
Statistical
thermodynamics 1:
the concepts
Statistical thermodynamics provides the link between the microscopic properties of matter
and its bulk properties. Two key ideas are introduced in this chapter. The first is the Boltzmann
distribution, which is used to predict the populations of states in systems at thermal 
equilibrium. In this chapter we see its derivation in terms of the distribution of particles over
available states. The derivation leads naturally to the introduction of the partition function,
which is the central mathematical concept of this and the next chapter. We see how to 
interpret the partition function and how to calculate it in a number of simple cases. We then
see how to extract thermodynamic information from the partition function. In the final part 
of the chapter, we generalize the discussion to include systems that are composed of 
assemblies of interacting particles. Very similar equations are developed to those in the first
part of the chapter, but they are much more widely applicable.

The preceding chapters of this part of the text have shown how the energy levels 
of molecules can be calculated, determined spectroscopically, and related to their
structures. The next major step is to see how a knowledge of these energy levels can 
be used to account for the properties of matter in bulk. To do so, we now introduce
the concepts of statistical thermodynamics, the link between individual molecular
properties and bulk thermodynamic properties.

The crucial step in going from the quantum mechanics of individual molecules 
to the thermodynamics of bulk samples is to recognize that the latter deals with the 
average behaviour of large numbers of molecules. For example, the pressure of a gas
depends on the average force exerted by its molecules, and there is no need to specify
which molecules happen to be striking the wall at any instant. Nor is it necessary to
consider the fluctuations in the pressure as different numbers of molecules collide
with the wall at different moments. The fluctuations in pressure are very small com-
pared with the steady pressure: it is highly improbable that there will be a sudden lull
in the number of collisions, or a sudden surge. Fluctuations in other thermodynamic
properties also occur, but for large numbers of particles they are negligible compared
to the mean values.

This chapter introduces statistical thermodynamics in two stages. The first, the
derivation of the Boltzmann distribution for individual particles, is of restricted 
applicability, but it has the advantage of taking us directly to a result of central import-
ance in a straightforward and elementary way. We can use statistical thermodynamics
once we have deduced the Boltzmann distribution. Then (in Section 16.5) we extend
the arguments to systems composed of interacting particles.
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16.1 CONFIGURATIONS AND WEIGHTS 561

The distribution of molecular states

We consider a closed system composed of N molecules. Although the total energy is
constant at E, it is not possible to be definite about how that energy is shared between
the molecules. Collisions result in the ceaseless redistribution of energy not only 
between the molecules but also among their different modes of motion. The closest
we can come to a description of the distribution of energy is to report the population
of a state, the average number of molecules that occupy it, and to say that on average
there are ni molecules in a state of energy εi. The populations of the states remain
almost constant, but the precise identities of the molecules in each state may change
at every collision.

The problem we address in this section is the calculation of the populations of states
for any type of molecule in any mode of motion at any temperature. The only restric-
tion is that the molecules should be independent, in the sense that the total energy 
of the system is a sum of their individual energies. We are discounting (at this stage)
the possibility that in a real system a contribution to the total energy may arise from
interactions between molecules. We also adopt the principle of equal a priori prob-
abilities, the assumption that all possibilities for the distribution of energy are equally
probable. A priori means in this context loosely ‘as far as one knows’. We have no reason
to presume otherwise than that, for a collection of molecules at thermal equilibrium,
vibrational states of a certain energy, for instance, are as likely to be populated as 
rotational states of the same energy.

One very important conclusion that will emerge from the following analysis is that
the populations of states depend on a single parameter, the ‘temperature’. That is, statist-
ical thermodynamics provides a molecular justification for the concept of tempera-
ture and some insight into this crucially important quantity.

16.1 Configurations and weights

Any individual molecule may exist in states with energies ε0, ε1, . . . . We shall always
take ε0, the lowest state, as the zero of energy (ε0 = 0), and measure all other energies
relative to that state. To obtain the actual internal energy, U, we may have to add a
constant to the calculated energy of the system. For example, if we are considering the
vibrational contribution to the internal energy, then we must add the total zero-point
energy of any oscillators in the sample.

(a) Instantaneous configurations

At any instant there will be n0 molecules in the state with energy ε0, n1 with ε1, and so
on. The specification of the set of populations n0, n1, . . . in the form {n0, n1, . . . } is a
statement of the instantaneous configuration of the system. The instantaneous
configuration fluctuates with time because the populations change. We can picture a
large number of different instantaneous configurations. One, for example, might be
{N,0,0, . . . }, corresponding to every molecule being in its ground state. Another
might be {N − 2,2,0,0, . . . }, in which two molecules are in the first excited state. 
The latter configuration is intrinsically more likely to be found than the former 
because it can be achieved in more ways: {N,0,0, . . . } can be achieved in only one 
way, but {N − 2,2,0, . . . } can be achieved in 1–2N(N − 1) different ways (Fig. 16.1; see
Justification 16.1). At this stage in the argument, we are ignoring the requirement 
that the total energy of the system should be constant (the second configuration has 
a higher energy than the first). The constraint of total energy is imposed later in this 
section.

Fig. 16.1 Whereas a configuration 
{5,0,0, . . . } can be achieved in only one
way, a configuration {3,2,0, . . . } can be
achieved in the ten different ways shown
here, where the tinted blocks represent
different molecules.
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562 16 STATISTICAL THERMODYNAMICS 1: THE CONCEPTS

Comment 16.1

More formally, W is called the
multinomial coefficient (see Appendix 2).
In eqn 16.1, x!, x factorial, denotes 
x(x − 1)(x − 2) . . . 1, and by definition 
0! = 1.

3! 6! 5! 4!

N = 18Fig. 16.2 The 18 molecules shown here can
be distributed into four receptacles
(distinguished by the three vertical lines) 
in 18! different ways. However, 3! of the
selections that put three molecules in the
first receptacle are equivalent, 6! that put
six molecules into the second receptacle are
equivalent, and so on. Hence the number
of distinguishable arrangements is
18!/3!6!5!4!.

If, as a result of collisions, the system were to fluctuate between the configurations
{N,0,0, . . . } and {N − 2,2,0, . . . }, it would almost always be found in the second,
more likely state (especially if N were large). In other words, a system free to switch 
between the two configurations would show properties characteristic almost exclus-
ively of the second configuration. A general configuration {n0,n1, . . . } can be achieved
in W different ways, where W is called the weight of the configuration. The weight of
the configuration {n0,n1, . . . } is given by the expression

W = (16.1)

Equation 16.1 is a generalization of the formula W = 1–2 N(N − 1), and reduces to it for
the configuration {N − 2,2,0, . . . }.

Justification 16.1 The weight of a configuration

First, consider the weight of the configuration {N − 2,2,0,0, . . . }. One candidate for
promotion to an upper state can be selected in N ways. There are N − 1 candidates
for the second choice, so the total number of choices is N(N − 1). However, we
should not distinguish the choice (Jack, Jill) from the choice (Jill, Jack) because they
lead to the same configurations. Therefore, only half the choices lead to distinguish-
able configurations, and the total number of distinguishable choices is 1–2 N(N − 1).

Now we generalize this remark. Consider the number of ways of distributing 
N balls into bins. The first ball can be selected in N different ways, the next ball 
in N − 1 different ways for the balls remaining, and so on. Therefore, there are 
N(N − 1) . . . 1 = N! ways of selecting the balls for distribution over the bins.
However, if there are n0 balls in the bin labelled ε0, there would be n0! different ways
in which the same balls could have been chosen (Fig. 16.2). Similarly, there are 
n1! ways in which the n1 balls in the bin labelled ε1 can be chosen, and so on.
Therefore, the total number of distinguishable ways of distributing the balls so that
there are n0 in bin ε0, n1 in bin ε1, etc. regardless of the order in which the balls were
chosen is N!/n0!n1! . . . , which is the content of eqn 16.1.

Illustration 16.1 Calculating the weight of a distribution

To calculate the number of ways of distributing 20 identical objects with the 
arrangement 1, 0, 3, 5, 10, 1, we note that the configuration is {1,0,3,5,10,1} with 
N = 20; therefore the weight is

W = = 9.31 × 108

Self-test 16.1 Calculate the weight of the configuration in which 20 objects are 
distributed in the arrangement 0, 1, 5, 0, 8, 0, 3, 2, 0, 1. [4.19 × 1010]

20!

1!0!3!5!10!1!

N!

n0!n1!n2! . . .
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16.1 CONFIGURATIONS AND WEIGHTS 563

It will turn out to be more convenient to deal with the natural logarithm of the
weight, ln W, rather than with the weight itself. We shall therefore need the expression

ln W = ln = ln N! − ln(n0!n1!n2! · · · )

= ln N! − (ln n0! + ln n1! + ln n2! + · · · )

= ln N! − ∑
i   

ln ni!

where in the first line we have used ln(x/y) = ln x − ln y and in the second ln xy = ln x
+ ln y. One reason for introducing ln W is that it is easier to make approximations. In
particular, we can simplify the factorials by using Stirling’s approximation in the form

ln x! ≈ x ln x − x (16.2)

Then the approximate expression for the weight is

ln W = (N ln N − N) − ∑
i   

(ni ln ni − ni) = N ln N − ∑
i   

ni ln ni (16.3)

The final form of eqn 16.3 is derived by noting that the sum of ni is equal to N, so the
second and fourth terms in the second expression cancel.

(b) The Boltzmann distribution

We have seen that the configuration {N − 2,2,0, . . . } dominates {N,0,0, . . . }, and it
should be easy to believe that there may be other configurations that have a much
greater weight than both. We shall see, in fact, that there is a configuration with so
great a weight that it overwhelms all the rest in importance to such an extent that the
system will almost always be found in it. The properties of the system will therefore be
characteristic of that particular dominating configuration. This dominating config-
uration can be found by looking for the values of ni that lead to a maximum value of W.
Because W is a function of all the ni, we can do this search by varying the ni and look-
ing for the values that correspond to dW = 0 (just as in the search for the maximum of
any function), or equivalently a maximum value of ln W. However, there are two
difficulties with this procedure.

