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a b s t r a c t

We investigate temporal coherence and spatial synchronization on small-world networks
consisting of noisy Terman–Wang (TW) excitable neurons in dependence on two types of
time-delayed coupling: {xj(t � s) � xi(t)} and {xj(t � s) � xi(t � s)}. For the former case, we
show that time delay in the coupling can dramatically enhance temporal coherence and
spatial synchrony of the noise-induced spike trains. In addition, if the delay time s is tuned
to nearly match the intrinsic spike period of the neuronal network, the system dynamics
reaches a most ordered state, which is both periodic in time and nearly synchronized in
space, demonstrating an interesting resonance phenomenon with delay. For the latter case,
however, we cannot achieve a similar spatiotemporal ordered state, but the neuronal
dynamics exhibits interesting synchronization transitions with time delay from zigzag
fronts of excitations to dynamic clustering anti-phase synchronization (APS), and further
to clustered chimera states which have spatially distributed anti-phase coherence sepa-
rated by incoherence. Furthermore, we also show how these findings are influenced by
the change of the noise intensity and the rewiring probability of the small-world networks.
Finally, qualitative analysis is given to illustrate the numerical results.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Neuronal networks from living biological entities to
various theoretical models have gained great research
attention in recent years [1]. As we know, neuronal net-
works consist of chemically coupled or functionally associ-
ated neurons, the connections among them can be formed
by electrical synapses or chemical synapses. In the verte-
brate cortex, a neuron can be connected to as many as
104 postsynaptic neurons, so the way in which neurons
process and transmit information among each other is an
important subject of research. Many experimental results
demonstrate that neurons transmit information by pro-
cessing them into action-potential sequences (spike
trains), and spatial synchronization as well as temporal
coherence of neuronal spike trains are crucial for coding
. All rights reserved.
and transmission of information across the neuronal net-
works [2,3]. In the past two decades, extensive research
has been performed with the aim of analyzing spatial syn-
chronization and temporal coherence of neuronal dynam-
ics, and many insightful findings have been reported.

On one hand, neurons are noisy elements, where noise
arises from both external (e.g., synapses) and internal
(e.g., channels) sources. The effects of noise on firing
dynamics of neuronal networks, especially synchroniza-
tion and temporal coherence, have been widely studied.
For instance, Gaussian white noise can induce coherence
resonance in FitzHugh–Nagumo (FHN) and Hodgkin–
Huxley (HH) neuronal models [4–6]. Perc et al. [7,8]
showed that channel noise in coupled HH neurons can con-
trol the spontaneous spike regularity. The effects of corre-
lated noise on spike coherence and spike firing rate of
coupled neurons have also been investigated thoroughly
in various neuronal systems by Kurths [9–11]. On the other
hand, due to the complex topological connections, real
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neuronal networks often exhibit small-world and scale-
free features [12,13], so spatiotemporal dynamics on com-
plex neuronal networks has attracted increasing attention
[14–17]. In previous works, we found that spatial synchro-
nization and temporal coherence, which are practically ab-
sent in regular networks, can be greatly enhanced by
random shortcuts between the neurons [18–20]. Stochastic
resonance on small-world neuronal networks via a pace-
maker was also investigated by Perc [21,22], and Kwon
and Moon [23] reported that coherence resonance can be
considerably improved by small-world connectivity in net-
works of HH neurons. Moreover, spatial synchronization
and stochastic resonance have also been extensively stud-
ied on scale-free networks [24–27].

