the network topology coevolves
with the dynamics. Can the topology exhibit some
new features while the synchronization of oscillators
changes from a continuous transition to a discontinu-
ous one? Interestingly, we find that this is true: the
dynamic PRs can lead to the emergence of degree cor-
relations on the resulting network, either assortativity
(max-PR) or disassortativity (min-PR). As we know,
degree correlation is a ubiquitous property of many
real-world networks. For assortative (disassortative)
networks, nodes with large degrees tend to connect
with nodes with large (small) degrees, respectively.
Usually, one may use the assortativity coefficient 𝑎𝑐
to measure the degree correlation of a network, which
is defined as

𝑎𝑐 =
𝑀−1

∑︀
𝑖 𝑗𝑖𝑘𝑖 − [𝑀−1

∑︀
𝑖
1
2 (𝑗𝑖 + 𝑘𝑖)]

2

𝑀−1
∑︀
𝑖
1
2 (𝑗2𝑖 + 𝑘2𝑖 ) − [𝑀−1

∑︀
𝑖
1
2 (𝑗𝑖 + 𝑘𝑖)]2

,

for 𝑖 = 1, · · · ,𝑀,

where 𝑀 is the total number of links, 𝑗𝑖 and 𝑘𝑖 are the
degrees of the two nodes at the ends of the 𝑖th edge. In
Fig. 4, we present the curves of 𝑎𝑐, calculated after the
system has reached the stationary state and averaged
over time and different network realizations, as a func-
tion of the coupling strength 𝜎. For the no-PR case,
the adaptive step does not induce any degree correla-
tion within the network thus 𝑎𝑐 remains nearly zero
characterizing a random network. When the min-PR
or max-PR is applied, however, the dependence of 𝑎𝑐
on 𝜎 is nontrivial. In the weak coupling region, 𝑎𝑐 is
also nearly zero implicating that no degree-correlation
is present on the network. As the coupling strength
approaches 𝜎𝑐, 𝑎𝑐 increases (decreases) rapidly until
at 𝜎𝑐 it reaches a maximum (minimum) value, when
the max-PR (min-PR) is applied in the adaptive step,
respectively. With further increasing 𝜎, 𝑎𝑐 relaxes
slowly. One expects that in the limit of infinite cou-
pling strength, all the oscillators belong to a single
DC and the PRs would not take effect such that the
final network will lose degree correlation and 𝑎𝑐 would
be 0. Therefore, our model with PRs applied to the
dynamic cluster can automatically lead to network as-
sortativity or disassortativity.
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One may understand the emergence of degree cor-
relation qualitatively as follows. The key point is that
nodes with larger degrees are coupled to the global
mean field more strongly and henceforth are more
likely to be inside a large DC. When the coupling
strength is small, the oscillators are almost incoher-
ent and few DCs are present. In this case, the pref-
erence rule for adding a new link, either max-PR or
min-PR, is actually the same as the random select-
ing rule, such that 𝑎𝑐 remains to be nearly 0. With
increasing 𝜎, DCs with various sizes appear on the
network. As stated above, these DCs are more likely
to be formed by nodes with larger degrees. Consider
now that a new link is added with the preference rules.
For the max-PR case, a new link tends to join two big
DCs, thus is more likely to join two nodes with large
degrees. Consequently, nodes with large degrees are
connected together and the network will become assor-
tative. In contrast, when min-PR is applied, the new
link, among the two candidates, will join two DCs with
smaller-size product. Therefore, the new link starting
from a node with large degree is more likely to end
at a node with small degree, which will finally result
in disassortativity. If the coupling strength is strong
enough, a giant DC appear on the network. In this
case, the influence of the PRs will be less remarkable
and the absolute value of 𝑎𝑐 will decrease as shown in
Fig. 4.
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Fig. 4. Emergence of degree correlation on adaptive net-
works with PRs. When the coupling strength passes
through the transition point, the min-PR rule leads to
disassortativity and the max-PR to assortativity.

We have also investigated how the above results de-
pend on the choices of other parameters. The parame-
ter𝑚measures the time scale of the network adaption.
Our results show no quantitative difference given that
𝑚≫ 1 is well satisfied, e.g., 𝑚 > 100. The number of
removed or added links during each adaptive step, 𝑛,
could be small or large: If 𝑛 is small, the only differ-
ence is such that it takes longer time for the system
to reach a stationary state. The frequency threshold
value 𝛿0 to define a DC should be properly chosen.
If 𝛿0 is too small, it is hard to find even one DC on
the network. If it is too large, all the oscillators will
be in the same DC and the PRs will not function.
We have performed simulations for several 𝛿0 between

0.001 and 0.01 and found that the main conclusions
of our work remain nearly the same.

In summary, we have studied the transition from
incoherence to synchronization of coupled phase oscil-
lators on adaptive networks. The network topology
coevolves with the oscillator dynamics following the
Achlioptas process based on dynamical clustering in-
formation. Each time a new link is added by max-PR
or min-PR during the adaptive step. We find that
both PRs can lead to explosive synchronization tran-
sition, which is different from the percolation transi-
tion reported by Achlioptas et al.[1] The difference is
caused due to the fact that the dynamic property of
coupled oscillators provides another competitive fac-
tor in our model. In the min-PR case, on the one hand,
oscillators always tend to be phase locking near the
transition point; on the other hand, the min-PR rule
tries to desynchronize them. Contrarily, in the max-
PR case, oscillators always tend to oscillate at their
natural frequencies near the transition point but the
max-PR rule tries to synchronize them. In addition,
we find that max-PR (min-PR) can automatically lead
to assortativity (disassortativity). As the dynamic on
complex networks can exhibit many other types of dy-
namical phase transitions, e.g., oscillator death and
coevolutionary networks are ubiquitous in nature. We
believe our work may open more perspectives on the
study of explosive phase transition on complex sys-
tems.
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