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We have studied nucleation dynamics of the Ising model in scale-free networks whose degree distribution
follows a power law with the exponent γ by using the forward flux sampling method and focusing on how the
network topology would influence the nucleation rate and pathway. For homogeneous nucleation, the new phase
clusters grow from those nodes with smaller degree, while the cluster sizes follow a power-law distribution.
Interestingly, we find that the nucleation rate RHom decays exponentially with network size and, accordingly, the
critical nucleus size increases linearly with network size, implying that homogeneous nucleation is not relevant
in the thermodynamic limit. These observations are robust to the change of γ and are also present in random
networks. In addition, we have also studied the dynamics of heterogeneous nucleation, wherein w impurities are
initially added either to randomly selected nodes or to targeted ones with the largest degrees. We find that targeted
impurities can enhance the nucleation rate RHet much more sharply than random ones. Moreover, ln(RHet/RHom)
scales as w(γ−2)/(γ−1) and w for targeted and random impurities, respectively. A simple mean-field analysis is
also present to qualitatively illustrate the above simulation results.
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I. INTRODUCTION

Complex networks describe not only the pattern discovered
ubiquitously in the real world, but also provide a unified
theoretical framework to understand the inherent complexity
in nature [1–4]. Many real networks, as diverse as ranging
from social networks to biological networks to communication
networks, have been found to be scale-free [5]; that is,
their degree distributions follow a power law P (k) ∼ k−γ .
A central topic in this field has been how the network
topology would influence the dynamics taking place on it. Very
recently, critical phenomena in scale-free networks (SFNs)
have attracted considerable research interest [6]. Examples
of such phenomena include order-disorder transitions [7–11],
percolation [12–15], epidemic spreading [16], synchroniza-
tion [17,18], self-organized criticality [19,20], nonequilibrium
pattern formation [21], and so on. These studies have revealed
that network heterogeneity, characterized by diverse degree
distributions, makes the critical behavior of SFNs quite
different from that on regular lattices. Most previous studies
focused on evaluating the onset of phase transitions in different
network models. However, little attention is paid to the
dynamics or kinetics of phase transitions, such as nucleation
and phase separation in complex networks.

Nucleation is a fluctuation-driven process that initiates the
decay of a metastable state into a more stable one [22]. A
first-order phase transition usually involves the nucleation
and growth of a new phase. Many important phenomena in
nature, including crystallization [23], glass formation [24],
and protein folding [25], are associated with nucleation.
Despite its apparent importance, many aspects of nucleation
processes are still unclear and deserve more investigation.
The Ising model, which is a paradigm for many phenomena
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in statistical physics, has been widely used to study the
nucleation process. Despite its simplicity, the Ising model
has made important contributions to the understanding of
nucleation phenomena in equilibrium systems and is also
likely to yield important insights for nonequilibrium systems.
In two-dimensional lattices, for instance, shear can enhance
the nucleation rate and, at an intermediate shear rate the
nucleate-rate peaks [26], a single impurity may considerably
enhance the nucleation rate [27], and the existence of a pore
may lead to two-stage nucleation and the overall nucleation
rate can reach a maximum level at an intermediate pore
size [28]. The nucleation pathway of the Ising model in a
three-dimensional lattice has also been studied using the
transition path sampling approach [29]. In addition, the Ising
model has been frequently used to test the validity of classical
nucleation theory (CNT) [30–34]. However, all these studies
are limited to regular lattices in Euclidean space. Since many
real systems can be properly modeled by complex networks, it
is thus natural to ask how the topology of a networked system
would influence the nucleation process of the Ising model.

