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Stochastic thermodynamics in mesoscopic chemical oscillation systems is discussed on the basis of chemical
Langevin equation for the state variables with particular attention paid to a parameter region close to the
deterministic Hopf bifurcation. The Langevin dynamics defines stochastic trajectories in the state space and
therefore trajectory dependent entropy and entropy production according to the schemes proposed by Udo
Seifert (Phys. ReV. Lett. 2005, 95, 040602). The total entropy change along a stochastic trajectory obeys the
fluctuation theorems. By using the stochastic normal form theory, we derive explicit theoretical expressions
for the mean entropy production in the stationary state. The resulting entropy production in the large system
volume V limit can scale linearly or independent with V when the control parameter is above or below the
Hopf bifurcation while it is of V1/2 at the bifurcation. We verify the above relations by direct simulation with
a stochastic circadian clock model.

1. Introduction

In recent years, nonequilibrium thermodynamics of small
systems has gained extensive attention.1,2 Of particular interest
are the fluctuation theorems (FTs) for the general relations of
the statistics of work, heat and, even far from equilibrium. The
concept of FT was originally proposed by Evans et al. in
multiparticle Hamiltonian systems.3,4 Recently, it has been
extended to more general stochastic dynamical systems de-
scribed by Langevin or master equations.5-18 In this context,
an important progress known as stochastic thermodynamics
(ST)13,14 was made very recently by Udo Seifert, who defines
entropy along a single stochastic trajectory. The total entropy
change ∆stot along a trajectory is found to be the logarithm of
the probability ratio between the forward and backward paths.
It also satisfies 〈e- ∆stot〉 ) 1 that can be related to the famous
Jarzynski equality.13 Generally, ∆stot gives a trajectory-based
measure of dynamic irreversibility.19 It can also be related to
thermodynamic heat and entropy production in stochastic
systems, following an appropriate interpretation of the First
Law.14 ST has been successfully applied to a periodically
modulated two-level system,15 optically driven Brownian par-
ticles,16 general chemical reaction networks,17 and state transition
process in biomolecules.18

We have recently applied the trajectory entropy approach to
the study of the ST in a mesoscopic chemical oscillation system
by the irreversible Brusselator model.20 Here, the trajectory
reversal can be realized in the discrete molecule-number state
space that supports the master equation with the stochastic
trajectories unraveled by the Gillespie algorithm.21,22 We have
calculated the entropy production P along a stochastic limit cycle
in a parameter region close to the Hopf bifurcation (HB). The
resulting P increases linearly with the system volume V in
the deterministic oscillatory region, while it is independent with

V in the steady state region. This study suggests a characteristic
ST behavior in mesoscopic chemical bifurcation systems.

In this work, we exploit the similar approach to a mesoscopic
reaction state space that supports chemical Langevin equation
(CLE),23 or equivalently, Fokker-Planck equation (FPE). The
reversibility here requires only at a coarse grain level, much
more relaxed than that in the molecule-number state space
constructed in our previous work. The CLE defines stochastic
trajectories in the concentration state space, sampled with a
coarse-grained time scale. The mean entropy production P along
a stochastic trajectory can be numerically calculated from the
CLE by using path integral approach. Thanks to the stochastic
normal form theory we developed recently,24 explicit analytical
expression for P is obtained when the system is close to the
HB. The slow oscillatory motion on the two-dimensional center
manifold dominates P, which is proportional to Vrm

2 with rm

the most probable amplitude of the oscillation. The theory
clearly shows that P in the large V limit can scale linearly or
independent with V when the control parameter is above or
below the HB and it is of V1/2 at the bifurcation. Since the
analysis is based on the normal form equations, the observed
scaling relations are thus universal in mesoscopic oscillations
systems, suggesting a much more solid physical background of
the present study than that of our previous work. In addition,
the same observations in our previous work and this study,
though at different levels, shed some lights on the robustness
of ST in characterization of bifurcation in mesoscopic systems.
We have also verified above scaling relations by numerical
simulation with a circadian clock model.