As is well known, information transmission delays are
inherent to the real neuronal networks because of the fi-
nite speed at which action potentials propagate across
neuron axons, as well as due to time lapses occurring in
both dendritic and synaptic processing. For example, the
speed of signal conduction through unmyelinated axonal
fibers is on the order of 1 m/s, resulting in time delays up
to 80 ms for propagation through the cortical networks
[28]. It is thus important to understand how the dynamics
of coupled neuronal ensembles is influenced by such de-
lays. A number of interesting effects of time-delayed cou-
pling on the qualitative and quantitative properties of
neuronal dynamics have been reported in literature,
including both chemical synaptic coupling [29–35] and
electrical synaptic coupling [36–52]. For instance, time
delays through chemical synapse can induce synchroniza-
tion in coupled integrate-and-fire [29] and bursting
Hindmarsh–Rose (HR) neurons [32], tame chaos on scale-
free neuronal networks [33]. Moreover, Wang et al. found
synchronization transitions from chaotic to periodic mo-
tions in two coupled FHN neurons [34], as well as transi-
tions between in-phase and anti-phase synchronization
in two coupled fast-spiking neurons [35]. Compared with
chemical synapse, time delays through electrical synapse
are more common in academic research. People have
found that time delay through electrical synapse can facil-
itate and enhance neuronal synchronization [36–38], in-
duce various spatiotemporal patterns [39], enhance
spatiotemporal order in coupled noisy small-world neuro-
nal networks [40]. In addition, Perc and his cooperators
have contributed some remarkable findings in this field.
They found that information transmission delay can induce
transitions from zigzag fronts to clustering anti-phase
synchronization [41] and further to regular in-phase
synchronization on small-world neuronal networks [42].
Intermittent synchronization transitions can be induced
by delay on scale-free neuronal networks [44,46]. Further-
more, they also showed that delay can enhance coherence
of spatial dynamics in small-world networks of HH neu-
rons [49,50] and induce multiple stochastic resonances
on scale-free neuronal networks [51,52], they proved that
delay-induced multiple stochastic resonances are robust
to the changing of the scale-free networks, even when
the nodes of the network are more than 10,000.

It is worth noting that in the aforementioned literature
electrical synaptic coupling with delay is described by
{xj(t � s) � xi(t)}, whereas there exists another important
scheme of delay through electrical synapse which is de-
fined by {xj(t � s) � xi(t � s)}. This type of coupling has
been widely used to investigate synchronization problems
in various fields such as electric circuit [53,54], coupled
pendulums [55], delayed neural networks (DNNS) [56],
and general models [57–63]. In a recent paper, we have
showed that the former type of delayed coupling can en-
hance spatiotemporal order in coupled neuronal systems
[40]. However, little attention has been paid to the impact
of the latter type of coupling scheme on the spatiotemporal
dynamics of neuronal networks. Furthermore, to this day,
the differences between the effects of these two types of
delayed coupling on spatiotemporal dynamics in coupled
neuronal systems have not been studied. Thus in this
paper, we aim to extend the scope of above-mentioned
investigations by comparing such differences. To do this,
we investigate temporal coherence and spatial synchroni-
zation on small-world networks consisting of noisy
Terman–Wang (TW) excitable neurons in dependence on
these two types of time-delayed coupling. We show that
with same coupling strength and delay time some distinct
results induced by these two different types of coupling
can be achieved. For the former case, it is found that time
delays can dramatically enhance neuronal synchrony and
temporal coherence. In addition, if the delay time is close
to the intrinsic spike period of the neuronal network, the
system dynamics reaches a most spatiotemporal ordered
state, demonstrating an interesting type of resonance phe-
nomenon with delay. For the latter case, however, we can
never find a similar spatiotemporal ordered state, whereas
as the delay time is increased, the neurons exhibit synchro-
nization transitions from zigzag fronts of excitations to dy-
namic clustering anti-phase synchronization, and further
to clustered chimera states. Furthermore, we also show
how these findings are influenced by the change of the
noise intensity and the rewiring probability. Finally, we
give some qualitative analysis to illustrate the numerical
results.

The remainder of this paper is structured as follows. In
Section 2 Terman–Wang neuronal networks with two
types of time-delayed coupling are employed to simulate
neuronal dynamics. Main results are presented in Section
3, followed by conclusions and discussions in Section 4.
2. Model description

The two-variable Terman–Wang (TW) model is similar
to the famous FHN model, it was first proposed by Terman
and Wang [64] to simulate neuronal oscillations discov-
ered experimentally in visual cortex. We consider here N
coupled TW neurons with delayed coupling, subjected to
additive Gaussian white noises and external signal. The
system dynamics can be described by the following
equations:

_xi ¼ 3xi � x3
i þ a� yi þ I þ DniðtÞ þ Gi ð1aÞ

_yi ¼ w½cð1þ tanhðxi=bÞÞ � yi� ð1bÞ

Here, i = 1,2, . . . ,N specifies the neuron index, variables xi

and yi denote the action potential and the channel activa-
tion level of neuron i, respectively. x is a fast variable and
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y is a slow one. w is a small parameter which measures the
time scale separation between the dynamics of x and y. a, b,
c are model specific parameters. We consider that all the
neurons are identical and fix w = 0.02, a = 1.99, b = 0.1,
c = 6.0 throughout this paper unless specified otherwise. I
represents a homogeneous subthreshold periodic stimulus
current delivered externally to the neurons, and we set
I = 0.01sin(2pt/9). It should be noted that changing the
amplitude and frequency of such a subthreshold periodic
stimulus I does not affect the main results of this work.
ni(t) stands for independent Gaussian white noise with unit
variance, i.e., hni(t)i = 0, hni(t)nj(t0)i = dijd(t � t0). For these
parameters, an isolated TW neuron will stay in the rest
state in the absence of noise. Gi is the coupling term, which
represents interaction between neuron i and all the other
neurons. In this paper, we employ two types of electrical
synaptic coupling with delay, {xj(t � s) � xi(t)} and
{xj(t � s) � xi(t � s)}, thereinto, s is the transmission
delay. Thus the coupling term Gi can be described by
�
P

jAij½xjðt � sÞ � xiðtÞ� and �
P

jAij½xjðt � sÞ � xiðt � sÞ�,
where � is the coupling strength. The adjacency matrix A
denotes connectivity of the neuronal network, with entry
Aij = Aji = 1 if neuron i and j are connected, and 0 otherwise,
Aii is set to 0. Numerical integration of Eq. (1) is carried out
by using explicit Euler method with time step 0.003. Final-
ly, we should note that for convenience, the two types of
delayed coupling {xj(t � s) � xi(t)} and {xj(t � s) � xi(t � s)}
are defined as type I and type II coupling respectively in the
remainder of the paper.

3. Results

In what follows, the effects of these two types of cou-
pling on temporal coherence and spatial synchronization
in small-world networks consisting of noisy Terman–
Wang (TW) excitable neurons are presented. Since we
are mainly interested in the effects of delayed coupling,
here we start from a regular network with periodic
boundary condition consisting of N = 200 TW neurons,
each having K = 8 nearest neighbors, and the coupling
Fig. 1. Space–time plots of TW neurons with type I coupling for different delay
Other parameter values are N = 200, K = 8, and D = 0.6.
strength is fixed at � = 0.1 throughout this paper. Results
shown in Figs. 1 and 2 illustrate the spatiotemporal
dynamics of neurons with type I and type II coupling,
respectively. In both plots, from left to right the delay
time s equals to 0, 0.3, 1.0, 1.8, and 3.0. Clearly, distinct
spatiotemporal patterns can be observed with different
types of coupling. In Fig. 1, initially, in the absence of time
delay [see panel (a)] the snapshot is rather turbulent, both
in space and time. With increasing s, say, s = 1.0, a consid-
erable enhancement of regularity can be observed. When
the delay time is further increased, e.g., to 1.8, as shown
in the fourth panel, the system reaches a strikingly or-
dered state, where all the neurons are almost synchro-
nized in space and periodic in time. However, if we
further increase s, the ordered state begins to be deterio-
rated (e.g., s = 3.0). These observations thus demonstrate
that moderate time delay can enhance both temporal
coherence and spatial synchronization of coupled TW
neurons with type I coupling. Furthermore, the presented
results indicate typical resonant phenomenon, i.e., for an
optimal delay time, the spatiotemporal regularity of the
system can reach a clear-cut maximum level. We note
here that such phenomenon has already been reported
in our previous paper [40], and we present it here for
clear-cut comparison with the type II coupling and self-
consistency of the present paper.