Although the main motivation of the present study is to
address a fundamental problem in statistical physics, it may
also be of practical interest. Our study helps to understand
some interesting phenomena in social networks and biological
networks. This depends on the fact that, on the one hand, there
is an enormous amount of research into social and biological
problems that employs the Ising model and its variants [35,36].
In the social context, binary spins in the Ising model can repre-
sent two opposite opinions, or competitive language features,
and the concept of physical temperature corresponds to a mea-
sure of noise due to imperfect information or uncertainty on
the part of the agent, and the external field imitates the effect of
mass media, yielding a bias of the agents in favor of either state
[37]. In the biological context, the two states of the Ising model
may correspond to a neuron being fired or not or a gene being
on or off. Furthermore, physical temperature can be interpreted
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as stochastic fluctuations at the cellular level, and the external
field naturally represents external stimuli. On the other hand,
our study may be relevant to some known phenomena observed
in the literature. These phenomena usually involve fluctuation-
driven transition processes in collective behavior. For instance,
Dasgupta et al. found the coexistence of two distinct phases
in the Ising model of a modular network—modular order and
global order—and showed that the transition from modular
order to global order corresponds to consensus formation
in social networks [38]. Similar phenomena have also been
observed in the Ising model of two coupled scale-free networks
by Suchecki et al. [39] and, in the opinion model, of two
coupled random networks by Lambiotte et al. [40]. How one
language that is spoken by everybody can be replaced by
another language is another example in social science related
to the present study, which has been studied by empirical
data and computer simulation in lattice [41] and complex
networks [42,43], suggesting that population size plays a vital
role in determining the change rate. In addition, there are many
examples about functional transition in biological networks
such as the transition between different dynamical attractors
in neural networks [44] and the genetic switch between high-
and low-expression states in gene regulatory networks [45,46].

In the present work, we have studied the nucleation process
of the Ising model in SFNs. Since nucleation is an activated
process that occurs extremely slowly, brute-force simulation
is prohibitively expensive. To overcome this difficulty, we
adopt a recently developed forward flux sampling (FFS)
method to obtain the rate and pathway for nucleation [47].
For homogeneous nucleation, we find that the nucleation
begins with nodes with smaller degree, while nodes with
larger degree are more stable. We show that the nucleation rate
decays exponentially with network size N and, accordingly,
the critical nucleus size increases linearly with N , implying
that homogeneous nucleation can only occur in finite-size
networks. Comparing the results of networks with different
γ and those of random networks, we conclude that network
heterogeneity is unfavorable to nucleation. In addition, we
have also investigated heterogeneous nucleation by adding
impurities into the networks. It is found that the dependence
of the nucleation rate on the number of random impurities
is significantly different from the case of targeted impurities.
These simulation results may be qualitatively understood in a
mean-field (MF) manner.

The rest of the paper is organized as follows. In Sec. II, we
give the details of our simulation model and the FFS method
applied to this system. In Sec. III, we present the results for the
nucleation rate and pathway. We then show, via both simulation
and analysis, the system-size effect of the nucleation rate and
heterogeneous nucleation. At last, the discussion and main
conclusions are addressed in Sec. IV.

II. MODEL AND SIMULATION DETAILS

A. Networked Ising model

The Ising model in a network comprised of N nodes is
described by the Hamiltonian

H = −J
∑
i<j

aij sisj − h
∑

i

si , (1)

where the spin variable si at node i takes either +1 (up)
or −1 (down). J (> 0) is the coupling constant and h is the
external magnetic field. The elements of the adjacency matrix
of the network take aij = 1 if nodes i and j are connected and
0 otherwise.

Our simulation is performed by Metropolis spin-flip dy-
namics [48], in which we attempt to flip each spin once,
on average, during each Monte Carlo (MC) cycle. In each
attempt, a randomly chosen spin is flipped with the proba-
bility min(1,e−β�E), where β = 1/(kBT ) with kB being the
Boltzmann constant and T the temperature, and �E is the
energy change due to the flipping process. Generally, with
the increment of T , the system will undergo a second-order
phase transition at the critical temperature Tc from an ordered
state to a disordered one [7–11]. To study nucleation, we set
J = 1, h > 0, T < Tc, and start from a metastable state in
which si = −1 for most of the spins. The system will stay
in that state for a significantly long time before undergoing a
nucleation transition to the thermodynamic stable state with
most spins pointing up. We are interested in dynamics of this
nucleation process.