The paper is organized as follows. We present the CLE of
mesoscopic reaction networks in Section 2. Stochastic thermo-
dynamics associated with the CLE is discussed in section 3.
By using normal form equations of the CLE, we derive
theoretical expressions for the entropy production near the HB
and discuss its scaling laws with the system size Vin section 4.
Verification of the scaling laws in a circadian clock model is
presented in section 5 followed by conclusion in the final section.
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2. Model Description

We consider here a well-stirred mixture of N molecular
species {S1, ..., SN} that chemically interact inside some fixed
volume V through M reaction channels (R1, ..., RM). We specify
the dynamical state of this system by X(t) ) (X1(t), ..., XN(t))T

where Xi(t) denotes the number of Si molecules in the system
at time t and the superscript “T” denotes transposition. We may
write the reaction network in a compact form as

{X f X + vF} (1)

where 1 e F e M labels the single reaction channels, and vF )
(VF1, ..., VFN)T is the state change vector whose jth component VFj
is defined as the change in the number of Sj molecules produced
by one RF reaction. Note that the forward and backward reactions
of a reversible reaction are viewed as two separate channels in
eq 1. In mesoscopic systems, the molecular populations Xj(t)
will be random variables. The transition probability WF(X) of
RF depends only on the current state and therefore defines a
Markov process with a master equation

∂tP(X;t) ) ∑
F

[WF(X - vF)P(X - vF;t) - WF(X)P(X;t)]

(2)

governing the time evolution of the probability distribution
p(X;t) to have Xj molecules Sj at time t.

To account for the oscillation dynamics, we need to trace
the dynamic evolution of X(t) in the state space with time. In
practice, one can use Gillespie’s algorithm to simulate the
reaction processes by randomly determine what the next reaction
is and when it will happen.21,22 In addition, if a “macro-
infinitesimal” time scale exists during which each reaction may
take place many times and the transition rates do not change
much, the dynamics can be well approximated by the following
CLE

dXj

dt
) ∑

F)1

M

VF
jWF(X) + ∑

F)1

M

VF
j√WF(X)�F(t), (j ) 1, ..., N)

(3)

where �F ) 1, ..., M(t) stand for independent Gaussian white
noises associated with the reaction channels with 〈�F(t)〉 ) 0
and 〈�F(t)�F′(t′)〉 ) δFF′δ(t - t′). The validity of the CLE has
been discussed in detail by Gillespie,23 and generally speaking,
it often applies to mesoscopic systems where the total popula-
tions of all species are very large compared to 1 or equivalently
V > >1. More commonly, eq 3 can be written in terms of the
species concentrations xj(t) ) Xj(t)/V

ẋj ) ∑
F)1

M

VF
jwF(x) + 1

√V
∑
F)1

M

VF
j√wF(x)�F(t) (j ) 1, ..., N)

(4)

where x ) (x1, ..., xN)T denotes the vector of concentrations and
wF(x) ) WF(x)/V. In the thermodynamic limit Vf∞, the CLE
converges to a set of deterministic ordinary differential equations

ẋj ) ∑
F)1

M

VF
jwF(x) ≡ fj(x) (j ) 1, ..., N) (5)

which is essentially the macroscopic reaction rate equation of
conventional chemical kinetics. The Fokker-Planck equation
(FPE) corresponding to eq 4 reads

∂p(x;t)
∂t

) -∑
i

∂

∂xi
[fi(x)p(x;t)] +

1
2V ∑

i,j

∂
2

∂xi∂xj
[Gij(x)p(x;t)] (6)

where p(x;t) is the probability distribution in the concentration
space, fj(x) is the deterministic term defined in eq 5, and Gij(x)
) ∑F)1

M VFi VFjwF(x). By introducing probability current density

Ji(x) ) 1
2 ∑

j

Gij(Hj -
1
V

∂

∂xj
)p(x;t) (7a)

where Hj ) 2∑kΓjk f̃k with ∑jGijΓjk ) δik and f̃k ) fk -
1/(2V)∑j(∂Gkj)/(∂xj), we can write the FPE in a compact form
∂tp(x;t) ) -∑i(∂Ji/∂xi). Note that eq 6 is consistent with the
second-order Kramer-Moyal expansion of the master eq 2. We
assume that the system (eq 6) admits a unique stationary
distribution ps(x) with ∂ps(x;t)/∂t ) 0. Throughout the present
work, we will consider mesoscopic systems with V > > 1where
the CLE and FPE are valid.

