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The effect of internal noise in a delayed circadian oscillator is studied by using both chemical Langevin
equations and stochastic normal form theory. It is found that internal noise can induce circadian oscillation
even if the delay time τ is below the deterministic Hopf bifurcation τh. We use signal-to-noise ratio (SNR) to
quantitatively characterize the performance of such noise induced oscillations and a threshold value of SNR is
introduced to define the so-called effective oscillation. Interestingly, the τ-range for effective stochastic
oscillation, denoted as ΔτEO, shows a bell-shaped dependence on the intensity of internal noise which is
inversely proportional to the system size. We have also investigated how the rates of synthesis and
degradation of the clock protein influence the SNR and thus ΔτEO. The decay rate Kd could significantly affect
ΔτEO, while varying the gene expression rate Ke has no obvious effect if Ke is not too small. Stochastic normal
form analysis and numerical simulations are in good consistency with each other. This work provides us
comprehensive understandings of how internal noise and time delay work cooperatively to influence the
dynamics of circadian oscillations.
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1. Introduction

Gene regulation processes usually involve large timescale separa-
tions. Fast reactions such as the binding or release of a transcription
factor to an operator site or the dimerization of some proteins occur
on timescales of seconds, while the transcription or translation of a
gene may take minutes or even hours. Generally, transcriptional and
translational processes are not only slow but also involve numbers of
elementary reactions. These multi-step processes could be treated as
delayed reactions, in which the initiating events are separated from
the appearance of products by certain interval of time delay. Recent
studies indicate that such types of delay could be pivotal in inducing
oscillations in gene regulation [1,2]. Specifically, it is proved
experimentally that time delay is an important mechanism in
circadian systems such as Neurospora and Drosophila [3–5]. Several
theoretical models have been proposed to address the importance of
delay in circadian rhythm oscillations [6–10]. For example, a general
delay model based on the kinetics of synthesis and degradation of a
clock protein and its messenger RNA has been proposed, which
displays a rich and realistic repertoire of circadian rhythm behavior
[6]. Lema et al. introduced a model with a delayed negative feedback
exerted by a protein on the expression of its gene, which fulfills most
of the necessary characteristics of a realistic representation of natural
circadian clocks [8]. Smolen et al. constructed two detailed models for
Neurospora and Drosophila with both negative and positive feedback
loops [7]. They also came up with a reduced model involving the basic
biochemical elements of the circadian rhythm generator. Such
reduced model contains only two differential equations, each with a
time delay [9]. All these models mentioned above take advantage of
time delay to represent the slow processes whose details are too
complex or uncertain to model, and it is found that delay is the
dominant source of large deterministic variability, which is usually
recognized as the Hopf bifurcation [11].

Biochemical reactions, in which the number of reactantmolecules is
usually small, are inherently stochastic and the internal noise is non-
ignorable. The effect of internal noise in biological systems has gained
much research interest in recent years [12–14]. On one hand, internal
noise may be a source of disorder, and considerable attentions have
been paid to the underlying mechanism regarding how the system
shows robustness and resistance against such fluctuations [13,15,16].
On the other hand, recent studies showed that internal noise could also
play constructive roles in gene regulatory processes under certain
circumstances [17–27]. For example, noise in gene expression may
increase population diversity and thus enhance survival in the face of
environmentaluncertainty [17,18]. Internal noise can selectively sustain
the intrinsic frequency and optimize the noise-induced signals in
mesoscopic hormone signaling system [20]. Specifically, for systems
located outside but close to the deterministic oscillatory region, noise
can induce stochastic oscillations, whose performance, characterized by
a well-defined signal-to-noise ratio (SNR), may showmaxima with the
variation of the internal noise level, generally known as internal noise
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coherence resonance. Since the internal noise strength is inversely
proportional to the system size, this phenomenon also indicates a kind
of optimal system size effect [28,29]. Such interesting phenomenon has
been observed in many mesoscopic biochemical systems, including
circadian oscillators [25,26]. In most previous works, the effects of
internal noise are mainly investigated by simulation methods. Very
recently, our group have developed the stochastic normal from theory
(SNFT) [22,30–32], an analytical methodwhich not only reproduces the
optimal size effect quantitatively well, but also provides deep
understanding about how the system shows robustness to, or even
takes advantage of the internal noise. Nevertheless, the constructive
roles of internal noise in circadian clock systems with delay, e.g., noise
induced oscillation (NIO), internal noise coherence resonance and
related behaviors, have not been well investigated [16].

