
PHYSICAL REVIEW E 83, 046124 (2011)

Optimal modularity for nucleation in a network-organized Ising model
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We study the nucleation dynamics of the Ising model in a topology that consists of two coupled random
networks, thereby mimicking the modular structure observed in real-world networks. By introducing a variant of
a recently developed forward flux sampling method, we efficiently calculate the rate and elucidate the pathway for
the nucleation process. It is found that as the network modularity worsens the nucleation undergoes a transition
from a two-step to one-step process. Interestingly, the nucleation rate shows a nonmonotonic dependence on the
modularity, in which a maximal nucleation rate occurs at a moderate level of modularity. A simple mean-field
analysis is proposed to qualitatively illustrate the simulation results.
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I. INTRODUCTION

In the last decade, critical phenomena in complex networks
have received an enormous amount of attention in the field
of statistical physics and many other disciplines (see [1] for
a recent review). Extensive research interests have focused
on the onset of critical behaviors in diverse network topology,
including the percolation phenomenon [2–5], epidemic thresh-
olds [6,7], order-disorder transitions [8–12], synchronization
[13,14], self-organized criticality [15,16], and nonequilibrium
pattern formation [17]. However, there is much less attention
paid to the dynamics or kinetics of a phase transition itself in
complex networks, such as nucleation in a first-order phase
transition.

Nucleation is a fluctuation-driven process that initiates the
decay of a metastable state into a more stable one [18]. A
first-order phase transition usually involves the nucleation
and growth of a new phase. Many important phenomena in
nature, including crystallization [19], glass formation [20], and
protein folding [21], are associated with nucleation. Despite its
apparent importance, many aspects of the nucleation process
are still unclear and deserve further investigation. The Ising
model, which is a paradigm for many phenomena in statistical
physics, has been widely used to study the nucleation process.
Despite its simplicity, the Ising model has made important con-
tributions to the understanding of the nucleation phenomena in
equilibrium systems and is likely to yield important insights for
nonequilibrium systems as well. In two-dimensional lattices,
for instance, shear can enhance the nucleation rate and the rate
peaks at an intermediate shear rate [22], a single impurity may
considerably enhance the nucleation rate [23], the existence
of a pore may lead to two-stage nucleation, and the overall
nucleation rate can reach a maximum level at an intermediate
pore size [24]. The nucleation pathway of the Ising model
in three-dimensional lattices has also been studied using the
transition path sampling approach [25]. In addition, the Ising
model has been frequently used to test the validity of classical
nucleation theory (CNT) [26–30]. However, all these studies
are limited to regular lattices in Euclidean space. Since many
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real systems can be properly modeled by network-organized
structure, it is natural to ask how the topology of a networked
system affects the nucleation process of the Ising model.

In a recent work [31], we studied nucleation dynamics on
scale-free networks, in which we found that nucleation starts
from, on average, nodes with more lower degrees, the rate
for nucleation decreases exponentially with network size, and
the size of the critical nuclei increases linearly with network
size, implying that nucleation is relevant only for a finite-size
network. In this paper, we study the nucleation dynamics
of the Ising model in a modular network composed of two
coupled random networks. It has been found that many real-
world networks, ranging from social networks to biological
networks, exhibit modularity structures [32,33], that is, links
within modules are much more dense than those between
modules. Many previous studies have revealed that such
modular structures have a significant impact on the dynamics
taking place on the networks, such as synchronization [34,35],
neural excitability [36], spreading dynamics [37,38], opinion
formation [39,40], and Ising phase transition [41–43]. In
particular, for the majority model [39] and the Ising model
[41–43] in modular networks, it has been shown that there
exists a region in a discontinuous transition where a modular
order phase and a global order phase coexist. However, these
studies mainly focused on phase diagrams in parameter space,
and did not investigate the transition process in detail from one
phase to another that may undergo a nucleation process.

Since nucleation is an activated process that occurs ex-
tremely slowly, a brute force simulation is prohibitively
expensive. To overcome this difficulty, we used a variant of a
recently developed simulation method, forward flux sampling
(FFS) [44]. This method allows us to calculate the nucleation
rate and determine the properties of the ensemble toward
nucleation pathways. We found that as the degree of network
modularity decreases, nucleation goes through a transition
from a two-step to a one-step process, and the rate exhibits
a maximum at an intermediate degree of modularity. Free
energy profiles for different modularities obtained by umbrella
sampling (US) [45] and a simple mean-field (MF) analysis help
us understand the FFS results.