3. Stochastic Thermodynamics

We now consider a path �(t) ){x(τ)|0t } generated by eq 4
starting from x0(τ ) 0) selected from some normalized distribu-
tion p0(x0) and ending at xt(τ ) t) with normalized distribution
p1(xt). Correspondingly, the time-reversed path �̃(t) ) {x̃(τ)|0t },
where x̃(τ) ) x(t - τ), starts from x̃0 ) xt and ends at x̃t ) x0.
According to Seifert,15 one may define the entropy along this
single trajectory as

s(τ) ) -ln p(x(τ), τ) (7b)
wherep(x(τ),τ)is the solution of the Fokker-Planck equation
evaluated along the trajectory at time τ. The rate of change of
s(τ) is given by

ṡ(τ) )-
∂τp(x, τ)

p(x, τ)
- 1

p(x, τ) ∑
i

∂p(x, τ)
∂xi

ẋi

)[-∂τp(x, τ)

p(x, τ)
+ 2V

p(x, τ) ∑
ij

Γij Jjẋi] - V ∑
i

Hi ẋi

(8)

As shown in ref 13, the term in the square bracket in eq 8
denotes the trajectory-dependent total entropy production ṡtot(τ)
with balance ṡtot(τ) ) ṡ(τ) + ṡm(τ), where

ṡm(τ) ) V ∑
i

Hi ẋi (9)

is the “medium” entropy production.
Note that for a one-dimensional Langevin equation to describe

the overdamped motion of a Brownian particle, ṡm(τ) defined
in this way can be related to the rate of heat dissipation in the
medium.13 For the currently system, ṡtot (τ) and ṡm(τ) are abstract
quantities, and interpretations of them as exchanged heats are
not feasible because the CLE (4) lacks an energetic interpreta-
tion.14 However, the total entropy change along the trajectory,
∆stot ) ∫0

t ṡtot(τ)dτ, is related to the so-called “dynamical
irreversibility” or time asymmetry of the system.19 According
to path integral interpretation of the FPE (eq 6), the ratio of
probabilities of the forward path p[�(t)|x0] and the backward
path p̃[�̃(t)|xt] for given x0 and xt can be calculated as6

ln
p[�(t)|x0]

p̃[�̃(t)|xt]
) V∫0

t
dt ∑

i

Hiẋi ) ∆sm (10)

which is the medium entropy change along the trajectory.
Combine this quantity with the normalized distributions p0(x0)
and p1(xt), we have
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ln
p[�(t)]
p̃[�̃(t)]

) ln
p[�(t)|x0]p0(x0)

p̃[�̃(t)|xt]p1(xt)
) ∆sm + ln

p0(x0)

p1(xt)
(11)

If p1(xt) is the solution of the FPE (eq 8) for the given initial
distribution p0(x0), then ln(p0(x0))/(p1(xt)) ) s(t) - s(0) ) ∆s
is the system entropy change along the path, and the right-hand
side of eq 11 is exactly ∆stot.

From eq 11, one can obtain the following integral FT for the
total entropy change ∆stot

13

〈e-∆stot〉 ≡ ∑
x(τ),x0

p[�(t)|x0]p0(x0)e
-∆stot

) ∑
x̃(τ),x̃0

p[�̃(t)|x̃0]p1(x̃0) ) 1
(12)

where we have used the fact that the summation over all forward
paths is the same as that over all the backward ones. Equation
12 indicates 〈∆stot〉 g 0 which is in accordance with the second
law. If the system stays in the stationary state and both x0 and
xt are chosen from ps(x), then a stronger detailed FT also holds
for ∆stot

6,13

p(∆stot)/p(-∆stot) ) e∆stot (13)

We note that eqs 7 to 13 are extensions of Seifert’s work to
mesoscopic reaction systems on the level of CLE. Equation 9
gives the expression of medium entropy change which can be
calculated by direct simulations of the CLE. Note that ∆s is a
boundary term and ∆sm increases monotonically with time such
that ∆stot = ∆sm in the long time run, hence eqs 12 and 13 also
hold approximately for ∆sm. In the stationary state, we can also
use the time-averaged entropy production P to measure the
dynamic dissipation rate

P ≡ lim
tf∞

〈∆Sm〉
t

) V ∑
i

〈〈Hiẋi〉〉s (14)

where 〈〈 · 〉〉s means averaging over both time and the stationary
distribution.

4. Entropy Production near Hopf Bifurcation:
Theoretical Study

In this section, we investigate the properties of P associated
with the oscillation dynamics of the system. We assume that
the deterministic system (eq 5) has a unique steady state xs

satisfying fi(xs) ) 0 ∀i, which loses stability at a supercritical
HBµ ) µc, where µ denotes the control parameter. Without lose
of generality, we assume that sustained oscillation is observed
in the superthreshold region µ > µc. Generally, one cannot obtain
the analytical expressions of Pdefined in eq 14, and one needs
to perform numerical simulations of eq 4 to calculate P.
However, thanks to the stochastic normal form theory we
developed recently,24 we find that theoretical analysis of P is
possible close to the HB.