The first difficulty is that the only permitted configurations are those correspond-
ing to the specified, constant, total energy of the system. This requirement rules out
many configurations; {N,0,0, . . . } and {N − 2,2,0, . . . }, for instance, have different
energies, so both cannot occur in the same isolated system. It follows that, in looking
for the configuration with the greatest weight, we must ensure that the configuration
also satisfies the condition

Constant total energy: ∑
i   

ni εi = E (16.4)

where E is the total energy of the system.
The second constraint is that, because the total number of molecules present is 

also fixed (at N), we cannot arbitrarily vary all the populations simultaneously. Thus, 
increasing the population of one state by 1 demands that the population of another
state must be reduced by 1. Therefore, the search for the maximum value of W is also
subject to the condition

Constant total number of molecules: ∑
i   

ni = N (16.5)

We show in Further information 16.1 that the populations in the configuration of
greatest weight, subject to the two constraints in eqns 16.4 and 16.5, depend on the 
energy of the state according to the Boltzmann distribution:

N!

n0!n1!n2! . . .

Comment 16.2

A more accurate form of Stirling’s
approximation is

x! ≈ (2π)1/2xx+ 1–2 e−x

and is in error by less than 1 per cent
when x is greater than about 10. We deal
with far larger values of x, and the
simplified version in eqn 16.2 is
adequate.
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564 16 STATISTICAL THERMODYNAMICS 1: THE CONCEPTS

= (16.6a)

where ε0 ≤ ε1 ≤ ε2 . . . . Equation 16.6a is the justification of the remark that a single 
parameter, here denoted β, determines the most probable populations of the states of
the system. We shall see in Section 16.3b that

β = (16.6b)

where T is the thermodynamic temperature and k is Boltzmann’s constant. In other
words, the thermodynamic temperature is the unique parameter that governs the most
probable populations of states of a system at thermal equilibrium. In Further information
16.3, moreover, we see that β is a more natural measure of temperature than T itself.

16.2 The molecular partition function

From now on we write the Boltzmann distribution as

pi = (16.7)

where pi is the fraction of molecules in the state i, pi = ni /N, and q is the molecular
partition function:

q = ∑
i   

e−βεi [16.8]

The sum in q is sometimes expressed slightly differently. It may happen that several states
have the same energy, and so give the same contribution to the sum. If, for example,
gi states have the same energy εi (so the level is gi-fold degenerate), we could write

q = ∑
levels i

gi e
−βεi (16.9)

where the sum is now over energy levels (sets of states with the same energy), not 
individual states.

Example 16.1 Writing a partition function

Write an expression for the partition function of a linear molecule (such as HCl)
treated as a rigid rotor.

Method To use eqn 16.9 we need to know (a) the energies of the levels, (b) the 
degeneracies, the number of states that belong to each level. Whenever calculating
a partition function, the energies of the levels are expressed relative to 0 for the state
of lowest energy. The energy levels of a rigid linear rotor were derived in Section 13.5c.

Answer From eqn 13.31, the energy levels of a linear rotor are hcBJ( J + 1), with 
J = 0, 1, 2, . . . . The state of lowest energy has zero energy, so no adjustment need
be made to the energies given by this expression. Each level consists of 2J + 1
degenerate states. Therefore,

gJ εJ

q =
∞

∑
J=0

(2J + 1)e−βhcBJ(J+1)

The sum can be evaluated numerically by supplying the value of B (from spectro-
scopy or calculation) and the temperature. For reasons explained in Section 17.2b,

5 6 75 6 7
e−βεi

q

1

kT

e−βεi

∑
i   

e−βεi

ni

N
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16.2 THE MOLECULAR PARTITION FUNCTION 565
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Fig. 16.3 The equally spaced infinite array of
energy levels used in the calculation of the
partition function. A harmonic oscillator
has the same spectrum of levels.

0 5 10

10

5

0

q

kT/�

Fig. 16.4 The partition function for the
system shown in Fig.16.3 (a harmonic
oscillator) as a function of temperature.

Exploration Plot the partition
function of a harmonic oscillator

against temperature for several values of
the energy separation ε. How does q vary
with temperature when T is high, in the
sense that kT >> ε (or βε << 1)?

Comment 16.3

The sum of the infinite series S = 1 + x +
x2 + · · · is obtained by multiplying both
sides by x, which gives xS = x + x2 + x3

+ · · · = S − 1 and hence S = 1/(1 − x).

this expression applies only to unsymmetrical linear rotors (for instance, HCl, 
not CO2).

Self-test 16.2 Write the partition function for a two-level system, the lower state
(at energy 0) being nondegenerate, and the upper state (at an energy ε) doubly 
degenerate. [q = 1 + 2e−βε]

(a) An interpretation of the partition function

Some insight into the significance of a partition function can be obtained by con-
sidering how q depends on the temperature. When T is close to zero, the parameter 
β = 1/kT is close to infinity. Then every term except one in the sum defining q is zero
because each one has the form e−x with x → ∞. The exception is the term with ε0 ≡ 0
(or the g0 terms at zero energy if the ground state is g0-fold degenerate), because then
ε0 /kT ≡ 0 whatever the temperature, including zero. As there is only one surviving
term when T = 0, and its value is g0, it follows that

lim
T→0

q = g0 (16.10)

That is, at T = 0, the partition function is equal to the degeneracy of the ground state.
Now consider the case when T is so high that for each term in the sum εj/kT ≈ 0.

Because e−x = 1 when x = 0, each term in the sum now contributes 1. It follows that the
sum is equal to the number of molecular states, which in general is infinite:

lim
T→∞

q = ∞ (16.11)

In some idealized cases, the molecule may have only a finite number of states; then the
upper limit of q is equal to the number of states. For example, if we were considering
only the spin energy levels of a radical in a magnetic field, then there would be only
two states (ms = ± 1–2 ). The partition function for such a system can therefore be 
expected to rise towards 2 as T is increased towards infinity.

We see that the molecular partition function gives an indication of the number of states
that are thermally accessible to a molecule at the temperature of the system. At T = 0, only
the ground level is accessible and q = g0. At very high temperatures, virtually all states
are accessible, and q is correspondingly large.

Example 16.2 Evaluating the partition function for a uniform ladder of energy levels

Evaluate the partition function for a molecule with an infinite number of equally
spaced nondegenerate energy levels (Fig. 16.3). These levels can be thought of as the
vibrational energy levels of a diatomic molecule in the harmonic approximation.

Method We expect the partition function to increase from 1 at T = 0 and approach
infinity as T to ∞. To evaluate eqn 16.8 explicitly, note that

1 + x + x2 + · · · =

Answer If the separation of neighbouring levels is ε, the partition function is

q = 1 + e−βε + e−2βε + · · · = 1 + e−βε + (e−βε)2 + · · · =

This expression is plotted in Fig. 16.4: notice that, as anticipated, q rises from 1 to
infinity as the temperature is raised.

1

1 − e−βε

1

1 − x
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q
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q
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Fig. 16.5 The partition function for a two-level system as a function of temperature. The two
graphs differ in the scale of the temperature axis to show the approach to 1 as T → 0 and the
slow approach to 2 as T → ∞.

Exploration Consider a three-level system with levels 0, ε, and 2ε. Plot the partition
function against kT/ε.

Low
temperature

High
temperature

�� 3.0 1.0 0.7 0.3

q: 1.05 1.58 1.99 3.86

5

Fig. 16.6 The populations of the energy
levels of the system shown in Fig.16.3 
at different temperatures, and the
corresponding values of the partition
function calculated in Example 16.2. 
Note that β = 1/kT.

Exploration To visualize the content
of Fig. 16.6 in a different way, plot

the functions p0, p1, p2, and p3 against kT/ε.

Self-test 16.3 Find and plot an expression for the partition function of a system
with one state at zero energy and another state at the energy ε.

[q = 1 + e−βε, Fig. 16.5]

It follows from eqn 16.8 and the expression for q derived in Example 16.2 for a uni-
form ladder of states of spacing ε,

q = (16.12)

that the fraction of molecules in the state with energy εi is

pi = = (1 − e−βε)e−βεi (16.13)

Figure 16.6 shows how pi varies with temperature. At very low temperatures, where q
is close to 1, only the lowest state is significantly populated. As the temperature is
raised, the population breaks out of the lowest state, and the upper states become 
progressively more highly populated. At the same time, the partition function rises
from 1 and its value gives an indication of the range of states populated. The name
‘partition function’ reflects the sense in which q measures how the total number of
molecules is distributed—partitioned—over the available states.

The corresponding expressions for a two-level system derived in Self-test 16.3 are

p0 = p1 = (16.14)

These functions are plotted in Fig. 16.7. Notice how the populations tend towards
equality (p0 = 1–2 , p1 = 1–2 ) as T → ∞. A common error is to suppose that all the molecules
in the system will be found in the upper energy state when T = ∞; however, we see

e−βε

1 + e−βε

1

1 + e−βε

e−βεi

q

1

1 − e−βε
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0
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p0

p1

kT/ kT/� �

Fig. 16.7 The fraction of populations of the two states of a two-level system as a function of
temperature (eqn 16.14). Note that, as the temperature approaches infinity, the populations
of the two states become equal (and the fractions both approach 0.5).

Exploration Consider a three-level system with levels 0, ε, and 2ε. Plot the functions p0,
p1, and p2 against kT/ε.

from eqn 16.14 that, as T → ∞, the populations of states become equal. The same 
conclusion is true of multi-level systems too: as T → ∞, all states become equally 
populated.

Example 16.3 Using the partition function to calculate a population

Calculate the proportion of I2 molecules in their ground, first excited, and second
excited vibrational states at 25°C. The vibrational wavenumber is 214.6 cm−1.

Method Vibrational energy levels have a constant separation (in the harmonic 
approximation, Section 13.9), so the partition function is given by eqn 16.12 and
the populations by eqn 16.13. To use the latter equation, we identify the index 
i with the quantum number v, and calculate pv for v = 0, 1, and 2. At 298.15 K, 
kT/hc = 207.226 cm−1.