B. Forward flux sampling

The FFS method has been used to calculate rate constants,
transition paths, and stationary probability distributions for
rare events in equilibrium and nonequilibrium systems [26–
28,47,49,50]. This method uses a series of interfaces in phase
space between the initial and final states to force the system
from the initial state A to the final state B in a ratchet-like
manner. An order parameter λ(x) is first defined, where x

represents the phase-space coordinates, such that the system
is in state A if λ(x) < λ0 and state B if λ(x) > λm, while a
series of nonintersecting interfaces λi (0 < i < m) lie between
states A and B, such that any path from A to B must cross
each interface without reaching λi+1 before λi . The transition
rate R from A to B is calculated as

R = �̄A,0P (λm|λ0) = �̄A,0

m−1∏
i=0

P (λi+1|λi), (2)

where �̄A,0 is the average flux of trajectories crossing λ0

in the direction of B. P (λm|λ0) = ∏m−1
i=0 P (λi+1|λi) is the

probability that a trajectory crossing λ0 in the direction of B

will eventually reach B before returning to A, and P (λi+1|λi)
is the probability that a trajectory which reaches λi , having
come from A, will reach λi+1 before returning to A. For more
information about FFS, please turn to Ref. [51].

III. RESULTS

A. Homogeneous nucleation: rate and pathway

To begin with, we consider homogeneous nucleation in a
Barabási-Albert–scale-free network (BA-SFN), whose degree
distribution follows a power law P (k) ∼ k−γ with the scaling
exponent γ = 3 [5]. We define the order parameter λ as the
total number of up spins in the networks. We set N = 1000,
the average degree 〈k〉 = 6, T = 2.59, h = 0.7, λ0 = 130,
and λm = 880, where T is lower than the critical tempera-
ture Tc � 10.36. The spacing between interfaces is fixed at
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FIG. 1. (Color online) Snapshots of nucleation in a BA scale-free network with N = 100 and 〈k〉 = 2 at four different stages. Up spins
and down spins are indicated by red squares and black circles, respectively.

3 up spins, but the computed results do not depend on this
spacing. During the FFS sampling, we perform 1000 trials
at each interface, from which at least 100 configurations
are stored in order to investigate the statistical properties
of the ensemble of nucleation pathways. We obtain �̄A,0 =
1.24 × 10−4 MC step−1spin−1 and P (λm|λ0) = 4.48 × 10−46,
resulting in RHom = 5.55 × 10−50 MC step−1spin−1 following
Eq. (2). Such a nucleation rate is very low such that a
brute-force simulation would be very expensive.

From the stored configurations at each interface, one can
figure out the details of the nucleation pathway. Figure 1
illustrates schematically four stages of a typical nucleation
pathway. Clearly, the new phase (indicated by squares) starts
from nodes with smaller degrees, while nodes with larger
degrees are more stable. This picture is reasonable because
flipping nodes with larger degrees requires overcoming more
interfacial energies. Figure 2(a) plots the average degree of
nodes in the new phase, 〈knew〉, as a function of the order
parameter λ. As expected, 〈knew〉 increases monotonically with
λ. On the other hand, it is observed that the formation of large
clusters of new phase is accompanied with the growth and
coalescence of small clusters. Interestingly, we find that the
size Nc of new-phase clusters follows a power-law distribution
at the early stages of nucleation: P (Nc) ∼ N−α

c with the fitting

exponent α � 2.44, as shown in Fig. 2(b). With the emergence
of a giant component of new phase, the tail of the distribution
is elevated, but the size distribution for the remaining clusters
still follows a power law. The underlying mechanism of such
a phenomenon is still an open question for us.