This paper is organized as follows. In Sec. II, we describe
the details of our model and the simulation method applied
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to this system. In Sec. III, we present the results for the
nucleation rate and pathway in modular networks. In Sec. IV, a
simple mean-field analysis is used to qualitatively illustrate the
simulation results. Finally, discussion and main conclusions
are addressed in Sec. V.

II. MODEL AND SIMULATION DETAILS

Consider a network consisting of N nodes arranged into
two modules with N1 and N2 nodes. For simplicity, we only
consider the case of N1 = N2 = N/2 throughout this paper.
The connection probability between a pair of nodes belonging
to the same module is ρi , while that for nodes belonging
to different modules is ρo. The parameter σ = (ρo/ρi) ∈
[0,1], defined as the ratio of intermodular to intramodular
connectivity, measures the degree of modularity. The higher
the degree of modularity of a network is, the smaller the value
of σ is. As σ → 0, the network becomes two isolated clusters,
while as σ → 1, the network approaches an Erdös-Rényi (ER)
random network. When σ is varied, the total number of links
of the network is kept unchanged, N〈k〉/2, where 〈k〉 is the
average degree. This restriction leads to ρi = 2〈k〉/N (1 + σ )
and ρo = 2〈k〉σ/N (1 + σ ). Each node is endowed with an
Ising spin variable si that can be either +1 (up) or −1 (down).
The Hamiltonian of the system is given by

H = −J
∑
i<j

aij sisj − h
∑

i

si , (1)

where J (> 0) is the coupling constant and h is the external
magnetic field. The elements of the adjacency matrix of the
network take aij = 1 if nodes i and j are connected and aij = 0
otherwise.

Our simulation is performed by Metropolis spin-flip dy-
namics [46], in which we attempt to flip each spin once,
on average, during each Monte Carlo (MC) cycle. In each
attempt, a randomly chosen spin is flipped with the probability
min(1,e−β�E), where β = 1/(kBT ) and kB is the Boltzmann
constant, T is the temperature, and �E is the energy difference
due to the flipping process. Here, we set J = 1, h > 0, T < Tc

(Tc is the critical temperature), and start with a metastable state
in which si = −1 for most of the spins. The system will stay
in that state for a significantly long time before undergoing
a nucleation transition to a more stable state with most spins
pointing up. We are interested in the pathway and rate for this
nucleation process.

The FFS method has been used to calculate rate constants
and transition paths for rare events in equilibrium and
nonequilibrium systems [22–24,44,47,48]. This method uses
a series of interfaces in phase space between the initial and
final states to force the system from the initial state A to the
final state B in a ratchetlike manner. Before the simulation
begins, an order parameter λ is first defined, such that the
system is in state A if λ < λ0 and it is in state B if λ > λM . A
series of nonintersecting interfaces λi (0 < i < M) lie between
states A and B, such that any path from A to B must cross
each interface without reaching λi+1 before λi . The algorithm
first runs a long-time simulation which gives an estimate of
the flux �̄A,0 escaping from the basin of A and generates
a collection of configurations corresponding to crossings of
interface λ0. The next step is to choose a configuration from

FIG. 1. (Color online) Typical time evolutions of the number
of up spins λ. It is shown that the system undergoes a two-step
nucleation process for σ = 0.011 and a one-step nucleation process
for σ = 0.051. The representative network configurations at different
moments indicated by arrows are shown in Fig. 2. Other parameters
are N = 400, 〈k〉 = 6, T = 2.0, and h = 1.2.

this collection at random and use it to initiate a trial run
which is continued until it either reaches λ1 or returns to λ0. If
λ1 is reached, the configuration of the end point of the trial run
is stored. This step is repeated, each time choosing a random
starting configuration from the collection at λ0. The fraction
of successful trial runs gives an estimate of the probability
of reaching λ1 without going back into A, P (λ1|λ0). This
process is repeated, step by step, until λM is reached, giving the
probabilities P (λi+1|λi) (i = 1, . . . ,M − 1). Finally, we get
the transition rate R from A to B, which is the product of the
flux �̄A,0 and the probability P (λM |λ0) = ∏M−1

i=0 P (λi+1|λi)
of reaching λM from λ0 without going into A. For detailed
descriptions of the FFS method see Ref. [49].