In this paper, we have studied the effects of internal noise near the
Hopf bifurcation induced by time delay τ in a circadian oscillator
model both numerically and theoretically. We find that internal noise
can sustain circadian oscillation in a wider τ-range than that predicted
by the deterministic model. Those NIO with good performances, i.e.,
their SNR are larger than a certain threshold, are defined as effective
oscillations (EO). The τ-range for the occurrence of EO, denoted as
ΔτEO, are calculated at different system sizes. Interestingly, ΔτEO
typically exhibits a maxima at an optimal system size V. The
dependence of ΔτEO on the expression rate Ke and degradation rate
Kd are also studied. The results show that ΔτEO depends strongly on Kd

but not that much on Ke. To get a deeper understanding of such
nontrivial features, we have also performed theoretical analysis based
on the SNFT. The theory clearly shows that the SNR is determined by
an effective noise intensity which is related to Ke, Kd and the delay
time τ. The results obtained by SNFT show rather good agreements
with the simulation results.

The rest of the paper is organized as follows.We present ourmodel
and methods in Section 2. Results for numerical simulation and
theoretical analysis are given in Section 3, followed by conclusions in
Section 4.

2. Model and methods

2.1. Deterministic description

In the present paper, we are mainly interested in the interplay
between internal noise and delay in circadian clock systems. Recent
study on Neurospora crassa has shown that negative feedback and
time delay are the two essential aspects for circadian oscillation
[10,33]. For simplicity, we consider the model proposed by Lema [8],
which has taken these two basic factors into account. The model
simply involves two steps: the birth step of the clock protein via the
gene expression, which is regulated by a delayed negative feedback by
the protein itself, and the death step due to the degradation of the
protein. The deterministic model for such a circadian oscillator is
given by the following equation,

dx tð Þ
dt

= KeG t−τð Þ−Kdx tð Þ; ð1Þ

where x(t),Ke and Kd denote the concentration, synthesis rate
constant, and degradation rate constant of the clock protein,
respectively. The first term on the right side describes the synthesis
of clock gene with delayed feedback, where

G t−τð Þ = 1
1 + x t−τð Þ=Ki½ �n ð2Þ

represents the level of gene activation, with Ki the inhibition rate
constant and n the Hill coefficient. In our study, we fix the parameters
Ki=0.5 and n=4 unless otherwise specified.
Choosing τ as the control parameter, the system (1) may show a
supercritical Hopf bifurcation (HB). One should note, however, Eq. (1)
is not autonomous due to the delay, and the determination of the HB
value, τh, is somewhat different from that of autonomous ordinary
differential equations. To do so, one may perform linear stability
analysis around the fixed point xs of Eq. (1), satisfying dx/dt|x= xs=0.
For tiny perturbations δx=x−xs and δxτ=xτ−xs, where xτ=x(t−τ),
we have

δ ẋ = −aδx−bδxτ + g δx; δxτð Þ; ð3Þ

where a=kd, b=64kexs3/(1+16xs4)2 are linear coefficients, g(δx,δxτ)
stands for the nonlinear terms of δx and δxτ. Assuming Eq. (3) has a
solution with the form δx(t)∼ceλt, one gets the following equation for
eigenvalue λ

λ = −a−be−λτ
: ð4Þ

Typically, Eq. (4) has infinitelymanysolutionsλq (q∈Z) [34]. Given b
larger than a, the system described by Eq. (3) may exhibit a pair of pure
imaginary eigenvalues ±ωi corresponding to the principal solution
with q=0, leading to aHopf bifurcation. TheHBvalue for delay time can
be readily obtained as τh = cos−1 −a = bð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2−a2

p
:

2.2. The chemical Langevin equation (CLE)

The circadian clock system is regulated by a gene network on the
molecular level, such that internal noise must be considered. In order
to take internal noise into account, we can describe the chemical
reaction system as a birth/death stochastic process governed by a
chemical master equation. Usually, the master equation can not be
solved directly, but it provides the basis for kinetic Monte Carlo
simulations. In 1977, Gillespie proposed the well-known stochastic
simulation algorithm (SSA)which can exactly account for the stochastic
nature of the reaction events [35]. For large systems, however, the SSA
approach could be rather expensive and is not particularly efficient. For
reaction systems of typically mesoscopic size or involving intermediate
number of reactant molecules, several approximation methods can be
used instead of SSA. Typically, for a system with the existence of a so-
called ‘macro-infinitesimal time scale’, one may use some kind of
leapingmethod, which focus on howmany times each reaction process
will happen in the following leaping time interval. If these reaction times
are not too small, one may also further approximate the dynamics by a
stochastic differential equation, namely, the CLE [36]. In previousworks,
it has been shown that CLEs dowork quitewell formesoscopic chemical
oscillation systems [25], at least qualitatively, for the issues we want to
address in the present study. In addition, the CLE clearly includes a
deterministic part and a noise part, which makes it convenient to
compare with the deterministic modeling, thus unravel the very role
that played by the internal noise.

For the minimal system considered here, we may consider two
reaction channels involving the change of the number X of the clock
protein, namely, X→X+1 for the birth and X→X−1 for the death.
Correspondingly, the propensity functions (or rates) can be approxi-

mately given by W1 = w1V = KeV
1 + x t−τð Þ=Ki½ �n and W2=w2V=KdVx(t),

respectively. In its general form, the CLE then reads [37],

dx tð Þ
dt

= w1−w2ð Þ + 1ffiffiffiffi
V

p ffiffiffiffiffiffiffi
w1

p
η1 tð Þ− ffiffiffiffiffiffiffi

w2
p

η2 tð Þð Þ ð5Þ

where η1 and η2 are two independent Gaussian noises with zeromean
and unit variance. In this study, the numerical results are obtained by
simulation of Eq. (5).



Fig. 1. Range of noise induced oscillations for different system sizes. The deterministic
bifurcation diagram is also shown for comparison. Parameters are Ke=1.0 and
Kd=0.075.

a

b

Fig. 2. (a) Typical time series for internal noise induced circadian oscillation with delay
time τ=6.78. (b) The dependence of average oscillation period on V for different τ.
Ke=1.0, Kd=0.075.
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Taking noise into account, Eq. (3) now changes to

δ ẋ = −aδx−bδxτ + ξ tð Þ + g δx; δxτð Þ ð6Þ

where ξ(t) isGaussiannoisewith 〈ξ(t)〉=0and 〈ξ (t) ξ (t′)〉=2Dδ(t−t′).

The noise intensity is given by 2D =
1
V

w1 xsð Þ + w2 xsð Þ½ �, where

w1 xsð Þ = Ke

1 + xs =Kið Þn and w2(xs)=Kdxs are the values of propensity

functions at the fix point xs.

2.3. Analytical method: SNFT

In this section, we briefly outline the theoretical methods we used
in the present work, the SNFT. In our previous works [22,30], the basic
ideas of SNFT have been described in much detail. Here we readdress
some relevant contents here for two-fold reasons. First, we note here
that to apply the SNFT to a delayed stochastic system is not that
straightforward and a number of technical difficulties should be
overcome. Secondly, some analytical results need to be shown here
for self-consistency of the present work.