According to the Hopf theorem,25 the Jacobian matrix J with
entries Jij ) (∂fi/∂xj)x ) xs

has a pair of conjugate eigenvalues
λ( ) R(µ) ( iω with R(µc) ) 0. The other N-2 eigenvalues of
J, denoted by - λj(g3), all have strictly negative real parts with
absolute values considerably larger than 0. By suitable variable
transformations u ) T-1(x - xs), where the matrix T is derived
from the eigenvectors of λ( and - λj(>3), the linear part of eq 4
can be transformed to Jordan form and the equations for u read

u̇ ) Λu + O(u2) + 1

√V
η(t) (15)

where the matrix

Λ ) (R -ω

ω R ) x diag(-λ3, ...,-λN)

is constructed by the eigenvalues. η(t) ) T-1�(xs,t) denotes the
vector of noise after transformation, where � ) (�1, ..., �N)T is
the original noise vector involved in eq 4 with �j(t) )
∑FVFj (wF(x))1/2�F(t). The variances of η(t) are

〈ηi(t)ηj(t′)〉 ) 2Dijδ(t - t′) (i, j ) 1, ..., N) (16)

where Dij is the entry of matrix D ) T-1G(T-1)T with matrix
G constructed from Gij(xs).

When the system (eq 15) locates near the HB such that |R|
, 1, the motion of the oscillatory mode related to (u1,u2) is
much slower than the other N-2 stable modes, hence the system’s
dynamics will be dominated by the slow motion on a two-
dimensional center manifold spanned by the eigenvectors of λ(.
The oscillatory modes are ruled by a normal form equation
involving the time evolution of a complex variable Z ) u1 +
iu2, or a pair of coupled equations for the oscillation amplitude
rand phase θ defined via Z ) reiθ. By using the “stochastic
averaging” method26,27 and following the procedures in ref 24
we can obtain solvable “stochastic averaged normal forms” of
the oscillatory mode as

ṙ ) Rr + Crr
3 + ε2

2Vr
+ ε

√V
ηr(t) (17a)

θ̇ ) ω + Cir
2 + ε

r√V
ηθ(t) (17b)

with ε2 ) D11 + D22. ηr(t) and ηθ(t) are temporally uncorrelated,
statistically independent Gaussian white noises with unit vari-
ances. Cr and Ci are constants decided by the nonlinear terms
in eq 15 evaluated at xs. We can also calculate the normal forms
of the remaining N-2 stable modes, which read

u̇j = -λjuj + �jr
2 + 1

√V
ηj(t) (j g 3) (18)

where �js are also constants. From eqs 17 and 18, we can get
the stationary distribution as

ps(r, uj>2) ) N1e
-Φ(r) ·N2e

-Ψ(u) ≡ ps(r) ·ps(u) (19)

where N1,N2 are normalization constants and

Φ(r) ) V(R2 r2 +
Cr

4
r4)/ε2 - ln r (20a)

Ψ(u) ) -V
2 ∑

j,k>2

(λj + λk)

2Djk
(uj -

�j

λj
r2)(uk -

�k

λk
r2)

(20b)

Note that the distribution of θ (mod 2π) is uniform inside
(0,2π) and is not included in eq 19. The distribution related to
the stable modes is simply Gaussian, while that for oscillation
amplitude r is strongly not.

After the linear transformation x ) xs + Tu, we could write
the entropy production rate in terms of u. By introducing vector
notations f̃ ) (f̃1, ..., f̃N)Tand H ) 2Γf̃ with Γ ) G-1, we have

P ) V〈〈HTẋ〉〉s ) 2V〈〈f̃TΓTẋ〉〉s = 2V〈〈uTLu̇〉〉s ≡ 2V ∑
ij

Lij〈〈uiu̇j〉〉s

(21)

where L ≡ TTJTΓTT. In the third equality, we have used
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f̃(x) = f(x) ) f(xs) + J(x - xs) + o(|u|2) = JTu

(22)

because V . 1, f(xs) ) 0, and |u| , 1. In the final equality of
eq 21, the matrix elements Lij are calculated at the fixed point
xs and thus can be taken out of the averaging brackets. Therefore,
what we need to calculate are hij ≡ 〈〈uiu̇j〉〉s. Note that in the
stationary state, (d/dt)〈〈uiuj〉〉s ) 0, thus hij ≡ 〈〈uiu̇j〉〉s )-〈〈uju̇i〉〉s