Answer First, we note that

βε = = = 1.036

Then it follows from eqn 16.13 that the populations are

pv = (1 − e−βε)e−vβε = 0.645e−1.036v

Therefore, p0 = 0.645, p1 = 0.229, p2 = 0.081. The I-I bond is not stiff and the atoms
are heavy: as a result, the vibrational energy separations are small and at room 
temperature several vibrational levels are significantly populated. The value of the
partition function, q = 1.55, reflects this small but significant spread of populations.

Self-test 16.4 At what temperature would the v = 1 level of I2 have (a) half the popu-
lation of the ground state, (b) the same population as the ground state?

[(a) 445 K, (b) infinite]

214.6 cm−1

207.226 cm−1

hc#

kT
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Magnetic
field on

Magnetic
field off

En
tr

op
y,

S

A

BC

Temperature, T0

Fig. 16.8 The technique of adiabatic
demagnetization is used to attain very low
temperatures. The upper curve shows that
variation of the entropy of a paramagnetic
system in the absence of an applied field.
The lower curve shows that variation in
entropy when a field is applied and has
made the electron magnets more orderly.
The isothermal magnetization step is from
A to B; the adiabatic demagnetization step
(at constant entropy) is from B to C.

It follows from our discussion of the partition function that to reach low tempera-
tures it is necessary to devise strategies that populate the low energy levels of a sys-
tem at the expense of high energy levels. Common methods used to reach very low 
temperatures include optical trapping and adiabatic demagnetization. In optical
trapping, atoms in the gas phase are cooled by inelastic collisions with photons from
intense laser beams, which act as walls of a very small container. Adiabatic demagne-
tization is based on the fact that, in the absence of a magnetic field, the unpaired elec-
trons of a paramagnetic material are orientated at random, but in the presence of a
magnetic field there are more β spins (ms = − 1–2) than α spins (ms = + 1–2). In thermo-
dynamic terms, the application of a magnetic field lowers the entropy of a sample and,
at a given temperature, the entropy of a sample is lower when the field is on than when
it is off. Even lower temperatures can be reached if nuclear spins (which also behave
like small magnets) are used instead of electron spins in the technique of adiabatic
nuclear demagnetization, which has been used to cool a sample of silver to about 
280 pK. In certain circumstances it is possible to achieve negative temperatures, and
the equations derived later in this chapter can be extended to T < 0 with interesting
consequences (see Further information 16.3).

Illustration 16.2 Cooling a sample by adiabatic demagnetization

Consider the situation summarized by Fig. 16.8. A sample of paramagnetic 
material, such as a d- or f-metal complex with several unpaired electrons, is cooled
to about 1 K by using helium. The sample is then exposed to a strong magnetic 
field while it is surrounded by helium, which provides thermal contact with the
cold reservoir. This magnetization step is isothermal, and energy leaves the system
as heat while the electron spins adopt the lower energy state (AB in the illustra-
tion). Thermal contact between the sample and the surroundings is now broken 
by pumping away the helium and the magnetic field is reduced to zero. This 
step is adiabatic and effectively reversible, so the state of the sample changes from
B to C. At the end of this step the sample is the same as it was at A except that it 
now has a lower entropy. That lower entropy in the absence of a magnetic field cor-
responds to a lower temperature. That is, adiabatic demagnetization has cooled 
the sample.

(b) Approximations and factorizations

In general, exact analytical expressions for partition functions cannot be obtained.
However, closed approximate expressions can often be found and prove to be very
important in a number of chemical and biochemical applications (Impact 16.1). For
instance, the expression for the partition function for a particle of mass m free to move
in a one-dimensional container of length X can be evaluated by making use of the fact
that the separation of energy levels is very small and that large numbers of states are
accessible at normal temperatures. As shown in the Justification below, in this case

qX = 
1/2

X (16.15)

This expression shows that the partition function for translational motion increases
with the length of the box and the mass of the particle, for in each case the separation
of the energy levels becomes smaller and more levels become thermally accessible. For
a given mass and length of the box, the partition function also increases with increas-
ing temperature (decreasing β), because more states become accessible.

D
F

2πm

h2β

A
C
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16.2 THE MOLECULAR PARTITION FUNCTION 569

Justification 16.2 The partition function for a particle in a one-dimensional box

The energy levels of a molecule of mass m in a container of length X are given by 
eqn 9.4a with L = X:

En = n = 1, 2, . . .

The lowest level (n = 1) has energy h2/8mX 2, so the energies relative to that level are

εn = (n2 − 1)ε ε = h2/8mX 2

The sum to evaluate is therefore

qX = 
∞

∑
n=1

e−(n2−1)βε

The translational energy levels are very close together in a container the size of a typ-
ical laboratory vessel; therefore, the sum can be approximated by an integral:

qX = �
∞

1

e−(n2−1)βεdn ≈ �
∞

0

e−n2βεdn

The extension of the lower limit to n = 0 and the replacement of n2 − 1 by n2 intro-
duces negligible error but turns the integral into standard form. We make the
substitution x 2 = n2βε, implying dn = dx /(βε)1/2, and therefore that

π1/2/2

qX =
1/2

�
∞

0

e−x2
dx =

1/2

=
1/2

X

Another useful feature of partition functions is used to derive expressions when the
energy of a molecule arises from several different, independent sources: if the energy
is a sum of contributions from independent modes of motion, then the partition
function is a product of partition functions for each mode of motion. For instance,
suppose the molecule we are considering is free to move in three dimensions. We take
the length of the container in the y-direction to be Y and that in the z-direction to be
Z. The total energy of a molecule ε is the sum of its translational energies in all three
directions:

εn1n2n3
= εn1

(X) + εn2

(Y) + εn3

(Z) (16.16)

where n1, n2, and n3 are the quantum numbers for motion in the x-, y-, and z-directions,
respectively. Therefore, because ea+b+c = eaebec, the partition function factorizes as 
follows:

q = ∑
all n

e−βε n1

(X)−βε n2

(Y)−βε n3

(Z ) = ∑
all n

e−βε n1

(X)
e−βε n2

(Y)
e−βε n3

(Z)

= ∑∑
n1

e−βε n1

(X) ∑
n2

e−βε n2

(Y) ∑
n3

e−βε n3

(Z)
(16.17)

= qX qY qZ

It is generally true that, if the energy of a molecule can be written as the sum of inde-
pendent terms, then the partition function is the corresponding product of individual
contributions.
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Equation 16.15 gives the partition function for translational motion in the x-
direction. The only change for the other two directions is to replace the length X by the
lengths Y or Z. Hence the partition function for motion in three dimensions is

q =
3/2

XYZ (16.18)

The product of lengths XYZ is the volume, V, of the container, so we can write

q = Λ = h

1/2

= (16.19)

The quantity Λ has the dimensions of length and is called the thermal wavelength
(sometimes the thermal de Broglie wavelength) of the molecule. The thermal wave-
length decreases with increasing mass and temperature. As in the one-dimensional
case, the partition function increases with the mass of the particle (as m3/2) and the
volume of the container (as V); for a given mass and volume, the partition function
increases with temperature (as T3/2).

Illustration 16.3 Calculating the translational partition function

To calculate the translational partition function of an H2 molecule confined to a
100 cm3 vessel at 25°C we use m = 2.016 u; then

Λ =

= 7.12 × 10−11 m

where we have used 1 J = 1 kg m2 s−2. Therefore,

q = = 2.77 × 1026

About 1026 quantum states are thermally accessible, even at room temperature and
for this light molecule. Many states are occupied if the thermal wavelength (which
in this case is 71.2 pm) is small compared with the linear dimensions of the container.

Self-test 16.5 Calculate the translational partition function for a D2 molecule
under the same conditions. [q = 7.8 × 1026, 23/2 times larger]

The validity of the approximations that led to eqn 16.19 can be expressed in terms
of the average separation of the particles in the container, d. We do not have to worry
about the role of the Pauli principle on the occupation of states if there are many states
available for each molecule. Because q is the total number of accessible states, the
average number of states per molecule is q/N. For this quantity to be large, we require
V/NΛ3 >> 1. However, V/N is the volume occupied by a single particle, and there-
fore the average separation of the particles is d = (V/N)1/3. The condition for there
being many states available per molecule is therefore d3/Λ3 >> 1, and therefore d >> Λ.
That is, for eqn 16.19 to be valid, the average separation of the particles must be much
greater than their thermal wavelength. For H2 molecules at 1 bar and 298 K, the aver-
age separation is 3 nm, which is significantly larger than their thermal wavelength
(71.2 pm, Illustration 16.3).

1.00 × 10−4 m3

(7.12 × 10−11 m)3

6.626 × 10−34 J s 

{2π × (2.016 × 1.6605 × 10−27 kg) × (1.38 × 10−23 J K−1) × (298 K)}1/2

h

(2πmkT)1/2

D
F

β
2πm

A
C

V

Λ3
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h2β
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IMPACT ON BIOCHEMISTRY

I16.1 The helix–coil transition in polypeptides

Proteins are polymers that attain well defined three-dimensional structures both in
solution and in biological cells. They are polypeptides formed from different amino
acids strung together by the peptide link, -CONH-. Hydrogen bonds between amino
acids of a polypeptide give rise to stable helical or sheet structures, which may collapse
into a random coil when certain conditions are changed. The unwinding of a helix
into a random coil is a cooperative transition, in which the polymer becomes increas-
ingly more susceptible to structural changes once the process has begun. We examine
here a model grounded in the principles of statistical thermodynamics that accounts
for the cooperativity of the helix–coil transition in polypeptides.

To calculate the fraction of polypeptide molecules present as helix or coil we need
to set up the partition function for the various states of the molecule. To illustrate the
approach, consider a short polypeptide with four amino acid residues, each labelled h
if it contributes to a helical region and c if it contributes to a random coil region. We
suppose that conformations hhhh and cccc contribute terms q0 and q4, respectively, to
the partition function q. Then we assume that each of the four conformations with
one c amino acid (such as hchh) contributes q1. Similarly, each of the six states with
two c amino acids contributes a term q2, and each of the four states with three c amino
acids contributes a term q3. The partition function is then

q = q0 + 4q1 + 6q2 + 4q3 + q4 = q0 1 + + + +

We shall now suppose that each partition function differs from q0 only by the energy
of each conformation relative to hhhh, and write

= e−(εi−ε0)/kT

Next, we suppose that the conformational transformations are non-cooperative, in
the sense that the energy associated with changing one h amino acid into one c amino
acid has the same value regardless of how many h or c amino acid residues are in the
reactant or product state and regardless of where in the chain the conversion occurs.
That is, we suppose that the difference in energy between cih4−i and ci+1h3−i has the
same value γ for all i. This assumption implies that εi − ε0 = iγ and therefore that

q = q0(1 + 4s + 6s2 + 4s3 + s4) s = e−Γ/RT (16.20)

where Γ = NAγ and s is called the stability parameter. The term in parentheses has the
form of the binomial expansion of (1 + s)4.