As is shown in Ref. [38], the solution of the linear inhomogeneous
Eq. (6) could be expanded by time-dependent coefficients Cq(t)
corresponding to the eigenvalues λq given by Eq. (4) as
δx tð Þ = ∑q Cq tð Þ. These expansion coefficients obey the following
equation

Ċq tð Þ = λqCq tð Þ + g x; xτð Þ
Nq

+
ξ tð Þ
Nq

; ð7Þ

where the coefficient Nq=1+aτ+λqτ is associated with the qth

eigenvalue λq. These equations are free of the delay term in Eq. (6) and
are analytically solvable. From the combination of the time evolution
for different Cq(t), one could calculate the time evolution of x(t). These
coefficients are sort in the order of the real part of eigenvalues and the
two conjugate eigenvalues corresponding to the principal solution
with q=0 have the largest Re(λ) [39], whose absolute value is the
smallest. Therefore, the relevant coefficients C0 and C0 evolve much
slower than the other coefficients and they essentially define the
center manifold. According to the bifurcation theory [40], the system's
dynamics can thus be described by a normal form equation on this
two-dimensional center manifold in the vicinity of HB. By suitable
near-identity nonlinear variable transformation and keeping the so-
called resonant terms to the lowest order, one can get the stochastic
normal form equation for the complex amplitude Z=reiθ, where r and
θ are the oscillation amplitude and phase angle respectively,

Ż = λZ + Cr + iCið ÞZ2Z +
ξ tð Þ
N0

: ð8Þ

One notes here a τ-dependent factor N0 enters the noise term,
which is the very consequence of the delay feedback. The coefficients
Cr and Ci are derived from the nonlinear terms g(x,xτ) and can also be
calculated numerically.

From Eq. (8), following similar steps including stochastic averag-
ing [41,42] as those described in Refs. [22] and [30], we get the



Fig. 3. SNR plotted as a function of V for different τ. Ke=1.0, Kd=0.075. Lines are drawn
to guide the eyes.
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stochastic normal form equations for the phase angle θ and the
oscillation amplitude r of the noise induced oscillation that are
solvable as follows,

ṙ = αr + Crr
3 +

σ2

2r
+ σξr tð Þ ð9aÞ

θ̇ = ω0 + Cir
2 +

σ
r
ξθ tð Þ ð9bÞ

where αb0 and ω0N0 are the real and imaginary parts of λ0,
respectively. ξr and ξθ are two independent Gaussian white noises and
σ is the effective noise intensity. Since phase angle θ evolves much
faster than the oscillation amplitude r, it is clear from Eq. (9b) that
under the influence of Gaussian noise, the phase angle θ(t) shows
Gaussian response around ω0+Cr〈r

2〉s in long time limit, with :s the
average in the steady state. On the other hand, Eq. (9a) is a non-linear
a b

Fig. 4. The contour of SNR for different V and τ are obtained by numerical simulations wi
equation of oscillation amplitude r and the stationary distribution of r
exhibits non-Gaussian distribution, which is given by

Ps rð Þ = C0r exp
2αr2 + Crr

4

2σ2

 !
: ð10Þ

Herein, C0 is the normalization constant. When the system is
distant fromHopf bifurcation or the noise intensity is small, such non-
Gaussian behavior can be treated in Gaussian approximation.
However, in the vicinity of Hopf bifurcation with relatively large
fluctuation, the distinction from the Gaussian distribution has to be
taken into account. It is easy to prove that Eq. (10) has a maximum
which corresponds to the most probable value of the oscillation
amplitude rm as described below.

rm =
α +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2−2Crσ

2
q
−2Cr

0
@

1
A

1=2

ð11Þ

The analytical form of the auto-correlation time has the following
form,

τc = 2r2m = σ2
: ð12Þ

Herein, the effective noise intensity σ is given by

σ2 =
4D
jN0j2

=
2 w1 xsð Þ + w2 xsð Þ½ �

V 1 + aτ + ατð Þ2 + ω0τð Þ2� � : ð13Þ

The SNR, which is defined as the peak height of the power
spectrum divided by its half-height width, can be readily calculated as