≡ -hji and hii ) 0. From eqs 17 to 19, we have

h12 ≡ 〈〈u1u̇2〉〉s ) -h21 ) 〈〈r cos θ d
dt

(r sin θ)〉〉s

) 1
2π ∫0

2π
cos2 θ dθ · ∫0

∞
θ̇r2ps(r)dr =

1
2

ω〈r2〉s

(23)

where we have substituted the time averaging by averaging over
θ due to the oscillatory dynamics, and 〈r2〉s ≡ ∫0

∞r2ps(r)dr.
Similarly, for j > 2

h1j ≡ 〈〈u1u̇j〉〉 ) 〈〈r cos θu̇j〉〉s = 0, h2j ) 〈〈r sin θu̇j〉〉s =

0 (24)

And for j, k > 2, after some manipulations, one can obtain

hkj ≡ 〈〈uku̇j〉〉s = 〈〈uk[(-λjuj + �jr
2)]〉〉 + 1

√V
〈〈ukηj(t)〉〉

)
-2λj

λk + λj

Dij

V
+

Dij

V
)

λk - λj

λk + λj

Dkj

V

(25)

Combining eqs 21 and 23 to 25, we have

P ) V(L12 - L21)ω〈r2〉s + 2 ∑
j,k>2

LkjDkj

λk - λj

λk + λj
(26)

Equation 26 relates the average entropy production to the
dynamic properties. To get more insight, we can approximate
〈r2〉s by rm

2 , where rm is the most probable value of r in the
stationary state. By solving ∂ps(r)/∂r|rm

) 0, one gets24

rm
2 ) (√R2 - 2Crε

2/V + R)/(-2Cr) (27)

An important result of eqs 26 and 27 is that the entropy
production P shows different scaling with the system size V
when the control parameter bypasses the HB. In the subthreshold
region where R < 0, limVf∞ Vrm

2 ) ε2/2|R| and thusP is
independent of V. At exactly the HB where R ) 0, limVf∞ Vrm

2

) [Vε2/(- 2Cr)]1/2 ∝ V1/2, the term associated with the oscillatory
mode dominates in eq 26, thus P scales as V1/2. In the
superthreshold region where R > 0 and deterministic oscillation
exists, limVf∞ Vrs

2 ) V|R|/(- Cr) ∝ V and P scales as V1.
Therefore

� ≡ lim
Vf∞

ln P
ln V

) { 0 R < 0
1/2 R ) 0
1 R > 0

(28)

We note here that eq 28 establishes a relationship between
the properties of stochastic entropy production and dynamic
bifurcations in mesoscopic reaction systems. In the macroscopic
limit, Hopf bifurcation can be clearly identified because the
system’s dynamics changes significantly when the control
parameter passes through it. But in a mesoscopic system,
molecular fluctuations smear the bifurcation and a clear
identification of the HB is questionable. For instance, it was

shown that the probability distributions in the phase space are
qualitatively the same in both sides of the deterministic HB,28

and dynamic behaviors are also nearly the same due to noise
induced oscillations.29,30 According to eq 28, the abrupt change
in the scaling exponents in the large size limit clearly identifies
the HB. It is also worthy to note here that only above the HB
there is entropy production per volume associated with the limit
cycle, that is, P/V > 0 for Vf∞, while below the threshold, the
system seems to be similar to a system in thermal equilibrium
with no permanent current in the state space and hence no
entropy production per volume, that is, P/V ) 0 for Vf∞.