=
4

∑
i=0

C(4,i)si with C(4,i) = (16.21)

which we interpret as the number of ways in which a state with i c amino acids can be
formed.

The extension of this treatment to take into account a longer chain of residues is
now straightforward: we simply replace the upper limit of 4 in the sum by n:

=
n

∑
i=0

C(n,i)si
(16.22)

A cooperative transformation is more difficult to accommodate, and depends on
building a model of how neighbours facilitate each other’s conformational change. In

q

q0
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(4 − i)!i!
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The binomial expansion of (1 + x)n is

(1 + x)n =
n

∑
i=0

C(n,i)xi,

with C(n,i) =
n!

(n − i)!i!
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the simple zipper model, conversion from h to c is allowed only if a residue adjacent to
the one undergoing the conversion is already a c residue. Thus, the zipper model allows
a transition of the type . . .hhhch. . . → . . .hhhcc. . . , but not a transition of the type
. . .hhhch. . . → . . .hchch. . . . The only exception to this rule is, of course, the very 
first conversion from h to c in a fully helical chain. Cooperativity is included in the 
zipper model by assuming that the first conversion from h to c, called the nucleation
step, is less favourable than the remaining conversions and replacing s for that step by
σs, where σ << 1. Each subsequent step is called a propagation step and has a stability
parameter s. In Problem 16.24, you are invited to show that the partition function is:

q = 1 +
n

∑
i=1

Z(n,i)σsi
(16.23)

where Z(n,i) is the number of ways in which a state with a number i of c amino acids
can be formed under the strictures of the zipper model. Because Z(n,i) = n − i + 1 (see
Problem 16.24),

q = 1 + σ(n + 1)
n

∑
i=1

si − σ
n

∑
i=1

isi
(16.24)

After evaluating both geometric series by using the two relations
n

∑
i=1

xi =
n

∑
i=1

ixi = [nxn+1 − (n + 1)xn + 1]

we find

q = 1 +

The fraction pi = qi /q of molecules that has a number i of c amino acids is pi =
[(n − i + 1)σsi]/q and the mean value of i is then �i� = ∑iipi. Figure 16.9 shows the dis-
tribution of pi for various values of s with σ = 5.0 × 10−3. We see that most of the
polypeptide chains remain largely helical when s < 1 and that most of the chains exist
largely as random coils when s > 1. When s = 1, there is a more widespread distribu-
tion of length of random coil segments. Because the degree of conversion, θ, of a
polypeptide with n amino acids to a random coil is defined as θ = �i�/n, it is possible to
show (see Problem 16.24) that

θ = ln q (16.25)

This is a general result that applies to any model of the helix–coil transition in which
the partition function q is expressed as a function of the stability parameter s.

A more sophisticated model for the helix–coil transition must allow for helical seg-
ments to form in different regions of a long polypeptide chain, with the nascent helices
being separated by shrinking coil segments. Calculations based on this more complete
Zimm–Bragg model give

θ = 1–2 1 + (16.26)

Figure 16.10 shows plots of θ against s for several values of σ. The curves show the 
sigmoidal shape characteristic of cooperative behaviour. There is a sudden surge of
transition to a random coil as s passes through 1 and, the smaller the parameter σ, the
greater the sharpness and hence the greater the cooperativity of the transition. That is,
the harder it is to get coil formation started, the sharper the transition from helix to coil.

D
F

(s − 1) + 2σ
[(s − 1)2 + 4sσ]1/2
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C

d

d(ln s)
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Fig. 16.9 The distribution of pi, the fraction
of molecules that has a number i of c amino
acids for s = 0.8 (�i� = 1.1), 1.0 (�i� = 3.8),
and 1.5 (�i� = 15.9), with σ = 5.0 × 10−3.
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Fig. 16.10 Plots of the degree of conversion
θ, against s for several values of σ. The
curves show the sigmoidal shape
characteristics of cooperative behaviour.
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Fig. 16.11 The total energy of a two-level 
system (expressed as a multiple of Nε)
as a function of temperature, on two
temperature scales. The graph at the top
shows the slow rise away from zero energy
at low temperatures; the slope of the graph
at T = 0 is 0 (that is, the heat capacity is 
zero at T = 0). The graph below shows the
slow rise to 0.5 as T → ∞ as both states
become equally populated (see Fig. 16.7).

Exploration Draw graphs similar to
those in Fig. 16.11 for a three-level

system with levels 0, ε, and 2ε.

The internal energy and the entropy

The importance of the molecular partition function is that it contains all the informa-
tion needed to calculate the thermodynamic properties of a system of independent
particles. In this respect, q plays a role in statistical thermodynamics very similar 
to that played by the wavefunction in quantum mechanics: q is a kind of thermal
wavefunction.

16.3 The internal energy

We shall begin to unfold the importance of q by showing how to derive an expression
for the internal energy of the system.

(a) The relation between U and q

The total energy of the system relative to the energy of the lowest state is

E = ∑
i

niεi (16.27)

Because the most probable configuration is so strongly dominating, we can use the
Boltzmann distribution for the populations and write

E = ∑
i

εie
−βεi (16.28)

To manipulate this expression into a form involving only q we note that

εi e
−βεi = − e−βεi

It follows that

E = − ∑
i

e−βεi = − ∑
i

e−βεi = − (16.29)

Illustration 16.4 The energy of a two-level system

From the two-level partition function q = 1 + e−βε, we can deduce that the total 
energy of N two-level systems is

E = − (1 + e−βε) = =

This function is plotted in Fig. 16.11. Notice how the energy is zero at T = 0, when
only the lower state (at the zero of energy) is occupied, and rises to 1–2 Nε as T → ∞,
when the two levels become equally populated.

There are several points in relation to eqn 16.29 that need to be made. Because 
ε0 = 0 (remember that we measure all energies from the lowest available level), 
E should be interpreted as the value of the internal energy relative to its value at 
T = 0, U(0). Therefore, to obtain the conventional internal energy U, we must add the 
internal energy at T = 0:

U = U(0) + E (16.30)
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Secondly, because the partition function may depend on variables other than the 
temperature (for example, the volume), the derivative with respect to β in eqn 16.29
is actually a partial derivative with these other variables held constant. The complete
expression relating the molecular partition function to the thermodynamic internal
energy of a system of independent molecules is therefore

U = U(0) −
V

(16.31a)

An equivalent form is obtained by noting that dx /x = d ln x:

U = U(0) − N
V

(16.31b)

These two equations confirm that we need know only the partition function (as a
function of temperature) to calculate the internal energy relative to its value at T = 0.

(b) The value of β

We now confirm that the parameter β, which we have anticipated is equal to 1/kT,
does indeed have that value. To do so, we compare the equipartition expression for
the internal energy of a monatomic perfect gas, which from Molecular interpretation
2.2 we know to be

U = U(0) + 3–2 nRT (16.32a)

with the value calculated from the translational partition function (see the following
Justification), which is

U = U(0) + (16.32b)

It follows by comparing these two expressions that

β = = = (16.33)

(We have used N = nNA, where n is the amount of gas molecules, NA is Avogadro’s
constant, and R = NAk.) Although we have proved that β = 1/kT by examining a very
specific example, the translational motion of a perfect monatomic gas, the result is
general (see Example 17.1 and Further reading).

Justification 16.3 The internal energy of a perfect gas

To use eqn 16.31, we introduce the translational partition function from eqn 16.19:

V

=
V

= V = −3

Then we note from the formula for Λ in eqn 16.19 that

= = × =

and so obtain
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Then, by eqn 16.31a,

U = U(0) − N − = U(0) +

as in eqn 16.32b.

16.4 The statistical entropy

If it is true that the partition function contains all thermodynamic information, then
it must be possible to use it to calculate the entropy as well as the internal energy.
Because we know (from Section 3.2) that entropy is related to the dispersal of energy
and that the partition function is a measure of the number of thermally accessible
states, we can be confident that the two are indeed related.

We shall develop the relation between the entropy and the partition function in two
stages. In Further information 16.2, we justify one of the most celebrated equations in
statistical thermodynamics, the Boltzmann formula for the entropy:

S = k ln W [16.34]

In this expression, W is the weight of the most probable configuration of the system.
In the second stage, we express W in terms of the partition function.

The statistical entropy behaves in exactly the same way as the thermodynamic 
entropy. Thus, as the temperature is lowered, the value of W, and hence of S, decreases
because fewer configurations are compatible with the total energy. In the limit T → 0,
W = 1, so ln W = 0, because only one configuration (every molecule in the lowest level)
is compatible with E = 0. It follows that S → 0 as T → 0, which is compatible with the
Third Law of thermodynamics, that the entropies of all perfect crystals approach the
same value as T → 0 (Section 3.4).

Now we relate the Boltzmann formula for the entropy to the partition function. 
To do so, we substitute the expression for ln W given in eqn 16.3 into eqn 16.34 and,
as shown in the Justification below, obtain

S = + Nk ln q (16.35)

Justification 16.4 The statistical entropy

The first stage is to use eqn 16.3 (ln W = N ln N − ∑i ni ln ni) and N = ∑ini to write

S = k∑
i    

(ni ln N − ni ln ni) = −k∑
i    

ni ln = −Nk∑
i

pi ln pi

where pi = ni /N, the fraction of molecules in state i. It follows from eqn 16.7 that

ln pi = −βεi − ln q

and therefore that

S = −Nk(−β∑
i

piεi − ∑
i

pi ln q) = kβ{U − U(0)} + Nk ln q

We have used the fact that the sum over the pi is equal to 1 and that (from eqns 16.27
and 16.30)

N ∑
i

piεi = ∑
i    

Npiεi = ∑
i    

Npiεi = ∑
i    

niεi = E = U − U(0)

We have already established that β = 1/kT, so eqn 16.35 immediately follows.
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Fig. 16.12 The temperature variation of the
entropy of the system shown in Fig. 16.3
(expressed here as a multiple of Nk). The
entropy approaches zero as T → 0, and
increases without limit as T → ∞.

