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a b s t r a c t

Wehave studied the effects of non-Gaussian colored noise in a chemical oscillation system,
the well-known Brusselator model, in the parameter region close to the supercritical Hopf
bifurcation. With the variation of the parameter q, which quantifies the deviation from
Gaussian character, the signal-to-noise ratio of noise induced oscillation exhibits a bell-
shaped change, indicating the presence of resonant activity. The cooperative effects of
q and the correlation time τ on the performance of noise induced oscillation are also
investigated. Interestingly, resonance-like behavior can be induced by either q or τ when
the other parameter is properly fixed. Stochastic normal form theory is used to analyze
these nontrivial effects and the simulation results are well reproduced. This work provides
us comprehensive understanding of how non-Gaussian noise influences the dynamics in
chemical oscillation systems.

© 2010 Published by Elsevier B.V.

1. Introduction

In the past two decades, constructive roles played by noise in nonlinear systems have gained considerable attention
[1–3]. Of the most interest are the so-called stochastic resonance (SR) and related phenomena. The fingerprint of SR is
that the system’s response to a feeble input signal, often characterized by some well-defined signal-to-noise ratio (SNR),
shows one or more clear-cut peaks as a function of the noise intensity. Albeit it was first introduced in a bistable system
to account for the earth’s periodic climate change [4,5], SR has found its applications in many other types of dynamical
systems. Specifically, in systemswith oscillatory or excitable dynamics, noise can induce stochastic oscillations even outside
the deterministic oscillatory region, and the SNR of the noise induced oscillation (NIO) shows a bell-shaped dependence on
the noise intensity, indicating the occurrence of coherence resonance (CR) [2,6]. In excitable systems such as neurons, NIO is
of relaxation type with large amplitude [7,8], while in systems where oscillation results from supercritical Hopf bifurcation
(SHB), NIO is harmonic and has small amplitude [9–11]. In systems where SHB and excitability coexist, both types of NIO
can be observed [12,13].

In most previous studies, noises were usually assumed to be Gaussian. However, some recent experimental results in
sensory systems, particularly for one kind of crayfish [14] and rat skin [15], offer strong implications that noise source could
be non-Gaussian and bounded [16–19] in distribution. Recently, effects of non-Gaussian noise (NGN) in nonlinear systems
have attracted growing attention [20–33]. It was demonstrated both experimentally [20] and theoretically [21] that SR in a
bistable system can be enhanced byNGN [21], and there is a regime inwhich a notable robustness against noise tuning exists
[23]. For Brownianmotors driven by NGN, both current and efficiency can be enhanced due to the non-Gaussian character of
noise [25,26], and maximal current could be observed when the noise deviates from Gaussian behavior [31]. CR in coupled
Hodgkin–Huxley neurons can also be enhanced significantly in the presence of NGN [32,33]. Besides these, the effects of
NGN on noise induced transition [24], resonant activation [27] and many other nonlinear dynamical phenomena [28–30]
have also been studied. Nevertheless, the effect of NGN near SHB has not been studied so far.
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Fig. 1. (a) Typical time series and (b) power spectrum density for non-Gaussian noise induced oscillation. Parameters are D = 1E–4, q = 0, τ = 0.01.

In this paper, we have studied the effects of NGN near SHB in a well-known chemical oscillation system, the Brusselator
model. TheNGN is defined by three parameters,D the noise intensity, τ the correlation time and q the quantity characterizing
the non-Gaussian distribution. The system’s parameters lie in the sub-threshold regionwhere no sustained oscillation exists
in the absence of noise. If noise is present (D ≠ 0), NIO can be observed as expected. We first investigate the SNR of the NIO
as functions of D, τ and q numerically. Since we are interested in the non-Gaussian features of the noise, we fix the noise
intensity D and let q and τ vary. We find that SNR shows a maximum with the variation of q if τ is smaller than a certain
value τc , while it increases monotonically with q if τ > τc . On the other hand, SNR shows a maximum with τ if q is larger
than some qc and decreases monotonically with τ if q < qc . Such a scenario is robust to the change of D, except for changes
in the location of SNR maxima and the values of τc and qc . Therefore, NGN with moderate q and small τ seems to be most
favorable to NIO.

To get a thorough understanding of these nontrivial results, we have used the stochastic normal form theory (SNFT) we
developed recently [34–37]. According to SNFT, the SNR is determined by an effective noise intensity σ wherein the power
spectrumof the noise plays the key role.We demonstrate that SNFT reproduces the simulation results qualitativelywell. The
theoretical analysis also provides us clear understanding of how the non-Gaussian feature and noise correlation influence
the NIO in a cooperative way.