SNR = rmτcð Þ2 =
4r6m
σ4 : ð14Þ

From the above equations, one can see that the parameter σ plays
the most important role to determine the properties of NIO, rm, τc and
SNR. According to Eq. (13), it is clear that σ depends not only on
system size V, but also on the delay time τ. Besides, the parameters D
and λ0 both depend on Ke and Kd. Therefore, such analytical formulae
provide lots of information about how the NIO performance is
influenced by the system parameters.
c

th (a) Ke=1.0, Kd=0.075 (b) Ke=1.0, Kd=0.1 (c) Ke=0.5, Kd=0.075, respectively.
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Fig. 5. The contour of SNR for different V and τ are obtained by theoretical analysis with the same parameters as those in Fig. 4.
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3. Results and discussions

In the present study, we mainly focus on the effect of noise in the
parameter region τ≲τh. In this region, the deterministic description
does not show oscillations. We perform numerical simulation of the
CLE, Eq. (5), to generate trajectories x(t). 16,384 data points with
more than 200 periods are used to calculate the power spectrum, from
which we can estimate the SNR. The final SNR values reported in the
present study are all averaged over at least 200 independent
trajectories. The time step used is 0.001 h, and the first 20,000 h is
discarded before we record the data.

In Fig. 1, the amplitude of the NIO observed is shown for different
system sizes, in comparison with the deterministic bifurcation
diagram. The reaction rate constants for synthesis and degradation
are Ke=1.0 and Kd=0.075, respectively, which give rise to a Hopf
bifurcation at τh=6.87. Obviously, NIO can be triggered in a much
wider region than that predicted by the deterministic model. Taking
internal noise into account, the condition for circadian oscillation is
much more relaxed. Since delay times in real biochemical reactions
are often Gaussian distributed, the occurrence of NIO thus indicates a
type of robustness of circadian oscillation to time delay. This is also
consistent with recent works that for real circadian systems, the delay
time required for oscillation is usually smaller than the theoretical
prediction [7,43].

In Fig. 2a, typical time series of NIO for different system sizes are
present with the same Ke and Kd in Fig. 1. The delay time is τ=6.78,
which is near the Hopf bifurcation but in the subcritical region. We
note that the period of NIO keeps nearly the same when V changes, as
further demonstrated in Fig. 2b for other values of τ. That is, the period
of noise induced circadian oscillation is quite robust to the internal
noise. However, the period is quite sensitive to the parameter τ.
Apparently, when τ is very small, τb5.0 in this case, the period of the
oscillation will be too small to be a typical circadian rhythm.

As shown in Fig. 1, the NIO-amplitude increases monotonically as
the system size goes small, i.e., the internal noise goes large. However,
this does not correspond to the increment in the regularity of NIO.
Rather, one should use the SNR to characterize the performance of the
NIO, which is a kind of trade-off between the regularity and strength
of the NIO, as indicated by Eq. (14). Intuitively, with the decrease of
system size, the NIO-amplitude rm increases, while the auto-
correlation time τc decreases. At an intermediate system size, the
SNR may undergo a maximum.

In Fig. 3, numerical results for SNR are plotted as a function of the
system size V for different τ. As expected, a clear-cut maximum shows
up in each of the curves. Such phenomenon is usually recognized as
internal noise coherent resonance (INCR).

To get a global view of the cooperative effect of τ and V, the contour
plot of SNR as functions of both delay time τ and system size V is
shown in Fig. 4a with Ke=1.0, and Kd=0.075. SNR becomes larger
when τ is closer to the Hopf bifurcation τh. With decreasing τ, the
system size corresponding to the best SNR becomes smaller. It has
been found experimentally that circadian oscillations can be affected
by stimulus such as light through modulation of synthesis and
degradation of key molecular species [44–46]. Thus here we also
study how the variation of Ke and Kd would affect the SNR. Fig. 4b is
plotted with a larger decay parameter Kd=0.01 and Fig. 4c has a
smaller expression rate Ke=0.5. One notes that the main features
shown in Fig. 4a to c are similar. Using Eq. (14), we theoretically
obtain the contour of SNR in Fig. 5 with the same parameters as those
shown in Fig. 4. It can be seen that the analytical results agree with the
simulation qualitatively well.