Exploration Plot the function dS/dT,
the temperature coefficient of the

entropy, against kT/ε. Is there a
temperature at which this coefficient passes
through a maximum? If you find a
maximum, explain its physical origins.
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Fig. 16.13 The temperature variation of the
entropy of a two-level system (expressed as
a multiple of Nk). As T → ∞, the two states
become equally populated and S
approaches Nk ln 2.

Exploration Draw graphs similar to
those in Fig. 16.13 for a three-level

system with levels 0, ε, and 2ε.

Example 16.4 Calculating the entropy of a collection of oscillators

Calculate the entropy of a collection of N independent harmonic oscillators, and
evaluate it using vibrational data for I2 vapour at 25°C (Example 16.3).

Method To use eqn 16.35, we use the partition function for a molecule with evenly
spaced vibrational energy levels, eqn 16.12. With the partition function available,
the internal energy can be found by differentiation (as in eqn 16.31a), and the two
expressions then combined to give S.

Answer The molecular partition function as given in eqn 16.12 is

q =

The internal energy is obtained by using eqn 16.31a:

U − U(0) = −
V

= =

The entropy is therefore

S = Nk − ln(1 − eβε)

This function is plotted in Fig. 16.12. For I2 at 25°C, βε = 1.036 (Example 16.3), so
Sm = 8.38 J K−1 mol−1.

Self-test 16.6 Evaluate the molar entropy of N two-level systems and plot the 
resulting expression. What is the entropy when the two states are equally thermally
accessible?

[S/Nk = βε /(1 + eβε) + ln(1 + e−βε); see Fig. 16.13; S = Nk ln 2]
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The canonical partition function

In this section we see how to generalize our conclusions to include systems composed
of interacting molecules. We shall also see how to obtain the molecular partition func-
tion from the more general form of the partition function developed here.

16.5 The canonical ensemble

The crucial new concept we need when treating systems of interacting particles is the
‘ensemble’. Like so many scientific terms, the term has basically its normal meaning of
‘collection’, but it has been sharpened and refined into a precise significance.

(a) The concept of ensemble

To set up an ensemble, we take a closed system of specified volume, composition, and
temperature, and think of it as replicated Ñ times (Fig. 16.14). All the identical closed
systems are regarded as being in thermal contact with one another, so they can exchange
energy. The total energy of all the systems is L and, because they are in thermal 
equilibrium with one another, they all have the same temperature, T. This imaginary 
collection of replications of the actual system with a common temperature is called
the canonical ensemble.

The word ‘canon’ means ‘according to a rule’. There are two other important 
ensembles. In the microcanonical ensemble the condition of constant temperature is
replaced by the requirement that all the systems should have exactly the same energy:
each system is individually isolated. In the grand canonical ensemble the volume and
temperature of each system is the same, but they are open, which means that matter
can be imagined as able to pass between the systems; the composition of each one may
fluctuate, but now the chemical potential is the same in each system:

Microcanonical ensemble: N, V, E common

Canonical ensemble: N, V, T common

Grand canonical ensemble: µ, V, T common

The important point about an ensemble is that it is a collection of imaginary replica-
tions of the system, so we are free to let the number of members be as large as we like;
when appropriate, we can let Ñ become infinite. The number of members of the 
ensemble in a state with energy Ei is denoted ñi, and we can speak of the configuration
of the ensemble (by analogy with the configuration of the system used in Section 16.1)
and its weight, M. Note that Ñ is unrelated to N, the number of molecules in the 
actual system; Ñ is the number of imaginary replications of that system.

(b) Dominating configurations

Just as in Section 16.1, some of the configurations of the ensemble will be very much
more probable than others. For instance, it is very unlikely that the whole of the total
energy, L, will accumulate in one system. By analogy with the earlier discussion, we
can anticipate that there will be a dominating configuration, and that we can evaluate
the thermodynamic properties by taking the average over the ensemble using that 
single, most probable, configuration. In the thermodynamic limit of Ñ → ∞, this
dominating configuration is overwhelmingly the most probable, and it dominates the
properties of the system virtually completely.

The quantitative discussion follows the argument in Section 16.1 with the modifica-
tion that N and ni are replaced by Ñ and ñi. The weight of a configuration {ñ0,ñ1, . . . } is

N,
V,
T

N,
V,
T

20

N,
V,
T

N,
V,
T

N,
V,
T

N,
V,
T

N,
V,
T

1 2 3

Fig. 16.14 A representation of the canonical
ensemble, in this case for Ñ = 20. The
individual replications of the actual system
all have the same composition and volume.
They are all in mutual thermal contact, and
so all have the same temperature. Energy
may be transferred between them as heat,
and so they do not all have the same
energy. The total energy L of all 20
replications is a constant because the
ensemble is isolated overall.
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M = (16.36)

The configuration of greatest weight, subject to the constraints that the total energy of
the ensemble is constant at L and that the total number of members is fixed at Ñ, is
given by the canonical distribution:

= Q = ∑
i

e−βEi (16.37)

The quantity Q, which is a function of the temperature, is called the canonical parti-
tion function.

(c) Fluctuations from the most probable distribution

The canonical distribution in eqn 16.37 is only apparently an exponentially decreas-
ing function of the energy of the system. We must appreciate that eqn 16.37 gives 
the probability of occurrence of members in a single state i of the entire system of 
energy Ei. There may in fact be numerous states with almost identical energies. For 
example, in a gas the identities of the molecules moving slowly or quickly can change
without necessarily affecting the total energy. The density of states, the number of
states in an energy range divided by the width of the range (Fig. 16.15), is a very
sharply increasing function of energy. It follows that the probability of a member of
an ensemble having a specified energy (as distinct from being in a specified state) is
given by eqn 16.37, a sharply decreasing function, multiplied by a sharply increasing
function (Fig. 16.16). Therefore, the overall distribution is a sharply peaked function.
We conclude that most members of the ensemble have an energy very close to the
mean value.

16.6 The thermodynamic information in the partition function

Like the molecular partition function, the canonical partition function carries all the
thermodynamic information about a system. However, Q is more general than q
because it does not assume that the molecules are independent. We can therefore use
Q to discuss the properties of condensed phases and real gases where molecular inter-
actions are important.

(a) The internal energy

If the total energy of the ensemble is L, and there are Ñ members, the average energy
of a member is E = L/Ñ. We use this quantity to calculate the internal energy of the sys-
tem in the limit of Ñ (and L) approaching infinity:

U = U(0) + E = U(0) + L/Ñ as Ñ → ∞ (16.38)

The fraction, "i, of members of the ensemble in a state i with energy Ei is given by the
analogue of eqn 16.7 as

"i = (16.39)

It follows that the internal energy is given by

U = U(0) + ∑
i

"i Ei = U(0) + ∑
i

Ei e
−βEi (16.40)

1

Q

e−βEi

Q

e−βEi

Q

ñi

Ñ

Ñ!

ñ0!ñ1! . . .

En
er

gy

Number of
states

Width of
range

Fig. 16.15 The energy density of states is the
number of states in an energy range divided
by the width of the range.

Probability
of state

Number
of states

Probability
of energy

Energy

Fig. 16.16 To construct the form of the
distribution of members of the canonical
ensemble in terms of their energies, we
multiply the probability that any one is in a
state of given energy, eqn 16.39, by the
number of states corresponding to that
energy (a steeply rising function). The
product is a sharply peaked function at the
mean energy, which shows that almost all
the members of the ensemble have that
energy.
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By the same argument that led to eqn 16.31,

U = U(0) −
V

= U(0) −
V

(16.41)

(b) The entropy

The total weight, M, of a configuration of the ensemble is the product of the average
weight W of each member of the ensemble, M = W Ñ. Hence, we can calculate S from

S = k lnW = k lnM 1/Ñ = lnM (16.42)

It follows, by the same argument used in Section 16.4, that

S = + k ln Q (16.43)

16.7 Independent molecules

We shall now see how to recover the molecular partition function from the more 
general canonical partition function when the molecules are independent. When 
the molecules are independent and distinguishable (in the sense to be described), the
relation between Q and q is

Q = q N (16.44)

Justification 16.5 The relation between Q and q

The total energy of a collection of N independent molecules is the sum of the ener-
gies of the molecules. Therefore, we can write the total energy of a state i of the 
system as

Ei = εi(1) + εi(2) + · · · + εi(N)

In this expression, εi(1) is the energy of molecule 1 when the system is in the state i,
εi(2) the energy of molecule 2 when the system is in the same state i, and so on. The
canonical partition function is then

Q = ∑
i

e−βεi(1)−βεi(2)− · · · −βεi(N )

The sum over the states of the system can be reproduced by letting each molecule
enter all its own individual states (although we meet an important proviso shortly).
Therefore, instead of summing over the states i of the system, we can sum over all
the individual states i of molecule 1, all the states i of molecule 2, and so on. This
rewriting of the original expression leads to

Q = ∑
i

e−βεi ∑
i

e−βεi · · · ∑
i

e−βεi = ∑
i

e−βεi

N

= q N

(a) Distinguishable and indistinguishable molecules

If all the molecules are identical and free to move through space, we cannot distin-
guish them and the relation Q = q N is not valid. Suppose that molecule 1 is in some
state a, molecule 2 is in b, and molecule 3 is in c, then one member of the ensemble 
has an energy E = εa + εb + εc. This member, however, is indistinguishable from 
one formed by putting molecule 1 in state b, molecule 2 in state c, and molecule 3 in
state a, or some other permutation. There are six such permutations in all, and N! in

DEF
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DEF
ABC

DEF
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general. In the case of indistinguishable molecules, it follows that we have counted 
too many states in going from the sum over system states to the sum over molecular
states, so writing Q = q N overestimates the value of Q. The detailed argument is quite 
involved, but at all except very low temperatures it turns out that the correction factor
is 1/N!. Therefore:

• For distinguishable independent molecules: Q = q N (16.45a)

• For indistinguishable independent molecules: Q = q N/N! (16.45b)

For molecules to be indistinguishable, they must be of the same kind: an Ar atom 
is never indistinguishable from a Ne atom. Their identity, however, is not the only 
criterion. Each identical molecule in a crystal lattice, for instance, can be ‘named’ with
a set of coordinates. Identical molecules in a lattice can therefore be treated as dis-
tinguishable because their sites are distinguishable, and we use eqn 16.45a. On the
other hand, identical molecules in a gas are free to move to different locations, and
there is no way of keeping track of the identity of a given molecule; we therefore use 
eqn 16.45b.

