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We have investigated the constructive roles of temporal noise, spatial disorder, and spatiotemporal
fluctuation on the formation of spiral waves. Noise-sustained spiral waves are observed, the order of
which passes a maximum with the increment of noise intensity, showing spatiotemporal coherent
resonance. Moreover, we find that spatiotemporal fluctuation is much more favorable for the ordering
process than temporal-noise only or spatial-disorder only. We demonstrate that this phenomenon shows
the disadvantageous effect of spatial or temporal memory of noise.
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The constructive roles of noise in nonlinear systems
have gained extensive attention in recent years. The most
famous phenomena include stochastic resonance [1] and
noise-induced transitions [2]. Recently, a new trend has
been the study of noise-constructive effects in spatially
extended systems, such as spatiotemporal stochastic reso-
nance (STSR) [3], array-enhanced coherent resonance
(AECR) [4], noise-enhanced signal propagation [5],
noise-enhanced synchronization [6], noise-sustained
wave propagation [7,8], etc.

In a spatially extended system, noise can exist in three
different ways, i.e., time dependent, spatial dependent,
and spatiotemporal dependent. We may call these three
types of noise by temporal noise, spatial disorder, and
spatiotemporal fluctuation, respectively. Consider a dy-
namic system evolving on a two-dimensional surface
with a control parameter p subjected to noise. For the
case of temporal noise, the surface is homogeneous with
respect to p, but the value of p changes randomly with
time; for spatial disorder, the surface is highly heteroge-
neous, but the surface remains static during the time
evolution; for spatiotemporal fluctuation, however, the
system evolves on a randomly changing heterogeneous
surface. In the literature, it is shown that all three types of
noise can play constructive roles. For temporal noise,
examples include noise-induced pattern transitions [2]
and AECR [4]. For spatial disorder, one finds that it can
eliminate oscillator death [9], tame spatiotemporal chaos
into order [10], and enhance the velocity of wave propa-
gation [8]. For spatiotemporal fluctuation, many similar
results have also been reported including STSR [3],
noise-supported traveling waves [8], noise-sustained tar-
get waves and pulsating waves, noise-enhanced lifetime
of scroll rings [11], etc.

Though temporal noise, spatial disorder, or spatiotem-
poral fluctuation show similar constructive effects, the
relationship and difference among their mechanisms
have not been clearly clarified yet. Actually, we may
characterize these three types of noise by spatial or tem-
poral memory. For spatial disorder, once the initial
quenched disorder is introduced it will never change,
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ie., the system has an eternal memory of the initial
disorder. For temporal noise, the lattice is homogenous
so that the system has a spatial memory of the noise on
the whole surface. For spatiotemporal fluctuation, the
system’s dynamic features change randomly for each
lattice site at each time step such that there is no spatial
or temporal memory. A short temporal memory implies
that the system’s structure changes fast when the system
evolves, and a small spatial memory means that the
medium is highly heterogeneous. Since in real systems
dynamic-induced structure change could be very impor-
tant and spatial heterogeneity is rather ubiquitous [12], it
is therefore a quite important issue to study the effect of
spatial and temporal memory of the noise.

In this Letter, we investigated noise-sustained spiral
waves using the three types of noises discussed above. We
choose spiral waves because it is of ubiquitous impor-
tance in physical, chemical, or biological systems, in-
cluding the famous Belousov-Zhabotinsky reaction [8]
and cardiac tissues [13]. We find that, for properly chosen
initial condition and control parameters, spiral waves
cannot sustain in the absence of noise. However, when
the control parameter is subjected to temporal noise,
spatial disorder, or spatiotemporal fluctuation, spiral
waves can survive. For all three cases, there is an optimal
noise level where the noise-sustained spiral waves are
most ‘“‘ordered.” A qualified measure, which may be
termed as weighted windowing spatial autocorrelation
(WWSAC), is introduced to characterize the order of
the spiral waves. This measure shows a clear maximum
with the increment of noise intensity, showing clear evi-
dence for spatiotemporal coherent resonance (STCR),
which is a counterpart of coherent resonance [14] or
internal signal stochastic resonance [15] in spatially ex-
tended systems. It is interesting that spatiotemporal fluc-
tuation is found to be much more constructive in the
forming of ordered spiral waves than spatial-disorder
only or temporal-noise only. This implies that both spatial
memory and temporal memory are unfavorable for the
noise-sustained spiral waves. This fact is further demon-
strated by the investigation of WWSAC, which decreases
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monotonically with the increment of the spatial or tem-
poral memory of the noise.

Our study is based on the well-known Barkley model
shown below [16]:

0 1 +b
o _ —u(l — u)(u Y >+DV2u,
Jat e

Jv

—=u—v.