To determine the critical size λc of the nucleus we compute
the committor probability PB , which is the probability of
reaching the thermodynamic stable state before returning to
the metastable state. The dependence of PB on λ is plotted
in Fig. 3(a). As commonly reported in the literature [29,34],
the critical nucleus appears at PB(λc) = 0.5, giving the critical
nucleus size λFFS

c = 474. The committor distribution at λFFS
c

exhibits a peak at 0.5, for which 70% of spin configurations
have PB values within the range of 0.4 to 0.6 [see the inset of
Fig. 3(a)], indicating that λ is a proper order parameter.

Note that, conventionally, the nucleation threshold λc is
usually estimated by using CNT [52–54]. One can calculate
the free-energy change along the nucleation path, �F (λ), by
using methods like umbrella sampling (US) [55]. According
to CNT, �F will bypass a maximum at λ = λUS

c , and the
nucleation rate is given by ν exp(−β�Fc), where ν is an
attempt frequency. Here we have computed �F by using US,
in which we have adopted a bias potential 0.1kBT (λ − λ̄)2,
with λ̄ being the center of each window. As shown in Fig. 3(b),
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FIG. 2. (Color online) (a) Average degree of nodes of new phase
〈knew〉 as a function of λ; (b) Size distribution of clusters of new
phase, in which a power-law distribution is present. Other parameters
are N = 1000, 〈k〉 = 6, T = 2.59, and h = 0.7.

the maximum in �F occurs at λUS
c = 451, giving a free-energy

barrier of �Fc � 91.4kBT . Clearly, λUS
c gives a fairly good

estimation of λFFS
c . To calculate the nucleation rate, however,

one has to obtain the attempt frequency ν, which is not a
trivial task. If we just set ν = 1, we obtain a CNT prediction
of a rate of 2.02 × 10−40 MC step−1spin−1, which is 9 orders
of magnitude faster than that computed by the FFS method.
This level of disagreement in nucleation rate corresponds to
an error in the free-energy barrier of about 24%. Since the
accurate value of ν is generally unavailable, we will use the
FFS method to calculate the nucleation rate throughout this
paper. In addition, the real nucleation pathway cannot be
obtained by the conventional US method due to the use of
a biased potential.

We have also investigated how the nucleation rate and
threshold depend on the external field h. In Fig. 3(c), ln RHom,
λFFS

c , and λUS
c are plotted as functions of h. The error bars

are obtained via 20 different network realizations and 10
independent FFS samplings. As expected, ln RHom increases
monotonically with h, and λFFS

c and λUS
c both decrease with

h. For large h, the difference between λFFS
c and λUS

c becomes
small. If h is large enough, one expects that the free-energy
barrier will disappear, and nucleation will not be relevant.

FIG. 3. (Color online) (a) Committor probability PB as a function
of λ; the inset plots the committor distribution at λFFS

c . (b) Free energy
�F as a function of λ, in which the maximum in �F occurs at λUS

c .
(c) Logarithm of homogeneous nucleation rate ln RHom (left axis),
and the critical size of nucleus, λFFS

c and λUS
c (right axis), obtained

by the FFS method and US method, respectively, as functions of h.
Other parameters are the same as for Fig. 2.

To check the generality of the above results, we have also
considered homogeneous nucleation in many other network
models, such as SFNs with other scaling exponents γ and
the well-known Erdös-Rényi random network. The networks
are generated according to the Molloy-Reed model [56]:
Each node is assigned a random number of stubs k that are
drawn from a specified degree distribution. This construction
eliminates the degree correlations between neighboring nodes.
Extensive simulations have shown that the qualitative results
of Figs. 1–3 hold for all the network models under study:
(i) Nucleation starts from nodes, on average, with smaller
degrees, and the sizes of clusters of nucleating phase are
power-law distributed but with slightly different exponents
for different networks. (ii) By comparing the nucleation rate
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RHom and the size of critical nucleus λc, obtained by the FFS
and US methods, we found that they are approximately in
agreement. However, for different network models, RHom and
λc are quantitatively different for the same system parameters,
and the comparison will be made in the subsequent part,
suggesting that degree heterogeneity plays an important role.
(iii) We have also examined the dependence of RHom and λc

on the external field h and found that the same trends as in
Fig. 3(c) are also present.