(b) The entropy of a monatomic gas

An important application of the previous material is the derivation (as shown in the
Justification below) of the Sackur–Tetrode equation for the entropy of a monatomic
gas:

S = nR ln Λ = (16.46a)

This equation implies that the molar entropy of a perfect gas of high molar mass is
greater than one of low molar mass under the same conditions (because the former
has more thermally accessible translational states). Because the gas is perfect, we can
use the relation V = nRT/p to express the entropy in terms of the pressure as

S = nR ln (16.46b)

Justification 16.6 The Sackur–Tetrode equation

For a gas of independent molecules, Q may be replaced by q N/N!, with the result
that eqn 16.43 becomes

S = + Nk ln q − k ln N!

Because the number of molecules (N = nNA) in a typical sample is large, we can use
Stirling’s approximation (eqn 16.2) to write

S = + nR ln q − nR ln N + nR

The only mode of motion for a gas of atoms is translation, and the partition func-
tion is q = V/Λ3 (eqn 16.19), where Λ is the thermal wavelength. The internal energy
is given by eqn 16.32, so the entropy is

S = 3–2 nR + nR ln − ln nNA + 1 = nR ln e3/2 + ln − ln nNA + ln e

which rearranges into eqn 16.46.
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(a)

(b)

Fig. 16.17 As the width of a container is
increased (going from (a) to (b)), the
energy levels become closer together (as
1/L2), and as a result more are thermally
accessible at a given temperature.
Consequently, the entropy of the system
rises as the container expands.

Checklist of key ideas

1. The instantaneous configuration of a system of N molecules is
the specification of the set of populations n0, n1, . . . of the
energy levels ε0, ε1, . . . . The weight W of a configuration is
given by W = N!/n0!n1! . . . .

2. The Boltzmann distribution gives the numbers of molecules
in each state of a system at any temperature: Ni = Ne−βεi/q,
β = 1/kT.

3. The partition function is defined as q = ∑j e
−βεj and is an

indication of the number of thermally accessible states 
at the temperature of interest.

4. The internal energy is U(T) = U(0) + E, with
E = −(N/q)(∂q/∂β)V = −N(∂ ln q/∂β)V.

5. The Boltzmann formula for the entropy is S = k ln W,
where W is the number of different ways in which the
molecules of a system can be arranged while keeping the 
same total energy.

6. The entropy in terms of the partition function is 
S = {U − U(0)}/T + Nk ln q (distinguishable molecules) or 
S = {U − U(0)}/T + Nk ln q − Nk(ln N − 1) (indistinguishable
molecules).

7. The canonical ensemble is an imaginary collection of
replications of the actual system with a common temperature.

8. The canonical distribution is given by ñi /Ñ = e−βEi/∑j e
−βEj.

The canonical partition function, Q = ∑ie
−βEi.

9. The internal energy and entropy of an ensemble are,
respectively, U = U(0) − (∂ ln Q/∂β)V and S = {U − U(0)}/T
+ k ln Q.

10. For distinguishable independent molecules we write Q = q N.
For indistinguishable independent molecules we write 
Q = q N/N!.

11. The Sackur–Tetrode equation, eqn 16.46, is an expression for
the entropy of a monatomic gas.

Example 16.5 Using the Sackur–Tetrode equation

Calculate the standard molar entropy of gaseous argon at 25°C.

Method To calculate the molar entropy, Sm, from eqn 16.46b, divide both sides by
n. To calculate the standard molar entropy, S 7

m, set p = p7 in the expression for Sm:

S 7
m = R ln

Answer The mass of an Ar atom is m = 39.95 u. At 25°C, its thermal wavelength is
16.0 pm (by the same kind of calculation as in Illustration 16.3). Therefore,

S 7
m = R ln = 18.6R = 155 J K−1 mol−1

We can anticipate, on the basis of the number of accessible states for a lighter
molecule, that the standard molar entropy of Ne is likely to be smaller than for Ar;
its actual value is 17.60R at 298 K.

Self-test 16.7 Calculate the translational contribution to the standard molar 
entropy of H2 at 25°C. [14.2R]

The Sackur–Tetrode equation implies that, when a monatomic perfect gas expands
isothermally from Vi to Vf , its entropy changes by

∆S = nR ln(aVf) − nR ln(aVi) = nR ln (16.47)

where aV is the collection of quantities inside the logarithm of eqn 16.46a. This is 
exactly the expression we obtained by using classical thermodynamics (Example 3.1).
Now, though, we see that that classical expression is in fact a consequence of the 
increase in the number of accessible translational states when the volume of the con-
tainer is increased (Fig. 16.17).

Vf
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567
e5/2 × (4.12 × 10−21 J)
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77, 518 (2000).

Further information

Further information 16.1 The Boltzmann distribution

We remarked in Section 16.1 that ln W is easier to handle than W.
Therefore, to find the form of the Boltzmann distribution, we look
for the condition for ln W being a maximum rather than dealing
directly with W. Because ln W depends on all the ni, when a
configuration changes and the ni change to ni + dni, the function 
ln W changes to ln W + d ln W, where

d ln W = ∑
i

dni

All this expression states is that a change in ln W is the sum of
contributions arising from changes in each value of ni. At a
maximum, d ln W = 0. However, when the ni change, they do so
subject to the two constraints

∑
i

εidni = 0 ∑
i

dni = 0 (16.48)

The first constraint recognizes that the total energy must not change,
and the second recognizes that the total number of molecules must
not change. These two constraints prevent us from solving d ln W = 0
simply by setting all (∂ ln W/∂ni) = 0 because the dni are not all
independent.

The way to take constraints into account was devised by the French
mathematician Lagrange, and is called the method of undetermined
multipliers. The technique is described in Appendix 2. All we need
here is the rule that a constraint should be multiplied by a constant
and then added to the main variation equation. The variables are
then treated as though they were all independent, and the constants
are evaluated at the end of the calculation.

We employ the technique as follows. The two constraints in eqn
16.48 are multiplied by the constants −β and α, respectively (the
minus sign in −β has been included for future convenience), and then
added to the expression for d ln W:

d ln W = ∑
i

dni + α∑
i

dni − β∑
i

εi dni

= ∑
i

+ α − βεi dni

5
6
7

DEF
∂ ln W

∂ni

ABC
1
2
3

DEF
∂ ln W

∂ni

ABC

DEF
∂ lnW

∂ni

ABC

All the dni are now treated as independent. Hence the only way of
satisfying d ln W = 0 is to require that, for each i,

+ α − βεi = 0 (16.49)

when the ni have their most probable values.
Differentiation of ln W as given in eqn 16.3 with respect to ni gives

= − ∑
j

The derivative of the first term is obtained as follows:

= ln N + N

= ln N + = ln N + 1

The ln N in the first term on the right in the second line arises because
N = n1 + n2 + · · · and so the derivative of N with respect to any of the
ni is 1: that is, ∂N/∂ni = 1. The second term on the right in the second
line arises because ∂(ln N)/∂ni = (1/N)∂N/∂ni. The final 1 is then
obtained in the same way as in the preceding remark, by using 
∂N/∂ni = 1.

For the derivative of the second term we first note that

=

Morever, if i ≠ j, nj is independent of ni, so ∂nj /∂ni = 0. However, if 
i = j,

= = 1

Therefore,

= δij

∂nj

∂ni

∂nj

∂nj

∂nj

∂ni

DEF
∂nj

∂ni

ABC
1

nj

∂ ln nj

∂ni

∂N

∂ni

DEF
∂ ln N

∂ni

ABC
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∂N

∂ni

ABC
∂(N ln N)

∂ni

∂(nj ln nj)

∂ni

∂(N ln N)
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with δij the Kronecker delta (δij = 1 if i = j, δij = 0 otherwise). Then

∑
j

= ∑
j

ln nj + nj

= ∑
j

ln nj +

= ∑
j

(ln nj + 1)

= ∑
j

δij(ln nj + 1) = ln ni + 1

and therefore

= −(ln ni + 1) + (ln N + 1) = −ln

It follows from eqn 16.49 that

−ln + α − βεi = 0

and therefore that

= eα−βεi

At this stage we note that

N = ∑
i

ni = ∑
i

Neα−βεi = Neα∑
i

eβεi

Because the N cancels on each side of this equality, it follows that

eα = (16.50)

and

= eα−βεi = eαe−βεi = e−βεi

which is eqn 16.6a.

Further information 16.2 The Boltzmann formula

A change in the internal energy

U = U(0) + ∑
i

niεi (16.51)

may arise from either a modification of the energy levels of a 
system (when εi changes to εi + dεi) or from a modification of the
populations (when ni changes to ni + dni). The most general change 
is therefore

dU = dU(0) + ∑
i

ni dεi + ∑
i

εi dni (16.52)

Because the energy levels do not change when a system is heated at
constant volume (Fig. 16.18), in the absence of all changes other than
heating

dU = ∑
i

εi dni

1
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We know from thermodynamics (and specifically from eqn 3.43) that
under the same conditions

dU = dqrev = TdS

Therefore,

dS = = kβ∑
i

εi dni (16.53)

For changes in the most probable configuration (the only one we
need consider), we rearrange eqn 16.49 to

βεi = + α
∂ ln W

∂ni

dU

T

H
ea

t
W

or
k

(a)

(b)

Fig. 16.18 (a) When a system is heated, the energy levels are
unchanged but their populations are changed. (b) When work 
is done on a system, the energy levels themselves are changed. 
The levels in this case are the one-dimensional particle-in-a-box
energy levels of Chapter 9: they depend on the size of the container
and move apart as its length is decreased.
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and find that

dS = k∑
i

dni + kα∑
i

dni

But because the number of molecules is constant, the sum over the
dni is zero. Hence

dS = k∑
i

dni = k(d lnW)

This relation strongly suggests the definition S = k ln W, as in 
eqn 16.34.

