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Abstract

Carry trade refers to a risky arbitrage in interest rate differentials between two currencies.

Persistent excess carry trade returns pose a challenge to foreign exchange market efficiency.

Using a data set of ten currencies between 1990 and 2017, we find: (i) a machine learning

model, long short-term memory (LSTM) networks, forecast carry trade returns better than lin-

ear and threshold models and other machine learning models; and (ii) excess carry trade returns

deteriorate after the 2007–2008 global financial crisis in all model forecasts, indicating that the

uncovered interest rate parity may still hold in the long run.
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1 Introduction

Carry trade is a risky arbitrage based on interest rate differentials between two currencies. Carry

trade returns depend on changes in the exchange rate—the relative price of currencies—and the

interest rate differentials between two countries. While the persistent excess carry trade returns

seem to challenge the efficient market hypothesis, there is also evidence that uncovered interest

parity (UIP) may hold in the long run, and thus the excess carry trade returns will eventually

reverse.1

We aim to improve carry trade return prediction and re-examine whether the UIP holds. Two

strands of literature jointly suggest a machine learning approach to forecasting carry trade returns.

In the first strand of the literature on the forecast of excess carry trade returns, Engel (2014) points

out that a key improvement is to introduce the nonlinear relationship between explanatory factors

for carry trade returns. For example, Jorda and Taylor (2012) unveil that augmenting linear models

with thresholds of fundamentals strengthen the model predictability. Lustig and Verdelhan (2007)

and Menkhoff et al. (2012) find that excess carry trade returns are related with the volatility of

exchange rate or economic fundamentals. In summary, optimizing the use of higher moments and

cross-moments of explanatory factors may help to capture the risk premium in carry trade returns

and thus improve the return forecast. Moreover, as interest rates fluctuate near zero in US and

many other countries after the 2007–2008 global financial crisis, the movement in the exchange

rate becomes more dominant in carry trade returns. Rossi (2013) provides an overview that the

predictability of exchange rate depends on the forecast horizon length besides the choice of model

and data—the exchange rate is predictable at the ten-year horizon (Chinn, 2006) but not at shorter

horizons. Overall, we may improve carry trade return prediction if the factor interactions and the

horizon length of factors are more flexible in model specifications.

The second strand of literature is the fast growing application of machine learning in economic

forecasting. Gu et al. (2020) find that machine learning allows nonlinear interactions between

predictors and optimizes model specification. Therefore, machine learning opens up a new way

for empirical asset pricing. Specifically, we focus on long short-term memory (LSTM) networks,

1See Burnside et al. (2008).
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a machine learning model for time series forecasting. Hochreiter and Schmidhuber (1997) first

develop LSTM networks that can “memorize” the long-term data pattern and determine how the

input in every period can “enter” into the memory process. In a multi-period model structure,

LSTM networks include input, hidden, and output layers in each period. The key mechanism is

memory cells in the hidden layer that transmit information between periods. In a memory cell, a

forget gate, an input gate, and an output gate function determine how the information from previous

periods can be transmitted, how the input can be included, and how the information can be sent out

respectively. Therefore LSTM networks optimize the use of explanatory factors and data length

and thus can potential improve return forecasts.

In this paper, we construct a monthly data set in G10 currencies (Australia, Canada, Germany,

Japan, Norway, New Zealand, Sweden, Switzerland, the U.K., and the U.S.) between 1990 and

2017. We then train the LSTM networks model with data and make predictions. The performance

of LSTM networks dominates other popular models for carry trade returns. The average return,

the Sharpe ratio, and the gain/loss ratio are higher in the LSTM networks model in three forecast

windows 2011-2015, 2012-2016, and 2013-2017. All model forecasting results show that the

excess carry trade returns are lower after the 2007–2008 global crisis.