The situation in Fig. 2 is totally different: we can never
derive a similar spatiotemporal ordered state, but nontriv-
ial synchronization transitions induced by time delay in
type II coupling can be found. When s = 0, the plot is the
same as Fig. 1(a). For non-zero yet short delays (e.g.,
s = 0.3), zigzag fronts of excitations appear, as shown in
Fig. 2(b). In Fig. 2(c), however, alternative layer waves are
present where excitatory spikes occur alternatively among
nearby clusters in space as the temporal dynamics evolves.
Hence, this phenomenon can be termed appropriately as a
clustering anti-phase synchronization (APS) transition in-
duced by a moderate time delay, which is quite distinct
from the spatiotemporal pattern in Fig. 1(c). As s is further
increased to s = 1.8, the APS is heavily impaired. Finally,
time s. From left to right, s equals to 0, 0.3, 1.0, 1.8 and 3.0, respectively.



Fig. 2. Space–time plots of TW neurons with type II coupling for different delay time s. From left to right, s equals to 0, 0.3, 1.0, 1.8 and 3.0, respectively.
Other parameters are the same as in Fig. 1.

Fig. 3. (a) An inset of Fig. 2c, enabling a clearer demonstration of the clustering anti-phase synchronization. (b) An inset of Fig. 2e, displaying explicit
clustered chimera states. (c) Time series of membrane potential of two nearest neurons. From top to down, the APS state, spatial incoherence part and anti-
phase synchronization part of clustered chimera states are exhibited.
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when s = 3.0, intriguingly, clustered chimera states [65]
which have spatially distributed anti-phase coherence sep-
arated by incoherence can be observed [see panel (e)], and
this interesting phenomenon cannot be found in type I
coupling. For clearer illustration, we plot the local enlarge-
ments as well as the time series of two nearby neurons for
s = 1.0 and s = 3.0 in Fig. 3, where the APS state and clus-
tered chimera states can be shown more explicitly. Finally,
the synchronization transitions displayed in Fig. 2 could be
explained by the mechanism that this type of delayed cou-
pling can introduce phase slips, and hence zigzag fronts
and alternative layer waves even chimera states can
appear, thus supplementing the purely noise-induced
excitations.
To quantitatively characterize the spatiotemporal
dynamics of the neuronal systems, we introduce the coef-
ficient of variance (CV) of the inter-spike intervals (ISIs)
and the standard deviation factor r to measure temporal
coherence and spatial synchronization, separately
[4,18,19]. CV is defined as

ki ¼
hTiitffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hT2
i it � hTii2t

q ð2Þ

where h�it denotes averaging over time, Ti is the ISI of neu-
ron i. By further averaging ki over different neurons, we get
k ¼

P
iki=N as the CV of the coupled neuronal network.
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Obviously a larger k means better periodicity in time. The
standard deviation factor is defined as r = hr(t)it, where

rðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ix

2
i ðtÞ

� �
=N �

P
ixiðtÞ=N

� �2

N � 1

s
ð3Þ

Clearly a smaller r means better synchronization in space.
Final results shown below are averaged over 50 indepen-
dent runs for each set of parameter values to warrant
appropriate statistical accuracy with respect to the net-
work generation and numerical simulations.

In Fig. 4, we have plotted k and r versus delay time s for
different values of noise intensity D for type I delay. In
accordance with the visual inspection of Fig. 1, delay-
induced resonances in k and r depending upon the
increase of s are observed, where clear-cut peaks and
valleys occur at the optimal delay time sopt1 ’ 1.8, corre-
sponding to the most ordered spatiotemporal state plotted
in Fig. 1(d). Following the common terminology, these are
termed as delay-induced stochastic resonance on neuronal
networks. Moreover, it is clear that as D increases, the peak
value in the k � s curve decreases monotonically and the
valley in the r � s curve gets higher, respectively, which
means increasing the noise intensity D can impair the res-
onance phenomenon. However, the particular location of
Fig. 4. (a) Dependence of k on the delay time s for different noise intensity D. (b
parameters are the same as in Fig. 1.

Fig. 5. (a) Contour plot of k in dependence on the delay time s and the noise inten
type I. Delay-induced stochastic resonance is clearly visible. Other parameters a
the sopt1 is robust to the change of D. To make an overall
inspection, the dependence of k and r on both delay time
s and noise intensity D is shown in Fig. 5. It is evident that
the results presented in Fig. 4 keep robust in a considerable
range of s and D.