B. Homogeneous nucleation: system-size effects

According to Fig. 3, one finds that nearly half of the nodes
must be inverted to achieve nucleation. This means that, for
a large network, nucleation occurs with great difficulty. An
interesting question thus arises: How do the nucleation rate
and threshold depend on the network size?

To answer this question, we have performed extensive
simulations to calculate RHom and λc for different network
size N . In particular, besides the BA-SFNs, we have also
considered different network types, including SFNs with other
scaling exponents γ and homogeneous random networks
(HoRNs) [57]. We note here that the exponent γ can be a
measure of degree heterogeneity of the network; that is, the
smaller γ is, the more heterogeneous is the degree distribution.
In a HoRN, each node is equivalently connected to 〈k〉 other
nodes, randomly selected from the whole network, such that no
degree heterogeneity exists. By comparing the results in SFNs
with different γ as well as that in HoRNs, one can, on the
one hand, check the robustness of the system size effects and,
on the other hand, investigate how the degree heterogeneity
affects the nucleation process.

Figure 4 shows the simulation results. All the parameters
are the same as in Fig. 2, expect that N varies from N = 500
to N = 3000. Interestingly, both ln RHom and λc show very
good linear dependencies on the system size (i.e., ln RHom ∼
−aN and λc ∼ bN with a and b being positive constants).
Obviously, in the thermodynamic limit N → ∞, we have
RHom → 0 and λc → ∞. This means that nucleation in these
systems is not relevant in the thermodynamic limit, and only
finite-size systems are of interest. As shown in Fig. 4, for the
network types considered here, qualitative behaviors are the
same. Quantitatively, with increasing γ , the line slope becomes
smaller, RHom becomes larger, and λc gets smaller. Since larger
γ corresponds to more homogeneous degree distribution, these
results indicate that the degree heterogeneity is unfavorable to
nucleation. This is consistent with the nucleation pathway as
shown in Fig. 2: In a heterogenous network, those hub nodes
are difficult to flip, making nucleation difficult.

In the following, we will show that the system-size effects
can be qualitatively understood by CNT and simple MF
analysis. According to CNT, the formation of a nucleus lies in
two competing factors: the energy cost of creating a new up
spin which favors the growth of the nucleus, and an opposing
factor which is due to the creation of new interfaces between
up and down spins. The change in the free energy may be
written as [52–54]

�F (λ) = −2hλ + σλ, (3)

FIG. 4. (Color online) (a) Logarithm of homogeneous nucleation
rate ln RHom and (b) the critical size of nucleus λc as functions of
the network size N in SFNs with different γ , HoRNs, and regular
networks. For SFNs and HoRNs, other parameters are the same as for
Fig. 2. For regular networks, the parameters 〈k〉 = 6, T = 1.5, and
h = 0.1 are used.

where σ denotes the effective interfacial free energy, which
may depend on T , h, and N . Since interfacial interactions arise
from up spins inside the nucleus and down spins outside of it,
one may write σ = 2JKout by neglecting entropy effects (zero-
temperature approximation), where Kout is the average number
of neighboring down-spin nodes that an up-spin node has.
Using the MF approximation, one has Kout = 〈k〉(1 − λ/N ).
Inserting this relation into Eq. (3) and maximizing �F with
respect to λ, we have

λMF
c = J 〈k〉 − h

2J 〈k〉 N (4)

and the free-energy barrier

�F MF
c = (J 〈k〉 − h)2N

2J 〈k〉 . (5)

Clearly, both λMF
c and �F MF

c increase linearly with N if other
parameters are fixed. Therefore, the linear relationships shown
in Fig. 4 are essentially analogous to the behavior of a mean-
field network. Quantitatively, however, the MF analysis fails
to predict the line slopes in Fig. 4. This can be understood
because the approximations are so crude, wherein important
aspects such as network heterogeneity and entropy effects have

031110-5



CHEN, SHEN, HOU, AND XIN PHYSICAL REVIEW E 83, 031110 (2011)

not been taken into account. A rigid analysis is not a trivial
task and is beyond the scope of the present work.