Jat

Here variables u and v are activator and inhibitor species,
a, b, and & are parameters, and D is the diffusion coef-
ficient of u. The parameter ¢ is typically small so that the
time scale of u is much faster than that of v. For different
parameter values, the medium can be excitable, oscilla-
tory, or bistable such that the model can be used to model
the pattern formation processes in many systems. In our
study, we fix € = 1/300, b = 0.016, D = 1.0, and choose
a as the varying control parameter. Numerical simulation
is performed on an L X L two-dimensional lattice with
zero-flux boundary condition using the algorithm pro-
posed by Barkley. We choose L = 60 (note that the choice
of a larger lattice size does not change the qualitative
results of the present work but requires more computer
time). A specific initial condition is adopted as a seed for
spiral waves: u(i, j) = v(i +2,j) = 0.7 for L/2 -2 <
i=L/2+2 1= j=<L/2, where u(i, j) and v(i, j) de-
note the values of u and v at lattice site (i, j), respectively.
For the parameters and initial-boundary conditions
chosen above, spiral waves can form in a wide range of
parameter a. However, when a exceeds a certain critical
value, no spiral tips can be formed and the system falls
into the homogeneous stable state u(i, j) = v(i, j) = 0 for
all the lattice sites. We numerically find that the critical
value a( approximately equals 1.059. One should note that
this critical value is sensible to the chosen parameters,
initial conditions, and the lattice size. Noise is then added
to the system through the modulation of the parameter a.
For the case of temporal noise, parameter a randomly
changes with time ¢ but it is the same for all the lattice
sites, i.e., a;;(t) = ag + 0&(1), where a;;(t) denotes the
value of a on site (i, j) at time ¢, £(¢) is Gaussian white
noise satisfying (£(1)) = 0, (£(1)&(¢')y = 8(t — '), and o
is the noise intensity. For spatial disorder, a changes from
site to site on the lattice but does not change with ¢, i.e.,
a;j(t) = ag + o;; with (§;;) = 0 and (§;;&;) = 8,105
As to spatiotemporal fluctuation, we thus have a;;(r) =
ag + o&;;(1r), where ¢&;(r) satisfies (&;;(r)) =0 and
(&0 p(t) = 8(t —1)8:46;.

When noise is absent, as described above, no spiral
waves can sustain for a, = 1.059. When a small amount
of noise is added, we find that spiral waves can sustain
only occasionally. When the noise level is large, noise-
sustained wave propagation is observed but the spiral
waves may break up into pieces. For an intermediate
noise level, “good” spiral waves can sustain for a long
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time. In Fig. 1, some typical snapshots of noise-sustained
spiral waves are shown for o = 0.05 and o = 0.2. All
three types of noise show similar qualitative behaviors.
The fact that there exists an optimal noise level for the
noise-sustained spiral waves shows the characteristic
of STCR.

To further demonstrate the characteristic of STCR, a
qualified measure of the order of the noise-sustained
waves rather than a qualitative description would be
more helpful. In the present work, we introduce a measure
termed as weighted windowing spatial autocorrelation.
The calculation of the WWSAC for a given noise intensity
contains three major steps. At first, after some transient
time fyans, We need to calculate the order measure C(7) of
the snapshot on the lattice at each sampling time ¢. Then
this order measure is averaged over a long time 7 to get
the averaged order measure C, = (C(¢)), for this run.
Finally, we repeat these two steps and average C, over
50 different runs weighted by the lifetime of each run to
get the WWSAC:

|
WWSAC =— > t,C.
507 2, "

Here ¢, is the lifetime of the rth run which is defined as
the time the noise-sustained waves survive on the lattice
after the transient time has passed. Note that, if the waves
still survive after T + #,,,, the lifetime will be recorded
as T. In our simulation, we choose f,,, to be several
cycles of the resulting spiral waves and T = 80f .
However, in the first step, one encounters difficulty in
defining such a single measure C(¢) to characterize the
order of a snapshot at time ¢. Turning to Fig. 1, it is
obvious that panels in the first row are more ordered
than the corresponding panels in the second row, and
they are also more ordered than the homogeneous state
where no ordered pattern exists. One notes that the good

FIG. 1. Typical snapshots of noise-sustained spiral waves.
The first row: o = 0.05; the second row: o = 0.2. (a),(d):
temporal noise; (b),(e): spatial disorder; (c),(f): spatiotemporal
fluctuation.
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FIG. 2. Variation of WWSAC with noise intensity. Diamonds:
temporal noise; circles: spatial disorder; solid squares: spatio-
temporal fluctuation. The lines are drawn to guide the eyes.