However, the conventional FFS method will become very
inefficient if one intermediate metastable state exists between
the initial state and final state, as a two-step nucleation process
demonstrated in Fig. 1. This is because sampling paths will
be trapped in these long-lived metastable states so that they
rarely return to the initial state. To solve this problem, we
perform two-step samplings from the initial down-spin state
to the intermediate metastable state, then to the final up-spin
state, giving the two-step rates, R1 and R2, respectively. Since
the total mean time for nucleation is simply the sum of the
mean time of the two-step process, the total rate can be
expressed as R = (R−1

1 + R−1
2 )−1. To determine the location

of the intermediate state we monitor the sampling time for
the probability P (λi+1|λi) between two neighboring interfaces
during FFS. If the sampling time spent between interfaces i and
i + 1 is much more than its previous step and the probability
P (λi+1|λi) is nearly 1, we consider the ith interface as the
location of the intermediate state. If such conditions are not
met during the whole sampling, the intermediate metastable
state does not exist, meaning that nucleation is a one-step
process. Note that the method is straightforward to generalize
to a multistep nucleation process.
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Here, we define the order parameter λ as the total number
of up spins in the networks. The spacing between interfaces
is fixed at three up spins, but the computed results do not
depend on this spacing. We perform 1000 trials per interface
for each FFS sampling, from which at least 100 configurations
are saved at each interface in order to investigate the statistical
properties of an ensemble of reactive pathways to nucleation.
The results are obtained by averaging over 10 independent FFS
samplings and 50 different network realizations.

III. RESULTS

To begin with, in Fig. 1 we exhibit typical time evolutions
of the number of up spins λ corresponding to two different
values of network modularity σ = 0.011 and σ = 0.051 via
brute-force simulations, with relevant parameters N = 400,
〈k〉 = 6, T = 2.0, and h = 1.2. It is clearly observed that the
system undergoes a two-step nucleation process for σ = 0.011
and a one-step nucleation process for σ = 0.051. We also plot
several representative configurations in Fig. 2, corresponding
to different phases of the system. Before the nucleation
happens, the system lies in a metastable state, where most of
the nodes are in down-spin state (indicated by blue circles), as
shown in Fig. 2(a) and Fig. 2(d). When the network modularity
is very good, the system enters into an intermediate metastable
state via the first-step nucleation, where nodes in one of the
modules are in the up-spin state (indicated by red triangles),
while nodes in the other module are still in the down-spin
state, as shown in Fig. 2(b). When the network modularity
worsens, such an intermediate metastable state disappears so
that the nucleation becomes a one-step process. Finally, the
system will enter into the most stable state, where almost
all spins are in the up-spin state, as shown in Fig. 2(c) and

Fig. 2(e). Moreover, we note that that the nucleation process
typically takes the order of 106 or more MC steps, which is
computationally costly. Therefore, in what follows we will
give the results obtained by the FFS method.

The nucleation rate R as a function of σ is plotted in
Fig. 3(a), with relevant parameters being the same as those
in Fig. 1 except for h = 1.0. One can see that as σ increases
R reaches a maximum Rc at σ � 0.031 and then decreases.
Obviously, there exists a maximal nucleation rate that occurs
at a moderate degree of network modularity. In Fig. 3(b),
we plot the results of the nucleation rates, R1 and R2, for
a two-step process as functions of σ . As σ increases, R1

seems to exponentially decrease with σ , while R2 increases
monotonically until σ = 0.051 is reached. For σ > 0.051,
nucleation becomes a one-step process so that R2 can not be
well defined and the overall nucleation rate is only determined
by R1. Figure 3(b) shows that R2 is much lower than R1 when
the value of σ is relatively small, so that R is dominantly
determined by the second step nucleation. While for σ >

0.031, R is determined almost exclusively by the first step
nucleation. Thus, there exists a region 0.001 < σ < 0.031
where R is determined by both R1 and R2. Note that we have
also made extensive simulations for other parameters such
as h = 0.7,1.2 and T = 1.5,1.8, and found that the qualitative
features of the above results do not change (results not shown).

To further understand the above results, we calculate the
free energy of the system using the US method, in which we
use a bias potential 0.1kBT (λ − λ̄)2, with λ̄ being the center
of each window. The free energy �F as a function of λ for
three different values of σ are depicted in Fig. 4(a). For σ =
0.001 and σ = 0.031, there are two free-energy maximums,
occurring at the locations of the critical nuclei λ = λ∗

1 and

FIG. 2. (Color online) Five representative network configurations at different moments indicated in Fig. 1, where down-spin nodes and
up-spin nodes are denoted by blue circles and red triangles, respectively. (a)–(c) correspond to the case of σ = 0.011 and (d),(e) correspond to
the case of σ = 0.051.
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FIG. 3. (Color online) (a) The logarithm of the nucleation rate
ln R as a function of the degree of modularity σ . (b) ln R1 (squares)
and ln R2 (circles) as a function of σ , and dotted line indicates the
overall rate ln R. The parameters are same as in Fig. 1 except for
h = 1.0.