The paper is organized as follows. The model is presented in Section 2. Simulation results are given in Section 3. We use
SFNT to interpret the simulation results in Section 4, followed by conclusions in Section 5.

2. Model description

We consider the conceptual model for chemical oscillations, the Brusselator. The dynamics of the Brusselator system is
described by the following equations,

ẋ = A − (B + 1)x + x2y + η(t) (1a)

ẏ = Bx − x2y (1b)
where η(t) denotes the NGN defined via

dη(t)
dt

= −
1
τ

d
dη

Vq(η) +
1
τ

ξ(t). (2)

Herein ξ(t) is a Gaussian white noise with ⟨ξ(t)⟩ = 0, and ⟨ξ(t)ξ(t ′) = 2Dδ(t − t ′)⟩, and the distribution function Vq(η) is
defined as

Vq(η) =
D

τ(q − 1)
ln
[
1 +

(q − 1)τη2

2D

]
. (3)

Taking the limit q → 1, η(t) converges to the standard Gaussian colored noise generated by linear Ornstein–Uhlenbeck
(OU) process. In addition, for q < 1, Vq(η) is only well defined in a region |η| <

√
2D/(τ(1 − q)), while for q > 1, the

distribution is wider than Gaussian. Since the second moment of η(t) diverges for q > 5/3, q can only be chosen between
−∞ and 5/3 to admit a well-defined NGN.

In the absence of noise, Eq. (1) has a fixed point (xs = A, ys = B/A) which loses stability when the control parameter B
bypasses the SHB point Bc = 1 + A2 from below. Throughout this study, we fix A = 1, B = 1.996 so that the system lies in
the sub-threshold region. Eqs. (1) and (2) are integrated by using Eulermethodswith a time step 0.001. The power spectrum
density (PSD) of time series u(t) = x(t)− xs is calculated, fromwhich one can obtain the SNR. In Fig. 1, we show an example
of u(t) and the corresponding PSD for D = 1E–4, q = 0, τ = 0.01. The PSD curve shown in Fig. 1(b) is obtained by Fourier
transformation of the auto-correlation function of u(t) with 16384 data points and then averaging over 200 independent
runs. To obtain the SNR, we divide the peak height H by its width 1ω at H/2.
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Fig. 2. (a), (c) SNR plotted as functions of q for different correlation time τ . (b), (d) SNR plotted as functions of τ for different values of q. Lines are drawn
to guide the eyes. (a), (b), D = 1E–4; (c), (d), D = 2E–4.

3. Numerical results

In the present study, we mainly focus on how the non-Gaussian features of noise would influence the performance of
NIO. To this end, we fix the noise intensity D and vary the parameters q and τ . In Fig. 2(a), SNR are plotted as functions
of q for different τ with D = 1E–4. Interestingly, SNR shows a clear maximum at a certain q = qm if τ is not large. With
increasing τ , the maximum value of SNR remains nearly unchanged, but the value of qm becomes larger. If τ is large enough,
e.g., τ = 10, qm moves out of the considered range of q(< 5/3), and in this case, SNR is a monotonically increasing function
of q. The crossover from non-monotonic to monotonic behavior takes place at a relative large τc . In Fig. 2(b), we show how
SNR depends on τ for fixed values of q. This time, the SNR curve shows a peak at τ = τm if q is larger than a critical value
qc , otherwise SNR decreases with τ . These observations demonstrate that the distribution and correlation of the NGN work
in a nontrivial and cooperative way to tune the performance of NIO. NGN with moderate q and small τ seems to be most
favorable to NIO.We have also investigated how these results depend on the noise intensity. In Fig. 2(c) and (d), similar plots
as those in Fig. 2(a) and (b), respectively, are drawn for D = 2E–4. Obviously qualitative features are nearly the same, except
that the detailed values of qm, qc, τm and τc change. However, a remarkable feature is that the overall maximum value of
SNR remains nearly constant (about 250 shown here) no matter how D, q or τ changes.

4. Theory

To get more insight into the above findings, we turn to the SNFT developed in our recent works [34–37]. Generally, the
motivation of normal form computation is to reduce the system dimensionality as much as possible, by some suitable near-
identity nonlinear variable transformation, while retaining the essential dynamic characteristics near the critical point. The
crucial step is to find the so-called ‘resonant’ terms which cannot be eliminated through the variable transformation. We
note here that stochastic normal forms of oscillation systemswithHopf bifurcationhave gained a lot attention in the past two
decades [38–43]. In the seminar paper of Coullet et al. [38], it was reported that new stochastic resonant terms appearwhich
are absent in the deterministic normal form. Arnold and coworkers have setup rigorous mathematical basis for stochastic
normal forms [40,42,44] and have applied them to study the dynamics of the stochastic Duffing–van der Pol oscillator.
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Very recently [43], Roberts has performed time-dependent normal form transforms to separate fast and slow modes in
stochastic dynamical systems, including the Duffing oscillator. However, NIO and CR were not considered in these studies.