It should be pointed out that such system-size dependence
does not exist in two-dimensional regular lattices [27]. We have
also studied nucleation of Ising systems in regular networks
where each node is connected to its k-nearest neighbors (here
we only consider the case of sparse networks; that is, k � N )
and found that both the rate and the size of critical nucleus are
almost independent of network size (results shown in Fig. 4).
Therefore, nucleation processes in SFNs and HoRNs are quite
different from those in regular lattices or networks.

C. Heterogeneous nucleation

In practice, most nucleation events that occur in nature are
heterogeneous (i.e., impurities of the new phase are initially
present). It is well known that impurities can increase the
nucleation rate by as much as several orders of magnitude. In
our model, impurities are introduced by fixing some nodes in
the up-spin state. We are interested in how the number w of
impurity nodes and the way of adding impurities would affect
the nucleation rate. The first way of adding impurities we
use is that impurity nodes are selected in a random fashion.
Figure 5(a) gives the simulation results of ln( RHet

RHom
) as a

function of w in different network models, where RHet are the
rates of heterogeneous nucleation. As expected, nucleation
becomes faster in the presence of random impurities no matter
which kind of network model is applied. It seems that, in
Fig. 5(a), all data collapse and exhibit a linear dependence on
w, with the fitting slope 3.33. This means that each additional
random impurity can lead to the increase of the rate by more
than one order of magnitude. For the second way, we select
w nodes with the most high degree as the impurity nodes,
termed targeted impurities. Strikingly, such a targeted scheme
is much more effective in increasing the nucleation rate than
a random one, as shown in Fig. 5(b). For example, for SFNs
with γ = 3, one single targeted impurity can increase the rate
by about 36 orders of magnitude.

As in Sec. III B, below we will also give an MF analysis
of the heterogeneous nucleation, which qualitatively agrees
with the simulation results. Each impurity node contributes an
additional term to the free-energy barrier, which can, under
the zero-temperature approximation, be written as the product
of −2J and the expected degree of the impurity node. For
random impurities, each impurity node has an expected degree
〈k〉, yielding the term −2J 〈k〉. Thus, the resulting free-energy
barrier of the heterogenous nucleation becomes �1F

Het
c =

�F Hom
c − 2J 〈k〉w, where �F Hom

c is the free-energy barrier
of homogeneous nucleation. According to CNT, one obtains

ln

(
RHet

RHom

)
= 2J 〈k〉

kBT
w. (6)

Therefore, nucleation with random impurities is always faster
than without impurities, and ln( RHet

RHom
) should vary linearly

with w. The theoretical estimate of the slope is given by
2J 〈k〉/(kBT ) = 4.63, approximately consistent with the
simulation estimate. Given the simple nature of the above
approximation, the agreement is satisfactory. For the targeted

FIG. 5. (Color online) ln( RHet
RHom

) as a function of the number
of impurity nodes w. Panel (a) corresponds to the case of random
impurities, while panels (b) and (c) correspond to the case of targeted
impurities. Panel (c) plots ln( RHet

RHom
) versus w in double logarithmic

coordinates. All dotted lines are drawn by linear fitting. Other
parameters are the same as for Fig. 2 except for h = 0.2.

way, a treatment similar to the former case can also be
executed, except that 〈k〉 should be replaced by 〈k〉w, where
〈k〉w is the average degree of the w targeted nodes. After simple

calculations, we can obtain 〈k〉w = 〈k〉(N
w

)
1

γ−1 . This leads to
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a free-energy barrier, �2F
Het
c = �F Hom

c − 2J 〈k〉N 1
γ−1 w

γ−2
γ−1 ,

and

ln

(
RHet

RHom

)
= 2J 〈k〉

kBT
N

1
γ−1 w

γ−2
γ−1 . (7)