5. An Example: Circadian Clock Model

In this section, we will verify the main result derived above,
eq 28, in a minimum circadian clock model. It is known that
the molecular basis of the circadian clock involves genetic
regulatory networks and internal noises often play important
roles.31,32 The model considered here incorporates the transcrip-
tion of the gene (G) involved in the biochemical clock and
transport of the mRNA (R) into the cytosol where it is translated
into clock proteins (PC) and degraded. The protein can be
degraded or transported into the nucleus (PN) where it exerts a
negative regulation on the expression of its gene. According to
these mechanisms, there are six reaction channels as listed in
Table 1, where we have used x ) (x1, x2, x3) to stand for the
concentrations of (R, PC, PN). Vs denotes the transcription rate
of mRNA, and we choose it as the control parameter. The other
parameter values are kI ) 2.0 nM, Hill coefficient n ) 4,
maximum rate of mRNA degradation Vm ) 0.3 nM h-1,
Michaelis constant related to mRNA degradation km ) 0.2 nM,
translation rate ks ) 2.0 h-1, maximum rate of protein degrada-
tion Vd ) 1.5 nM h-1, Michaelis constant related to protein
degradation kd ) 0.1 nM, transport rate k1 ) k2 ) 0.2 h-1.
According to these reaction steps, the stoichiometric matrix reads
ν1 ) (1 -1 1 0 0 0)T, ν2 ) (0 0 -1 -1 -1 1)T, and ν3 ) (0 0
0 0 1 -1)T. The Langevin eq 4 can then be readily written down,
where V can be interpreted as the effective cell volume. For
these parameters, the HB locates at Vs

HB = 0.25725, and other
system dependent parameters calculated at the HB are Cr =
-0.3474, Ci = 0.5772 and ε2 = 0.3556.

We numerically simulate the CLE by Euler methods with a
time step 0.002. After long enough transition time, 105trajec-
tories with length t ) 1 are used to calculate the medium entropy
change ∆sm via eq 9. We choose three control parameter values
Vs ) 0.25, 0.25725, 0.26, which are below, at, and above the
HB, respectively. The distributions of ∆sm for V ) 500 are
plotted in Figure 1, where strong non-Gaussian shapes are
observed. It is obvious that 〈∆sm〉 > 0 and the probability of
observing trajectories with negative ∆sm is fairly small. The
dependence of ln[p(∆sm)/p(-∆sm)] drawn as a function of ∆sm

is a straight line with slope 1 (not shown) as expected from the
detailed FT (eq 13). We note here that the distribution of ∆sm

TABLE 1: Reaction Channels Involved in the Circadian
Clock Model

reaction step transition rate description

1 G f R + G w1 ) VskI
n(kI

n + x3
n)-1 transcription

2 R f w2 ) Vmx1(km + x1)-1 R degradation
3 R f PC + R w3 ) ksx1 translation
4 PC f w4 ) Vdx2(kd + x2)-1 degradation of PC

5 PC f PN w5 ) k1x2 transport of PC into
the nucleus

6 PN f PC w6 ) k2x3 transport of PN out of
the nucleus
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shows no significant difference at either side of the HB, and
FT holds no matter the bifurcation happens or not.

In Figure 2a, the dependence of P on V is depicted. Here P
is obtained from numerical simulation of the CLE according to
eqs 9 and 14. Power-law scaling is observed in the large size
limit, and the scaling exponents evaluated in the range V ∈
[104,106]are approximately 0.02, 0.53, and 0.98 for Vs ) 0.25,
0.25725, 0.26, respectively, which are consistent with the
theoretical values 0, 0.5, and 1.0. According to eq 26, the
quantity V〈r2〉s = Vrm

2 dominates P. We have also calculated
the theoretical values of Vrm

2 according to eq 27, and its
dependences on V are shown in Figure 2b, where the same
scaling as that of P is apparent.

6. Conclusions

In summary, we have studied stochastic thermodynamics in
mesoscopic chemical oscillation systems on the basis of
chemical Langevin equations. Particular attention is paid to the
properties of trajectory dependent entropy production near the

Hopf bifurcation. By using the stochastic normal form theory,
we have obtained the theoretical expression for the entropy
production, which is a function of the system size, the oscillation
amplitude and frequency, as well as other dynamic properties.
In addition, we find that the entropy production scales asV� in
the large V limit with � changing abruptly from 0 to 1 when
the control parameter bypasses the Hopf bifurcation, suggesting
a way to characterize nonequilibrium phase transition in
mesoscopic systems with stochastic thermodynamics behaviors.
We verify our theoretical analysis by direct simulations of the
chemical Langevin equation with a stochastic circadian clock
model. Since the analysis is on the Langevin level, the results
of the present work could apply to general mesoscopic oscil-
lation reactions whether they are reversible or not.
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Figure 1. Distribution of the medium entropy change ∆sm. The shape
does not change much when the bifurcation occurs.

Figure 2. (a) Average entropy production P ≡ lim tf∞ 〈∆Sm〉/t for
different system size V. The sampling time is t ) 105. (b) Vrm

2 calculated
from eq 27 is presented as a function of V. The lines are drawn to
guide the eyes.
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