Next, we quantitatively study the impact of type II de-
layed coupling on the spatiotemporal dynamics of the neu-
ronal networks. Numerical results in Fig. 6 illustrate the
dependence of k and r on the delay time s for different
noise intensity D. As visually interpreted by space–time
plots in Fig. 2, a spatiotemporal ordered state cannot be
achieved, but non-trivial synchronization transitions in-
duced by time delay appear. For a given noise intensity
D, we can see that as s is increased (e.g., s = 0.3), r in-
creases sharply, corresponding to the appearance of zigzag
fronts which destroys synchronization. With further
increasing delay, k and r pass through a peak at about
s = 0.9, indicating clustering APS state which is periodic
in time but poor in synchronization. When s increases
again, e.g., to s = 1.8, k and r decrease clearly, correspond-
ing to the deterioration of the APS state [see Fig. 2(d)].
However, when s is larger than s = 2.7, k and r begin to in-
crease again, which shows, in accordance with the visual
inspection of Fig. 2(e), the emergence of clustered chimera
) Dependence of r on s for different D. The coupling type is type I. Other

sity D. (b) Contour plot of r in dependence on s and D. The coupling type is
re the same as in Fig. 4.



Fig. 6. (a) Dependence of k on the delay time s for different noise intensity D. (b) Dependence of r on s for different D. The coupling type is type II. Other
parameters are the same as in Fig. 2.

Fig. 7. (a) Contour plot of k in dependence on the delay time s and the noise intensity D. (b) Contour plot of r in dependence on s and D. The coupling type is
type II. Other parameters are the same as in Fig. 6.
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states that have spatially distributed anti-phase coherence
separated by incoherence. We can easily understand that
the increasing of k and r comes from the anti-phase coher-
ence part of the chimera states. In addition, the effect of the
noise intensity D is similar to the results shown in Fig. 4,
that is to say, increasing the noise intensity D can dent
the synchronization transitions phenomena but keeps the
qualitative behaviors unchanged.

In Fig. 7, we display the contour plots of the dependence
of k and r on both delay time s and noise intensity D for
type II delay. It is evident that such delay-induced synchro-
nization transitions are robust in a large area of s and D.
Furthermore, the particular location of the sopt2 where
the peak of k appears, in accordance with the anti-phase
synchronization state, stays almost the same as D is varied,
see Fig. 7(a). The value of sopt2 is about 0.9, which is just
half of the optimal delay time sopt1 where the spatiotempo-
ral ordered state emerges as shown in Fig. 5. We will return
to this nontrivial point later and give some qualitative
analysis in Section 4.

Actually, real neuronal networks often have complex
topology. In recent years, neuronal dynamics on complex
networks, e.g., small-world (SW) ones [12], has actually be-
come a focal research topic in theoretical neuroscience
[14–19], and network topology could play a vital role in
neuronal synchronization or coding dynamics. In this
work, we also address such issues by performing similar
studies on SW networks. We generate SW networks fol-
lowing the Watts–Strogatz scheme by rewiring the edges
in a regular network with probability p. The network
changes from being regular to totally random with p from
0 to 1, whereas the total number of links keeps unchanged.
We plot the dependence of spatiotemporal dynamics upon
the delay time s for different rewiring probability p with
type I and type II coupling in Fig. 8. It is noteworthy that
the qualitative results achieved on regular networks above,
i.e., the constructive roles of the two types of delayed cou-
pling, are robust against the rewiring probability p of the
small-world network, but with some tiny quantitative dif-
ferences. For type I coupling [see panel (a) and (b)], as the
network becomes more and more random (p increases),
just similar to the effect of increasing noise intensity D,
the peak value in the k � s curve decreases monotonically
and the valley in the r � s curve gets higher, respectively,
which means increasing the rewiring probability p can
deteriorate the resonance phenomenon. Moreover, the
optimal delay time sopt1 where clear-cut peaks and valleys
appear almost remains unchanged (sopt1 ’ 1.8), indicating