The development of our SNFT contains two main steps. In the first step, we obtain the stochastic normal form near the
SHB following similar procedures as that proposed by Arnold [40]. To address the NIO and CR, we only need to keep the
terms to the lowest order of noise intensity. In the second step, we use stochastic averaging method [45,46] to approximate
the system dynamics by effective Markovian process in the long time limit, resulting in normal form equations that are
solvable. This is feasible thanks to the fact that the time evolution of θ is much faster than that of r , where θ and r are the
oscillation phase and amplitude, respectively, given that the system is close to the SHB. For more details of our SNFT, please
turn to Ref. [34–36].

For the Brusselator system, the complex amplitude of oscillation Z = ieiθ could be easily obtained from the original
variables x and y via the following transformation

x = xs + r cos θ, y = ys −


1 +

α

A2


r cos θ −

ω0

A2
r sin θ (4)

where α = (B − Bc)/2 measures the distance to the SHB and ω0 =
√
A2 − α2 is the characteristic frequency at the SHB.

When α ≪ 1, the stochastic normal form equations for variables r and θ read
dr
dt

= αr + Cr r3 + η1(t) (5a)

dθ
dt

= ω0 + Cir2 +
η2(t)
r

. (5b)

Here, Cr and Ci are constants derived from the nonlinear terms of the system. For the Brusselator model with A = 1,
Cr = −3/8 and Ci = −1/24, respectively. The newnoise terms are η1 =

√
1 + A2 sin(θ+φ)η(t) and η2 =

√
1 + A2 cos(θ+

φ)η(t) with φ = arctg(1/A). It is apparent that r and θ are coupled via the stochastic terms, which makes it hard to solve
Eqs. (5) directly. However, when the system is very close to the SHB and the noise intensity is small, it is possible to reduce
these equations to decoupled ones by using the stochastic averaging method, which read

dr
dt

=


αr + Cr r3 +

σ 2

2r


+ σηr(t) (6a)

dθ
dt

= (ω0 + Cir2) +
σ

r
ηθ (t) (6b)

where ηr(t) and ηθ (t) are two independent Gaussian white noises and σ denotes an effective noise intensity which is
proportional to the power spectrum S(ω0) of the noise (see the appendix in Ref. [36]),

σ =
1 + ω2

0

2

∫
∞

−∞

⟨η(0)η(s)⟩e−iω0sds. (7)

According to Eq. (6a), the stationary distribution of r exhibits a single peak at themost probable amplitude rm, which is given
by

rm =


α +


α2 − 2Crσ 2

−2Cr

1/2

. (8)

Substituting rm into Eq. (6b), we can solve the dynamics of θ(t) and calculate the auto-correlation function C(τ ) =

⟨u(t)u(t + τ)⟩, where u(t) = r(t) cos θ(t) and ⟨·⟩ stands for averaging over time and noise realizations. By performing
Fourier transformation of C(τ ), one gets the PSD, which has a Lorentzian form PSD(ω) ≃

r2mτc
1+(ω−ω1)2τ

2
c
, where τc = 2r2m/σ 2

and ω1 = ω0 + Cir2m are auto-correlation time and frequency of the NIO, respectively. Obviously, PSD(ω) has a peak at ω1

with height H = r2mτc and half height width 1ω = 1/τc . Then the analytical form of SNR can be obtained :

SNR =
H

1ω
=

4r6m
σ 4

. (9)

By setting ∂(SNR)

∂(σ 2)
= 0, we can get the optimal effective noise intensity

σ 2
opt =

4α2

(−Cr)
, (10)

and correspondingly the maximum SNR is

(SNR)max =
1

4αCr
. (11)

From Eqs. (7) and (8), it is clear that what really matters is σ since both α and Cr are constants. As long as one can obtain
the auto-correlation function Cq(s) = ⟨η(0)η(s)⟩ of the noise, SNR can be readily calculated theoretically. However, getting
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Fig. 3. The theoretical result of SNR is presented in the same parameter region with Fig. 2. (a), (c) SNR plotted as functions of q for different correlation
time τ . (b), (d) SNR plotted as functions of τ for different values of q. (a), (b), D = 1E–4; (c), (d), D = 2E–4.