This paper contributes to the literature on carry trade returns in two dimensions. First, we

introduce long short-term memory (LSTM) networks to predict carry trade returns and find that

LSTM networks outperform commonly used models. To our knowledge, this paper is the first to

explore the application of LSTM networks in a carry trade return forecast.2 As a deep learning

model, LSTM networks optmizes the use of long- and short-term information and the use of factor

moments in carry trade return prediction.3 Thus LSTM networks can improve the carry trade return

forecast as the literature indicates that the UIP may hold in the long run and the risk premium in

carry trade returns is related with higher moments of explanatory factors. We also find that the

long short-term memory structure is the key to improve return predictions by comparing LSTM

networks with otherwise identical machine learning models without such structure. Second, we

find that carry trade returns deteriorate after the global financial crisis in all models as the interest

2See Davis et al. (2020) on machine learning applications for time series problems.
3Colombo et al. (2019) employs support vector machines to predict carry trade direction.
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rate differentials shrink to near zero, consistent with Accominotti et al. (2019). Our findings

provide supportive evidence that we may not be able to reject the UIP.

2 Data, carry trades, and model

Data. The monthly data set that spans from May 1990 to October 2017 includes the exchange rate

and the one-month risk-free interest rate data from Datastream, and the consumer price index data

from FRED Economic Data for G10 countries. Those countries’ currency trading volume prevails

in the foreign exchange market, and all countries take the floating exchange rate regime and allow

free capital mobility.

Carry trade return. We follow Jordan and Taylor (2012) to construct a carry trade return

estimation framework. Setting the U.S. as the home country in a currency pair, the ex-post nominal

excess return for a carry trade st+1 is

st+1 = ∆et+1 + (i∗t − it), (1)

where ∆et+1 is the logged exchange rate (the home currency price of one unit of foreign currency)

difference, and it and i∗t are home and foreign one-period, risk-free interest rates. The UIP implies

that Et(st+1) = 0.

We further re-express the carry trade return in real terms. We define the real exchange rate

as qt+1 = q̄ + et+1 + (p∗t+1 − pt+1), where q̄ is the mean of qt, and pt+1 and p∗t+1 are the logged

aggregate prices home and abroad. Under purchasing power parity (PPP), real exchange rate qt

converges to q̄ and thus qt − q̄ is stationary. If πt+1 is the inflation rate and the real interest rate is

rt = it − πt+1, the carry trade return in equation (1) can be written as

st+1 = ∆qt+1 + (r∗t − rt). (2)

Given that ∆et+1 and ∆qt+1 are stationary, equations (1) and (2) can be viewed as an evolution
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from a stationary system:

∆vt+1 =
[
∆et+1, π

∗
t+1 − πt+1, i

∗
t − it

]′
, (3)

where the cointegration vector is et + p∗t − pt = qt − q̄, the deviation from PPP.

Table 1 displays summary statistics, in particular, carry trade return on average is above zero.4

Table 1: Summary Statistics

Currencies Months Mean s.d. Skewness Kurtosis
s 9 330 0.0005 0.0305 -0.3098 4.9616
∆e 9 330 -0.0001 0.0304 -0.3506 5.1727
π∗ − π 9 330 -0.0005 0.0041 0.6771 7.3543
i∗ − i 9 330 0.0005 0.0020 0.5453 7.2803

Predicting carry trade returns using LSTM networks. We utilize LSTM networks to estimate

the carry trade return. The LSTM networks employ the long-term data pattern and determine how

the new information in every period can enter the model. In LSTM networks, time period t spans

from 0 to T . In every period, the model consists of an input layer, one or more hidden layers, and

an output layer. The input layer includes the explanatory variables for the carry trade return: ∆et,

π∗t−πt, i∗t−it and qt−q̄, t = 0, 1, · · · , T−1. The output layer generates the prediction for exchange

rate êt+1. The hidden layer is the key structure of LSTM networks as it consists of memory cells

that determine how information can be injected and carried to the next period. In each memory

cell, three types of gates—forget gate, input gate, and output gate—are status activation functions

and jointly determine how information is transmitted in the cell state. We explain the information

transmission process and show the full model structure in detail in the online appendix. We also

show in the appendix that if shutting down the memory cell gate structure, LSTM networks may

degenerate to its parent model, the recurrent neural network (RNN).