Fig. 8. Dependence of k and r on the delay time s for different rewiring probability p. (a) and (b) Type I delayed coupling. (c) and (d) Type II delayed
coupling. Other parameter values are N = 200, K = 8, and D = 0.6.
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that sopt1 is not sensitive to the rewiring probability p.
Whereas for type II coupling [see Fig. 8(c) and (d)], the
peak value in the k � s curve increases non-monotonically
as p is increased, and just like sopt1, the value of sopt2 always
approximates to 0.9.
4. Discussion and conclusion

As stated before, both the optimal delay time sopt1 and
sopt2 are robust to the changing of the noise intensity D
and the rewiring probability p, and furthermore, sopt2 is al-
most half of sopt1. We are thus wondering what is the
underlying mechanism of such an interesting phenome-
non, and finally find that it is relevant with some intrinsic
time scale of the systems. In Fig. 9, we show the relation-
ship of sopt1 and sopt2 to the intrinsic time scale of the sys-
tems. Fig. 9(a) and (c) depicts the dependence of k on the
delay time s for the model parameter c = 1.8, 2.5 and 6.0
with type I and type II coupling, respectively. We can see
clearly the optimal delay time sopt1 and sopt2 decrease as
c increases, more interestingly, for a equal c the value of
sopt2 is just half of sopt1. Accordingly, we have calculated
the normalized inter-spike interval histograms (ISIHs) of
coupled neuronal networks without time delay to investi-
gate the inherent spike period of the neuronal networks, as
shown in Fig. 9(b). Obviously, the peak position of the ISIH
matches with sopt1 quite well, and is just twice the value of
sopt2. In Fig. 9(d), we give more quantitative illustration,
where Tmax is the peak position of the ISIH, meaning the
inherent time scale of the neuronal systems. It can be
observed that as c changes from 1.8 to 6.0, the optimal
delay time sopt1 where the spatiotemporal ordered state
emerges always equals to Tmax, which represents a kind
of locking between the delay time and inherent spiking
period of the neuronal network under the effects of noise.
Whereas for type II coupling, sopt2 always keeps the value
half of Tmax, the reason may be that type II delayed cou-
pling can pull adjacent neurons into anti-phase synchroni-
zation, the optimal delay time sopt2 warranting the best
spike regularity is not equal to one spiking period. Thus,
it is exactly the half of the inherent spiking period of the
neuronal network, where the phase locking between
antiphased spikes occurs. In addition, we have also tried
some other relaxation oscillator models which can de-
scribe dynamics of neurons, such as FHN model, and simi-
lar qualitative results can be obtained.

In summary, We have investigated temporal coherence
and spatial synchronization on small-world networks con-
sisting of noisy Terman–Wang excitable neurons in depen-
dence on two types of time-delayed coupling. For type I
coupling, we show that time delay can dramatically en-
hance temporal coherence and spatial synchrony of the
noise-induced spike trains, and if the delay time is tuned
to nearly match the intrinsic spike period of the neuronal
network, the system dynamics reaches a most ordered
state, which is periodic in time and nearly synchronized
in space, demonstrating an interesting type of resonance
phenomenon with delay. For type II coupling, however, a
similar spatiotemporal ordered state never appears, but
as the delay time increases, the neurons exhibit synchroni-
zation transitions from zigzag fronts of excitations to



Fig. 9. (a) and (c) Dependence of k on the delay time s for different model parameter c with type I and type II delayed coupling, respectively. (b) Normalized
ISIH of coupled noisy TW neuronal networks without time delay for different c. (d) Dependence of sopt1, sopt2 and Tmax on the parameter c. Other parameters
are the same as in Fig. 8.
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dynamic clustering anti-phase synchronization, and fur-
ther to clustered chimera states that have spatially distrib-
uted anti-phase coherence separated by incoherence.
Furthermore, we also show that these findings are robust
to the changing of the noise intensity D and the rewiring
probability p. Finally, qualitative analysis is given to illus-
trate the numerical results. Since time delays are inevitable
in real neuronal systems, we hope that our results will be
helpful for further understanding the roles of delay in neu-
ron firing on realistic neuronal networks.
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