Compared with Eq. (6) and besides the presence of an

additional size-dependent factor of N
1

γ−1 , the w-dependent

factor becomes w
γ−2
γ−1 rather than w. For a homogeneous

network, (i.e., γ → ∞) one obtains N
1

γ−1 → 1 and w
γ−2
γ−1 →

w, and Eq. (7) is thus equivalent to Eq. (6). In Fig. 5(c), we
plot the simulation results of ln( RHet

RHom
) as a function of w in

double logarithmic coordinates, where linear dependencies are
apparent, in agreement with the result of Eq. (7). The fitting
slopes μ and intercepts κ for γ = 2.55, 3.0, and 5.0 in Fig. 5(c)
are μ = 0.49, 0.62, and 0.93 and κ = 2.25, 1.94, and 1.08,
respectively, while our analytical estimates are μ = γ−2

γ−1 =
0.35, 0.50, and 0.75 and κ = log10[2J 〈k〉N1/(γ−1)/(kBT )] =
2.60, 2.16, and 1.42, respectively. Simulations and analysis
give the same trends for μ, κ , and γ .

IV. DISCUSSION AND CONCLUSIONS

Our investigations of system-size effects of nucleation in
SFNs and HoRNs have revealed that the nucleation rate is size
dependent, and it decreases exponentially with the network
size, resulting in nucleation occurring only for finite-size
systems. However, for nucleation in regular networks the rate
is independent of the network size. Such differences may
originate from the infinite-dimensional properties of SFNs
and HoRNs, wherein the average path distance is rather
small, rendering the system’s behavior analogous to that of
a mean-field network. An interesting situation arises when
one considers a Watts-Strogatz small-world network, which
is constructed by randomly rewiring each link of a regular
network with the probability p [58]. With the increment of
p from 0 to 1, the resulting network changes from a regular
network to a completely random one. As mentioned above,
for the nucleation process no system-size effects exist for
p = 0, while system-size dependence exists for p = 1. One
may naturally ask: How does the crossover happens when p

changes from 0 to 1, and what is the physical significance
of such a transition? This question surely deserves further
investigations and may be the content of a future presentation.

The size-effect of the transition rate has also been
observed in language dynamical networks and bistable genetic

networks. In [43], it was demonstrated by a theoretical model in
BA-SFN and by empirical data that the rate of language change
depends on the population size within certain parameter
settings. The larger the population gets, the more slowly the
language will change. In [46], it was shown that a genetic
network with larger size will spend more time staying in one
stable state before jumping to another one. A recent work
has shown that the relaxation time of the Ising model in
modular networks from a metastable state with local order
to a stable state with global order decreases with an external
field [38], which is qualitatively consistent with our results in
Fig. 3(c). Our results of heterogeneous nucleation may have
particular relevance to the work of [44], in which the response
of Ising-type neural networks with two different dynamic
attractors under stimuli was considered, and a key finding
is that SFNs are much more sensitive than random networks
in response to targeted stimuli. In a very recent paper [59], it
was shown that the evolution of the coauthorship network of a
new research field undergoes the nucleation of small isolated
components on the early transient stages. From the present
study one can expect to gain new insights into determining the
transition rate and characterizing the pathway to nucleation
transition in networked interacting systems.

In summary, we have studied homogeneous and heteroge-
neous nucleation of the Ising model in SFNs by using the
FFS method. For homogeneous nucleation, we find that the
formation of a new phase starts from nodes with a smaller
degree, while nodes with a higher degree are more stable.
Extensive simulations show that the nucleation rate decreases
exponentially with the network size N and the nucleation
threshold increases linearly with N , indicating that nucleation
in these systems is not relevant in the thermodynamic limit.
For heterogeneous nucleation, target impurities are shown to
be much more efficient to enhance the nucleation rate than
random ones. A simple MF analysis is also presented to
qualitatively illustrate the simulation results. Our study may
provide a valuable understanding of how first-order phase
transitions take place in network-organized systems and how
to effectively control the rate of such processes.
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