We emphasize that oscillations that are too irregular contribute
little to biological systems. Therefore, although internal noise can
induce stochastic oscillations even for τbτh, which indicates the
constructive role of internal noise, not all the NIO are useful. If SNR is
too small, the NIO actually contributes little to signal transfer.
Therefore, it is convenient for us to define the so-called effective
oscillation (EO) if SNR is larger than a given threshold value. In the
present study, we choose the threshold value to be SNR=250.0,
which is almost the largest value of SNR that the system could reach at
a small system size V=100with Kd=0.01.We note that changing this
somewhat arbitrary threshold value does not change the qualitative
results shown below. For a given system size, SNR decreases
monotonically when τ decreases from τh. Assuming that SNR reaches
the threshold value at τs, then we can define ΔτEO=τh−τs as the
range for the occurrence of EO. ThewiderΔτEO is, the more robustness
the circadian system has.

In Fig. 6a, we plot ΔτEO as a function of system size for different
decaying rates Kd with Ke=1.0. One can see that ΔτEO shows non-
monotonic dependence on V when Kd is large. If Kd is small enough,
ΔτEO decreases monotonically with increasing V. With the increment
of Kd, the τ-range for effective oscillation shrinks remarkably. If Kd is of
moderate value, Kd=0.075 for instance, ΔτEO shows no obvious
change between V=100 and V≈3000, indicating robustness against
large internal fluctuation. For large Kd, on the other hand, small
system size could decrease ΔτEO significantly, as the curve Kd=0.1
shows. It is worth mentioning that for Kd=0.1, the maximum of ΔτEO
is around 103, which seems to match the real biological system size
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Fig. 6. The τ-range for the effective oscillation region ΔτEO as a function of system size
for different Kd. (a) Simulation results. (b) Theoretical results.

a

b

Fig. 7. The τ-range for the effective oscillation region ΔτEO as a function of system size
for different Ke. (a) Numerical results. (b) Theoretical results.
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[47,48]. According to Fig. 6a, it seems that smaller decay rate tends to
enlarge ΔτEO. However, if Kd is too small, τh will be too large and the
average period of stochastic oscillationwill be quite long. For instance,
with Kd=0.055 and Ke=1.0, the bifurcation shifts to about τh=9.18
where the oscillation period is around 31 h. For this reason, the
degradation rate should not be too small if one needs to obtain a
typical circadian oscillation. For different Ke, on the other hand, the
phenomenon is quite different. As is shown in Fig. 7a, the maxima of
ΔτEO is between V=316 and V=562 at moderate Ke. When Ke is large
enough, ΔτEO is a monotonically decreasing function of V. For VN103,
ΔτEO shows no significant dependence on Ke, showing some kind of
robustness. However, when the system size is small, higher
expression rate could help enhance the performance of NIO in a
larger delay time region, as the curve of Ke=8.0 shows. When Ke is
small enough, Ke=0.1 for instance, ΔτEO can be greatly enlarged.
However, very small Ke may also lead to large τh and long period for
stochastic oscillation. Therefore, moderate Ke is necessary to sustain a
typical circadian oscillation. In Figs. 6b and 7b, ΔτEO obtained from the
theoretical formulae are presented, where the parameters are the
same as those in Figs. 6a and 7a.We use the same rule for selecting the
threshold value of EO as in Figs. 6a and 7a. Again, the main features
observed in Figs. 6a and 7a are well reproduced.
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4. Conclusions

In this paper, the effect of internal noise is studied in the vicinity of
delay induced Hopf bifurcation. It is found that internal noise could
induce circadian oscillation when the delay alone is not large enough
to sustain deterministic oscillations. We calculate the SNR of the
stochastic oscillations by numerical simulations of the CLE and using
analytical formulae derived from the SNFT. It is shown that SNR shows
maximum with the variation of system size, demonstrating a kind of
optimal size effect. A threshold for SNR is introduced to distinguish
the effective stochastic oscillations and the τ-range for their
occurrence may also show non-monotonic dependence on the system
size. The influence of gene expression and degradation rates on such
phenomena is also investigated. This work provides us a comprehen-
sive understanding on how internal noise and delay would affect
circadian oscillations.
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