the analytical expression for Cq(s) is not trivial. By using path integral approach and effective Markovian approximation,
Fuentes et al. [22] showed that for q ≤ 1, Cq(s) is an exponentially decayed function,

Cq(s) =
D

τβq
e−

βq
τ s (12)

where βq =
2

5−3q . Thus we can use Eq. (7) to get the analytical form of σ for q ≤ 1,

σ 2
=

8D
4τ 2w2

0 + (5 − 3q)2
. (13)

For q > 1, the self-correlation function of Cq(s) has the form,

Cq(s) =

[
1 + (q − 1)

s
sq

] 1
1−q

(14)

where sq =


∞

0 dsCq(s) is the characteristic correlation time. Unfortunately, it is hard to achieve the analytical form of σ
from Eq. (14). Hence in this case (q > 1), we calculate the SNR numerically from Eqs. (7)–(9) and (14).

According to Eqs. (10) and (11), σopt and (SNR)max depend only on system parameters Cr and α. For given A and B, Cr and
α are both constants. Therefore, tuning q and τ will not change the overall maximal SNR, which was demonstrated in the
simulation results. From Eqs. (8) and (9), we notice that the SNR is a bell-shaped function of effective noise σ 2, which can
be adjusted by varying q and τ . If σ bypass σopt as q increases, the SNR will pass through a maximum at σopt. For instance, in
the case of q < 1, σ 2 is given by Eq. (13). For fixed D and τ , increasing q will rise σ 2 monotonically. Note that the maximal
value that σ 2 can reach is given by σ 2

1 ≡ 2D/(τω0)
2. Therefore, if σopt < σ1, σ can bypass σopt as q increases, which will

lead to the resonance-like phenomenon. The optimal value qm satisfies (5− 3qm)2 + 4τ 2ω2
0 = 8D/σ 2

opt. Clearly, qm becomes

bigger with increasing τ . When τ is larger than τc =


2D/σ 2

optω
2
0 , there will be no peak in the SNR curve. Such theoretical
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Fig. 4. From (a) to (d), the contour of the SNR is plotted as function of q and correlation time τ . (a) D = 5E–5; (b) D = 1E–4; (c) D = 2E–4; (d) D = 1E–3.
The SNR is larger in brighter regions.

predictions are in good agreement with the simulations shown in Fig. 2(a) and (c). On the other hand, σ 2 is a monotonically
decreasing function of τ for fixed D and q. In this case, SNR will bypass a maximum only when σ 2

opt < σ 2
2 ≡ 8D/(5− 3q)2. If

q is smaller than some threshold value qc , satisfying σ 2
opt ≡ 8D/(5 − 3qc)2, σ 2 and hence SNR will decrease monotonically

with τ . These predictions are also consistent with the simulation results in Fig. 2(b) and (d). In Fig. 3, theoretical SNR values
are presented, where the parameter regions are the same as in Fig. 2. As expected, the main characters observed in Fig. 2 are
well reproduced.

In Fig. 4, contour plots of SNR in τ ∼ q parameter plane are shown. From Fig. 4(a) to (d), the noise intensity is D = 5E–5,
D = 1E–4, D = 2E–4 and D = 1E–3, respectively. q is between −1 and 1.5, τ is between 0.01 and 100. Brighter regions in
the figures correspond to larger SNR values. The brightest region forms an ellipse around the upper-left corner of the plane.
This region shifts to larger correlation time τ and smaller q when noise intensity D increases. This indicates that at larger
noise intensity, regularity of the time series is better in the parameter region where the noise has narrower distribution and
smaller correlation time. These contour plots give us a global picture on how τ and q work in a cooperative way in tuning
the performance of NIO.

5. Conclusions

In this article, we have studied the effects of non-Gaussian colored noise in the Brusselator model that is near Hopf
bifurcation. The non-Gaussian noise is characterized by parameter q, which measures the departure from Gaussian
distribution, and the correlation time τ . It is noted that the performance of non-Gaussian noise induced oscillations,
quantified by awell-defined SNR, exhibits nontrivial dependence onboth q and τ .Moreover,we find that the correlation time
and non-Gaussian feature of the noise work in a cooperative way in tuning the performance of noise induced oscillations.
Stochastic normal form analysis is performed and the results agree quite well with the simulations. In addition, the
theoretical analysis provide us a global view on how non-Gaussian noise functions in the vicinity of Hopf bifurcation. This
workmay be of interest to a wide readership since oscillations are of ubiquitous importance inmany physical, chemical and
biological systems.
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