λ = λ∗
2, respectively. This picture is consistent with the two-

step nucleation process described previously. For a larger σ =
0.101, only the first free-energy barrier is present, implying
that the nucleation becomes a one-step process. With each
increment of σ , λ∗

1 moves to a larger value while the value
of λ∗

2 gets smaller, as shown in Fig. 4(b). Figure 4(c) shows
that the first free-energy barrier �F ∗

1 , defined as the difference
between the free energy at λ∗

1 and the first minimum in free
energy (λ = 23), increases almost linearly with σ , while the
second free-energy barrier �F ∗

2 (defined similarly to �F ∗
1 , and

the second minimum in free energy is an increasing function
of σ , within the range λ ∈ [78,93]) decreases monotonically
with σ until �F ∗

2 vanishes at σ > 0.051, which is in agreement
with the result of Fig. 3(b).

IV. MEAN-FIELD ANALYSIS

In order to unveil the possible mechanism behind the
above phenomenon, we present an analytical understanding
by CNT and simple MF approximation. First, for the first-step
nucleation, let us assume that λ nodes are in up spins and
the remaining nodes are in down spins in one of modules
(say module I for convenience), and all the nodes in the other
module (module II) are in down spins. The energy change due
to the spin flip of these λ nodes can be expressed as the sum
of two parts �U1 = −2hλ + 2JN in

1 , where the first part
denotes the energy loss due to the creation of λ up spins, which
favors the growth of the nucleus, while the second part denotes
the energy gain due to the formation of N in

1 new interfacial links
between up and down spins, which does not favor the growth of
the nucleus. According to the MF approximation, N in

1 can be

FIG. 4. (Color online) (a) Free energy �F as a function of
λ for three different σ = 0.001,0.031,0.101. For smaller σ two
free-energy barriers are clearly observed, while for larger σ the
second one vanishes. (b) The size of the critical nuclei λ∗

1 and λ∗
2, and

(c) the free-energy barriers �F ∗
1 and �F ∗

2 , as functions of σ . The
other parameters are the same as Fig. 2.

written as N in
1 = ρiλ(N/2 − λ) + ρoλ(N/2), where the first

part and the second part arise from interfacial links inside
module I and between modules, respectively. For the second-
step nucleation, we assume that all the nodes in module I are
in up spins, and λ nodes in module II are in up spins while the
remaining nodes are in down spins. This process creates new
interfacial links inside module II, and at the same time removes
old interfacial links between module I and module II. Thus,
the energy change for this process is �U2 = −2hλ + 2JN in

2
where N in

2 = ρiλ(N/2 − λ) − ρoλ(N/2) is the net number of
interfacial links. The entropy changes for the two nucleation
processes are both

�S = −kBN

2

[
2λ

N
ln

(
2λ

N

)
+

(
1 − 2λ

N

)
ln

(
1 − 2λ

N

)]
.

Then, the changes of free energy for the two-step processes
are �Fi = �Ui − T �S (i = 1,2). In Fig. 5 we give the
analytical results of the critical nuclei and free-energy barriers
as functions of the network modularity. Clearly, the analysis
agrees qualitatively with the simulation results of Fig. 4. From
Fig. 5, one can see that with the increment of σ the size of
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FIG. 5. The results of mean-field analysis. (a) The size of the
critical nuclei λ∗

1 and λ∗
2, and (b) the free-energy barriers �F ∗

1 and
�F ∗

2 , as functions of σ . The other parameters are the same as Fig. 2.

the first critical nucleus and the height of the first free-energy
barrier increase almost linearly, while the size of the second
critical nucleus and the height of the second free-energy barrier

decrease until σ � 0.13 is reached. This implies that the
analysis also predicts the extinction of the second nucleation
stage, but this prediction obviously overestimates the transition
value of σ .

V. CONCLUSIONS

In conclusion, we have studied the nucleation dynamics
of the Ising model in modular networks consisting of two
random networks. Using the FFS method, we found that as
the network modularity gradually worsens a transition occurs
from a one-step to a two-step nucleation process. Interestingly,
the nucleation rate is a nonmonotonic function of the degree of
modularity and a maximal rate exists for an intermediate level
of modularity. Using the US method, we obtained free-energy
profiles at different network modularities, from which one can
see that two free-energy barriers exist for very good modularity
while the second one vanishes as the network modularity
worsens. This picture further confirms the FFS results. Finally,
a mean-field analysis is employed to understand the nature of
nucleation in modular networks and the simulation results.
Since stochastic fluctuation and the coexistence of multistates
are ubiquitous in social and biological systems, our study
may provide valuable insights into fluctuation-driven transition
phenomena that take place in network-organized systems with
modular structures.
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