spirals in panels 1(a)—1(c) are more periodic in space than
those shown in panels 1(d) and 1(e). Therefore one might
expect that a measure of the spatial periodicity of the
snapshots could be used as a reasonable measure of its
order. However, since the periodicity of panels 1(a)—1(c)
exists only in the radial direction across the spiral core,
which is near the center of the lattice, it makes sense to
calculate the periodicity in a horizontal strip window
across the lattice center. As in Ref. [14], we use the
autocorrelation function to characterize the intensity of
this periodicity. These considerations finally lead to the
following definition of C(z):

L—1

Cr) =Y Ak 1),
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where c(k, 1) = L

u(i, L/2 + j) — i,

i is the average value of u(i, j) inside the strip window
l=i=LL/12—-(L,—1)/2=j=L/2+ (L, —1)/2,
L,, is the width of the window which is set to be 3 in the
present work. One notes that the window width L,, cannot
be too large since no periodicity exists for a horizontal
window far from the lattice center.

For small noise level, there are lots of runs for which
the lifetime 7, is 0 so that the WWSAC is small. For large
noise level, the periodicity of the waves is lost and C, is
small for each run so that the WWSAC is also small.
Therefore one expects the existence of an optimal noise
level when the WWSAC reaches its maximum. Figure 2
depicts the dependence of the WWSAC with noise inten-
sity for temporal noise, spatial disorder, and spatiotem-
poral fluctuation. All three curves show a clear maximum
which demonstrates the occurrence of STCR.

In Fig. 1, one also notes that the spiral waves induced
by spatiotemporal fluctuation as shown in panel 1(f) are
more ordered than those induced by temporal noise in
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FIG. 3. Relationship between noise type and the order of
noise-sustained spiral waves. The two arrows show the direc-
tion of increasing order with the decrement of spatial memory
(left arrow) or temporal memory (right arrow).

panel 1(d) or spatial disorder in panel 1(e) for the same
noise intensity o = 0.2. This effect is further confirmed
in Fig. 2. As already discussed in the introductory para-
graphs, this seems to implicate that introduction of spatial
or temporal memory to the noise may be disadvantageous
to the noise-sustained spiral waves as represented in the
scheme shown in Fig. 3.

To demonstrate this point, we can add spatial or tem-
poral memory to the spatiotemporal fluctuation and study
the effects. Note that, without any spatial or temporal
memory, the noise item &;;(¢) added to ay will refresh
every time step for each lattice site. If a finite temporal
memory m, is added, the noise items on the lattice sites
will refresh only at time km, with k an integer. On the
other hand, if a spatial memory m; is introduced, the
lattice will be divided into (L/m,)* blocks. Inside each
block the noise is the same, while different blocks have
different noise intensity. By adding infinite m, to spatio-
temporal fluctuation, one recovers the case of spatial
disorder; while for temporal noise, m, equals the lattice
size L. In Fig. 4, some typical snapshots for different
spatial or temporal memory are shown. It is obvious

FIG. 4. Typical snapshots of noise-sustained spiral waves for
different spatial or temporal memory for noise intensity 0.2. (a)
The same as Fig. 1(f), m; = m, = 0; (b) m, = 5, m; = 0; (c)
m; = 20, my; = 0; (d) an example lattice with spatial disorder
memory m; = 3; (e) my = 3, m; = 0; (f) my = 10, m; = 0.
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FIG. 5. Dependence of WWSAC on spatial or temporal mem-

ory. (a) Dependence on spatial memory with m, = 0; (b)
dependence on temporal memory with m; = 0. Solid lines
are drawn to guide the eyes. An increase of spatial or temporal
memory leads to a sharp drop of the WWSAC.

that an increase of spatial or temporal memory will
considerably reduce the order of noise-sustained spiral
waves. This effect is further demonstrated by the sharp
drop of WWSAC with m; or m; as shown in Fig. 5.

In conclusion, we have investigated the behavior of
noise-sustained spiral waves using a two variable reaction
diffusion model. We find that temporal noise, spatial
disorder, and spatiotemporal fluctuation can all induce
sustained spiral waves and there exists an optimal noise
level when the noise-sustained spiral waves are most
ordered. We introduce a qualified measure, WWSAC, to
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characterize the spatiotemporal order of the noisy waves.
This measure shows a maximum at an intermediate noise
level, showing the clear evidence of spatiotemporal co-
herent resonance. More interestingly, we find that spatio-
temporal fluctuation is much more favorable for the
ordering process than spatial-disorder only or temporal-
noise only. This fact implies the disadvantageous effects
of spatial or temporal memory.
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