We divide the sample into the training set (in sample) from 1990 to 2011,5 and three test

windows (out of sample): 2012–2015, 2013–2016, and 2014–2017. As the training set includes

the 2007–2008 global financial crisis, LSTM networks can adapt the abnormal carry trade returns

4We also confirm that qt − q̄ is stationary by the panel cointegration tests.
5A rule of thumb for splitting between training and test sets is 5:1. Results are robust with other splitting.
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during the turmoil periods into model training. We also split out the validation set (between 2010

and 2011) from the training set to avoid the potential over-fitting problem.6 In the test data, we

employ the rolling window strategy with one-step ahead forecast.

Following Jorda and Taylor (2012), we build an equally weighted portfolio with 1/N(N =

9) portion of investment on each foreign currency, because the equally weighted strategy makes

comparing portfolio performance in different models possible. Given the model forecast êt+1, the

investors can long or short each currency to re-balance the equal-weighted portfolio. Then we

calculate the realized return from the exchange rate data.

3 Results

In this section, we first compare the LSTM performance with widely used models for carry trade

returns and then investigate the resource of performance difference.

LSTM networks specify the interactions between forecasting factors and the lag terms of fac-

tors more flexibly. In order to show the resource of forecasting improvement in it, we compare

LSTM networks with other popular models for carry trade return forecast and an otherwise iden-

tical machine learning model with no memory structure. We choose random walk, vector autore-

gression (VAR), the threshold vector error correction model (TECM), and RNN as the benchmark

models. In linear models, the random walk model assumes that the exchange rate movement

∆et+1 is independently and identically distributed, while the VAR model with the optimal lag as

one period assumes that economic fundamentals are capable of forecasting future exchange rate

movement. As a nonlinear model, the TECM (one period as the optimal lag order and qt − q̄ as

the cointegration variable) assumes parsimonious thresholds—whether the interest rate differential

and the real exchange rate are above their median values. The RNN model is a degeneration of

LSTM networks by shutting down the memory cell gate structure.

Table 2 displays the model performance comparison in forecasting carry trade returns. Firstly,

in all three rolling windows, LSTM networks dominate the other four models. The Diebold and

6Results are consistent under an alternative 80% training versus 20% validation rule.
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Table 2: Carry trade return

Random Walk VAR TECM RNN LSTM
Profits 2012–2015
Mean -0.0009 -0.0008 -0.0006 -0.0036 0.0014
Std. dev. 0.0177 0.0116 0.0118 0.0172 0.0100
Skewness 0.1053 -0.4649 -0.5411 -0.2375 0.2139
Sharpe ratio (annual) -0.1863 -0.2750 -0.1806 -0.7482 0.4636
Gain/loss 0.8550 0.8698 0.8720 0.5541 1.4427
D-M test p-value 0.0000 0.0000 0.0001 0.0000 -
OOS R2 0.0045 0.0264 0.0090 0.0400 0.0474
Profits 2013–2016
Mean -0.0004 -0.0003 -0.0010 -0.0041 0.0028
Std. dev. 0.0181 0.0106 0.0121 0.0174 0.0077
Skewness 0.0328 -0.3385 -0.4850 0.3379 0.5110
Sharpe ratio (annual) -0.0807 -0.1262 -0.3181 -0.8372 1.2413
Gain/loss 0.9505 0.9189 0.7817 0.5348 2.4960
D-M test p-value 0.0000 0.0000 0.0001 0.0000 -
OOS R2 0.0649 0.0400 0.0357 0.0370 0.0609
Profits 2014–2017
Mean 0.0009 -0.0003 -0.0011 -0.0022 0.0024
Std. dev. 0.0183 0.0104 0.0134 0.0182 0.0073
Skewness -0.1544 -0.2916 -0.3871 0.2296 0.9213
Sharpe ratio (annual) 0.1702 -0.1091 -0.3004 -0.4199 1.1308
Gain/loss 1.1022 0.9141 0.7891 0.7382 2.5344
D-M test p-value 0.0000 0.0000 0.0000 0.0000 -
OOS R2 0.0286 0.0512 0.0239 0.0417 0.0769
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Mariano (1995) test7 and the out-of-sample R2 show that LSTM networks are more accurate in

return predictions. The LSTM networks in 2012–2015 generate an average monthly return of 14

basis points, better than the negative returns from other models. The low standard deviation and

positive skewness of carry trade returns in LSTM networks suggest that the carry trade portfolio

has low volatility and is less likely to generate large loss. Therefore, its Sharpe ratio and gain/loss

ratio are also higher.8 The average return, the Sharpe ratio, and the gain/loss ratio are higher in