Further information 16.3 Temperatures below zero

The Boltzmann distribution tells us that the ratio of populations in a
two-level system at a temperature T is

= e−ε /kT (16.54)

where ε is the separation of the upper state N+ and the lower state N−.
It follows that, if we can contrive the population of the upper state to
exceed that of the lower state, then the temperature must have a
negative value. Indeed, for a general population,

T = (16.55)

and the temperature is formally negative for all N+ > N−.
All the statistical thermodynamic expressions we have derived

apply to T < 0 as well as to T > 0, the difference being that states with
T < 0 are not in thermal equilibrium and therefore have to be
achieved by techniques that do not rely on the equalization of
temperatures of the system and its surroundings. The Third Law of
thermodynamics prohibits the achievement of absolute zero in a
finite number of steps. However, it is possible to circumvent this
restriction in systems that have a finite number of levels or in 
systems that are effectively finite because they have such weak
coupling to their surroundings. The practical realization of such a
system is a group of spin- 1–2 nuclei that have very long relaxation
times, such as the 19F nuclei in cold solid LiF. Pulse techniques in
NMR can achieve non-equilibrium populations (Section 15.8) as 
can pumping procedures in laser technologies (Section 14.5). 
From now on, we shall suppose that these non-equilibrium
distributions have been achieved, and will concentrate on the
consequences.

The expressions for q, U, and S that we have derived in this chapter
are applicable to T < 0 as well as to T > 0, and are shown in Fig. 16.19.
We see that q and U show sharp discontinuities on passing through
zero, and T = +0 (corresponding to all population in the lower state)
is quite distinct from T = −0, where all the population is in the upper
state. The entropy S is continuous at T = 0. But all these functions are
continuous if we use β = 1/kT as the dependent variable (Fig. 16.20),
which shows that β is a more natural, if less familiar, variable than T.
Note that U → 0 as β → ∞ (that is, as T → 0, when only the lower
state is occupied) and U → Nε as β → −∞ (that is, as T → −0);

ε /k

ln(N−/N+)

N+

N−

DEF
∂ lnW

∂ni

ABC

DEF
∂ lnW

∂ni

ABC

we see that a state with T = −0 is ‘hotter’ than one with T = +0. The
entropy of the system is zero on either side of T = 0, and rises to 
Nk ln 2 as T → ±∞. At T = +0 only one state is accessible (the lower
state), only the upper state is accessible, so the entropy is zero in 
each case.

We get more insight into the dependence of thermodynamic
properties on temperature by noting the thermodynamic result
(Section 3.8) that T = (∂S/∂U)T. When S is plotted against U for a
two-level system (Fig. 6.21), we see that the entropy rises as energy 
is supplied to the system (as we would expect) provided that T > 0
(the thermal equilibrium regime). However, the entropy decreases 
as energy is supplied when T < 0. This conclusion is consistent with
the thermodynamic definition of entropy, dS = dqrev /T (where, of
course, q denotes heat and not the partition function). Physically, 
the increase in entropy for T > 0 corresponds to the increasing
accessibility of the upper state, and the decrease for T < 0 corresponds
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Fig. 16.19 The partition function, internal energy, and entropy of a
two-level system extended to negative temperatures.
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to the shift towards population of the upper state alone as more
energy is packed into the system.

The phenomenological laws of thermodynamics survive largely
intact at negative temperatures. The First Law (in essence, the
conservation of energy) is robust, and independent of how
populations are distributed over states. The Second Law survives
because the definition of entropy survives (as we have seen above).
The efficiency of heat engines (Section 3.2), which is a direct
consequence of the Second Law, is still given by 1 − Tcold/Thot.
However, if the temperature of the cold reservoir is negative, then 
the efficiency of the engine may be greater than 1. This condition
corresponds to the amplification of signals achieved in lasers.
Alternatively, an efficiency greater than 1 implies that heat can be
converted completely into work provided the heat is withdrawn from
a reservoir at T < 0. If both reservoirs are at negative temperatures,
then the efficiency is less than 1, as in the thermal equilibrium case
treated in Chapter 3. The Third Law requires a slight amendment 
on account of the discontinuity of the populations across T = 0: it is
impossible in a finite number of steps to cool any system down to 
+0 or to heat any system above −0.
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Fig. 16.20 The partition function, internal energy, and entropy of 
a two-level system extended to negative temperatures but plotted
against β = 1/kT (modified here to the dimensionless quantity ε /kT).
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Fig. 16.21 The variation of the entropy with internal energy for a 
two-level system extended to negative temperatures.

Discussion questions

16.1 Describe the physical significance of the partition function.

16.2 Explain how the internal energy and entropy of a system composed of
two levels vary with temperature.

16.3 Enumerate the ways by which the parameter β may be identified with
1/kT.

16.4 Distinguish between the zipper and Zimm–Bragg models of the
helix–coil transition.

16.5 Explain what is meant by an ensemble and why it is useful in statistical
thermodynamics.

16.6 Under what circumstances may identical particles be regarded as
distinguishable?
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Exercises

16.1a What are the relative populations of the states of a two-level system
when the temperature is infinite?

16.1b What is the temperature of a two-level system of energy separation
equivalent to 300 cm−1 when the population of the upper state is one-half that
of the lower state?

16.2a Calculate the translational partition function at (a) 300 K and (b) 600 K
of a molecule of molar mass 120 g mol−1 in a container of volume 2.00 cm3.

16.2b Calculate (a) the thermal wavelength, (b) the translational partition
function of an Ar atom in a cubic box of side 1.00 cm at (i) 300 K and 
(ii) 3000 K.

16.3a Calculate the ratio of the translational partition functions of D2 and H2

at the same temperature and volume.

16.3b Calculate the ratio of the translational partition functions of xenon and
helium at the same temperature and volume.

16.4a A certain atom has a threefold degenerate ground level, a non-
degenerate electronically excited level at 3500 cm−1, and a threefold degenerate
level at 4700 cm−1. Calculate the partition function of these electronic states at
1900 K.

16.4b A certain atom has a doubly degenerate ground level, a triply degenerate 
electronically excited level at 1250 cm−1, and a doubly degenerate level at 
1300 cm−1. Calculate the partition function of these electronic states at 2000 K.

16.5a Calculate the electronic contribution to the molar internal energy at
1900 K for a sample composed of the atoms specified in Exercise 16.4a.

16.5b Calculate the electronic contribution to the molar internal energy at
2000 K for a sample composed of the atoms specified in Exercise 16.4b.

16.6a A certain molecule has a non-degenerate excited state lying at 540 cm−1

above the non-degenerate ground state. At what temperature will 10 per cent
of the molecules be in the upper state?

16.6b A certain molecule has a doubly degenerate excited state lying at 
360 cm−1 above the non-degenerate ground state. At what temperature 
will 15 per cent of the molecules be in the upper state?

16.7a An electron spin can adopt either of two orientations in a magnetic
field, and its energies are ±µBB, where µB is the Bohr magneton. Deduce an
expression for the partition function and mean energy of the electron and
sketch the variation of the functions with B. Calculate the relative populations
of the spin states at (a) 4.0 K, (b) 298 K when B = 1.0 T.

16.7b A nitrogen nucleus spin can adopt any of three orientations in a
magnetic field, and its energies are 0, ±γN$B, where γN is the magnetogyric
ratio of the nucleus. Deduce an expression for the partition function and
mean energy of the nucleus and sketch the variation of the functions with B.
Calculate the relative populations of the spin states at (a) 1.0 K, (b) 298 K
when B = 20.0 T.

16.8a Consider a system of distinguishable particles having only two non-
degenerate energy levels separated by an energy that is equal to the value of 
kT at 10 K. Calculate (a) the ratio of populations in the two states at (1) 1.0 K,
(2) 10 K, and (3) 100 K, (b) the molecular partition function at 10 K, (c) the
molar energy at 10 K, (d) the molar heat capacity at 10 K, (e) the molar
entropy at 10 K.

16.8b Consider a system of distinguishable particles having only three non-
degenerate energy levels separated by an energy which is equal to the value of
kT at 25.0 K. Calculate (a) the ratio of populations in the states at (1) 1.00 K,
(2) 25.0 K, and (3) 100 K, (b) the molecular partition function at 25.0 K, 
(c) the molar energy at 25.0 K, (d) the molar heat capacity at 25.0 K, (e) the
molar entropy at 25.0 K.

16.9a At what temperature would the population of the first excited
vibrational state of HCl be 1/e times its population of the ground state?

16.9b At what temperature would the population of the first excited
rotational level of HCl be 1/e times its population of the ground state?

16.10a Calculate the standard molar entropy of neon gas at (a) 200 K, 
(b) 298.15 K.

16.10b Calculate the standard molar entropy of xenon gas at (a) 100 K, 
(b) 298.15 K.

16.11a Calculate the vibrational contribution to the entropy of Cl2 at 500 K
given that the wavenumber of the vibration is 560 cm−1.

16.11b Calculate the vibrational contribution to the entropy of Br2 at 600 K
given that the wavenumber of the vibration is 321 cm−1.

16.12a Identify the systems for which it is essential to include a factor of 1/N!
on going from Q to q: (a) a sample of helium gas, (b) a sample of carbon
monoxide gas, (c) a solid sample of carbon monoxide, (d) water vapour.

16.12b Identify the systems for which it is essential to include a factor of 1/N!
on going from Q to q: (a) a sample of carbon dioxide gas, (b) a sample of
graphite, (c) a sample of diamond, (d) ice.

Problems*

Numerical problems

16.1‡ Consider a system A consisting of subsystems A1 and A2, for which 
W1 = 1 × 1020 and W2 = 2 × 1020. What is the number of configurations
available to the combined system? Also, compute the entropies S, S1, and S2.
What is the significance of this result?

16.2‡ Consider 1.00 × 1022 4He atoms in a box of dimensions 1.0 cm × 1.0 cm
× 1.0 cm. Calculate the occupancy of the first excited level at 1.0 mK, 2.0 K,
and 4.0 K. Do the same for 3He. What conclusions might you draw from the
results of your calculations?

* Problems denoted with the symbol ‡ were supplied by Charles Trapp and Carmen Giunta.
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16.3‡ By what factor does the number of available configurations increase
when 100 J of energy is added to a system containing 1.00 mol of particles at
constant volume at 298 K?

16.4‡ By what factor does the number of available configurations increase
when 20 m3 of air at 1.00 atm and 300 K is allowed to expand by 0.0010 per
cent at constant temperature?

16.5 Explore the conditions under which the ‘integral’ approximation for the
translational partition function is not valid by considering the translational
partition function of an Ar atom in a cubic box of side 1.00 cm. Estimate the
temperature at which, according to the integral approximation, q = 10 and
evaluate the exact partition function at that temperature.

16.6 A certain atom has a doubly degenerate ground level pair and an upper
level of four degenerate states at 450 cm−1 above the ground level. In an atomic
beam study of the atoms it was observed that 30 per cent of the atoms were in
the upper level, and the translational temperature of the beam was 300 K. Are
the electronic states of the atoms in thermal equilibrium with the translational
states?

16.7 (a) Calculate the electronic partition function of a tellurium atom at 
(i) 298 K, (ii) 5000 K by direct summation using the following data:

Term Degeneracy Wavenumber/cm−1

Ground 5 0

1 1 4 707

2 3 4 751

3 5 10 559

(b) What proportion of the Te atoms are in the ground term and in the term
labelled 2 at the two temperatures? (c) Calculate the electronic contribution to
the standard molar entropy of gaseous Te atoms.

16.8 The four lowest electronic levels of a Ti atom are: 3F2, 3F3, 3F4, and 5F1,
at 0, 170, 387, and 6557 cm−1, respectively. There are many other electronic
states at higher energies. The boiling point of titanium is 3287°C. What are the
relative populations of these levels at the boiling point? Hint. The degeneracies
of the levels are 2J + 1.

16.9 The NO molecule has a doubly degenerate excited electronic level 
121.1 cm−1 above the doubly degenerate electronic ground term. Calculate
and plot the electronic partition function of NO from T = 0 to 1000 K.
Evaluate (a) the term populations and (b) the electronic contribution to 
the molar internal energy at 300 K. Calculate the electronic contribution 
to the molar entropy of the NO molecule at 300 K and 500 K.

16.10‡ J. Sugar and A. Musgrove (J. Phys. Chem. Ref. Data 22, 1213 (1993))
have published tables of energy levels for germanium atoms and cations from
Ge+ to Ge+31. The lowest-lying energy levels in neutral Ge are as follows:

3P0
3P1

3P2
1D2

1S0

E/cm−1 0 557.1 1410.0 7125.3 16 367.3

Calculate the electronic partition function at 298 K and 1000 K by direct
summation. Hint. The degeneracy of a level is 2J + 1.

16.11 Calculate, by explicit summation, the vibrational partition function
and the vibrational contribution to the molar internal energy of I2 molecules
at (a) 100 K, (b) 298 K given that its vibrational energy levels lie at the
following wavenumbers above the zero-point energy level: 0, 213.30, 425.39,
636.27, 845.93 cm−1. What proportion of I2 molecules are in the ground and
first two excited levels at the two temperatures? Calculate the vibrational
contribution to the molar entropy of I2 at the two temperatures.

16.12‡ (a) The standard molar entropy of graphite at 298, 410, and 498 K is
5.69, 9.03, and 11.63 J K−1 mol−1, respectively. If 1.00 mol C(graphite) at 298 K
is surrounded by thermal insulation and placed next to 1.00 mol C(graphite)

at 498 K, also insulated, how many configurations are there altogether for the
combined but independent systems? (b) If the same two samples are now
placed in thermal contact and brought to thermal equilibrium, the final
temperature will be 410 K. (Why might the final temperature not be the
average?) How many configurations are there now in the combined system?
Neglect any volume changes. (c) Demonstrate that this process is
spontaneous.

Theoretical problems

16.13 A sample consisting of five molecules has a total energy 5ε. Each
molecule is able to occupy states of energy jε, with j = 0, 1, 2, . . . . (a) Calculate
the weight of the configuration in which the molecules are distributed evenly
over the available states. (b) Draw up a table with columns headed by the
energy of the states and write beneath them all configurations that are
consistent with the total energy. Calculate the weights of each configuration
and identify the most probable configurations.

16.14 A sample of nine molecules is numerically tractable but on the verge of
being thermodynamically significant. Draw up a table of configurations for 
N = 9, total energy 9ε in a system with energy levels jε (as in Problem 16.13).
Before evaluating the weights of the configurations, guess (by looking for the
most ‘exponential’ distribution of populations) which of the configurations
will turn out to be the most probable. Go on to calculate the weights and
identify the most probable configuration.

16.15 The most probable configuration is characterized by a parameter we
know as the ‘temperature’. The temperatures of the system specified in
Problems 16.13 and 16.14 must be such as to give a mean value of ε for the
energy of each molecule and a total energy Nε for the system. (a) Show that
the temperature can be obtained by plotting pj against j, where pj is the 
(most probable) fraction of molecules in the state with energy jε. Apply the
procedure to the system in Problem 16.14. What is the temperature of the
system when ε corresponds to 50 cm−1? (b) Choose configurations other than
the most probable, and show that the same procedure gives a worse straight
line, indicating that a temperature is not well-defined for them.

16.16 A certain molecule can exist in either a non-degenerate singlet state or a
triplet state (with degeneracy 3). The energy of the triplet exceeds that of the
singlet by ε. Assuming that the molecules are distinguishable (localized) and
independent, (a) obtain the expression for the molecular partition function.
(b) Find expressions in terms of ε for the molar energy, molar heat capacity,
and molar entropy of such molecules and calculate their values at T = ε /k.

16.17 Consider a system with energy levels εj = jε and N molecules.
(a) Show that if the mean energy per molecule is aε, then the temperature 
is given by

β = ln l +

Evaluate the temperature for a system in which the mean energy is ε, taking ε
equivalent to 50 cm−1. (b) Calculate the molecular partition function q for the
system when its mean energy is aε. (c) Show that the entropy of the system is

S/k = (1 + a) ln(1 + a) − a ln a

and evaluate this expression for a mean energy ε.

16.18 Consider Stirling’s approximation for ln N! in the derivation of the
Boltzmann distribution. What difference would it make if (a) a cruder
approximation, N! = N N, (b) the better approximation in Comment 16.2
were used instead?

16.19‡ For gases, the canonical partition function, Q, is related to the
molecular partition function q by Q = q N/N!. Use the expression for q and
general thermodynamic relations to derive the perfect gas law pV = nRT.

DEF
1

a

ABC
1

ε
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Applications: to atmospheric science, astrophysics, 
and biochemistry

16.20‡ Obtain the barometric formula (Problem 1.27) from the Boltzmann
distribution. Recall that the potential energy of a particle at height h above the
surface of the Earth is mgh. Convert the barometric formula from pressure to
number density, N . Compare the relative number densities, N (h)/N (0), for
O2 and H2O at h = 8.0 km, a typical cruising altitude for commercial aircraft.

16.21‡ Planets lose their atmospheres over time unless they are replenished. A
complete analysis of the overall process is very complicated and depends upon
the radius of the planet, temperature, atmospheric composition, and other
factors. Prove that the atmosphere of planets cannot be in an equilibrium state
by demonstrating that the Boltzmann distribution leads to a uniform finite
number density as r → ∞. Hint. Recall that in a gravitational field the potential
energy is V(r) = −GMm/r, where G is the gravitational constant, M is the mass
of the planet, and m the mass of the particle.

16.22‡ Consider the electronic partition function of a perfect atomic
hydrogen gas at a density of 1.99 × 10−4 kg m−3 and 5780 K. These are the
mean conditions within the Sun’s photosphere, the surface layer of the Sun
that is about 190 km thick. (a) Show that this partition function, which
involves a sum over an infinite number of quantum states that are solutions to
the Schrödinger equation for an isolated atomic hydrogen atom, is infinite.
(b) Develop a theoretical argument for truncating the sum and estimate the
maximum number of quantum states that contribute to the sum. (c) Calculate
the equilibrium probability that an atomic hydrogen electron is in each

quantum state. Are there any general implications concerning electronic states
that will be observed for other atoms and molecules? Is it wise to apply these
calculations in the study of the Sun’s photosphere?

16.23 Consider a protein P with four distinct sites, with each site capable of
binding one ligand L. Show that the possible varieties (configurations) of the
species PL i (with PL0 denoting P) are given by the binomial coefficients C(4,i).

16.24 Complete some of the derivations in the discussion of the helix–coil
transition in polypeptides (Impact I16.1). (a) Show that, within the tenets of
the zipper model,

q = 1 +
n

∑
i=1

Z(n,i)σsi

and that Z(n,i) = n − i + 1 is the number of ways in which an allowed state with
a number i of c amino acids can be formed. (b) Using the zipper model, show
that θ = (1/n)d(ln q)/d(ln s). Hint. As a first step, show that ∑i i(n − i + 1)σsi =
s(dq/ds).

16.25 Here you will use the zipper model discussed in Impact I16.1 to explore
the helix–coil transition in polypeptides.(a) Investigate the effect of the
parameter s on the distribution of random coil segments in a polypeptide with
n = 20 by plotting pi, the fraction of molecules with a number i of amino acids
in a coil region, against i for s = 0.8, 1.0, and 1.5, with σ = 5.0 × 10−2. Discuss
the significance of any effects you discover. (b) The average value of i given by
�i� = ∑iipi. Use the results of the zipper model to calculate �i� for all the
combinations of s and σ used in Fig. 16.10 and part (a).