2013–2016 and 2014–2017 than those in 2012–2015, indicating that carry trade returns are low

during the near-zero interest rate periods due to unprecedented expansionary monetary policies

but improve with the step-down of quantitative easing. In summary, the flexible modeling of the

higher moments and interactions among explanatory factors and the optimal use of data length help

to strengthen carry trade predictability. As the literature indicates that excess carry trade return

movement is related with the volatility of fundamentals and that the long run changes in interest

rate differentials tend to explain the exchange rate movement better, LSTM networks generate

higher carry trade returns.

Secondly, the highest annual returns in the three windows in Table 2 are 1.7% (1.001412 −

1), 3.4%, and 2.9% respectively, much lower than the 7.1% in Jorda and Taylor (2012) and the

7.4% in Accominotti et al. (2019) before the global financial crisis. Overall, the lower returns

after the crisis provide supporting evidence that the UIP may hold in the long run. Facing mixed

evidence on whether the UIP holds, Bekaert and Hodrick (2001) and West (2012) conclude that if

the econometrician’s sample is small and biased, we may reject UIP. The persistent excess carry

trade returns up to the 2000s may simply be a result of small sample. With more data after the

global financial crisis, we find that the UIP holds. Another possible reason is that the UIP tends to

hold in the long run, as proposed in Chinn (2006). LSTM networks optimizes the information use

including the long-term “memory” and improves the exchange rate forecast, and thus the UIP may

hold.
7The null versus alternative hypotheses are that the model (random walk, VAR, TECM, or RNN) has the same

forecast accuracy versus that it has less forecast accuracy with LSTM networks.
8The Sharpe ratio is measured as the difference between the portforlio return and the risk-free one-month bond

rate, divided by the standard deviation of the portfolio. The gain/loss ratio is measured as the ratio of the probability
of gains over that of losses.
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In order to open the black box in machine learning, we further investigate when the LSTM

networks outperform other models. Given that the portfolio is equally weighted, we examine the

realized return at the currency pair level in order to dissect the portfolio return dominance under

LSTM networks. In Table 3, we first compare LSTM networks with TECM, the representative

of regression models, and find that LSTM networks perform better when models suggest contra-

dicting strategies of carry trade: returns based on LSTM and TECM forecasts are 0.0030 versus

-0.0018, 0.0037 versus -0.0027, and 0.0045 versus -0.0033 in three rolling windows. We then com-

pare LSTM networks with RNN to investigate whether the memory cell gate structure in LSTM

networks helps predicting returns. Again returns from LSTM are higher when two models sug-

gest different exchange rate movement. Overall, LSTM networks improve the prediction accuracy,

avoid large trading losses, and thus reduce the carry trade return risk and achieve a higher portfolio

return.

Table 3: Comparison of LSTM, TECM, and RNN

Where models agree Where models disagree Where models agree Where models disagree

LSTM TECM LSTM TECM LSTM RNN LSTM RNN

Profits 2012–2015
Number of obs. 206 206 217 217 177 177 246 246
Mean 0.0001 0.0001 0.0030 -0.0018 -0.0064 -0.0064 0.0039 -0.0026
Std. dev. 0.0267 0.0267 0.0274 0.0274 0.0260 0.0260 0.0270 0.0270
Skewness -0.1538 -0.1538 0.1930 -0.1652 -0.8650 -0.8650 0.5015 -0.3353
Max 0.0709 0.0709 0.0794 0.0793 0.0651 0.0651 0.0879 0.0793
Min -0.0871 -0.0871 -0.0784 -0.0772 -0.0726 -0.0726 -0.0784 -0.0871
Profits 2013–2016
Number of obs. 202 202 221 221 177 177 246 246
Mean 0.0001 0.0001 0.0037 -0.0027 -0.0050 -0.0050 0.0063 -0.0051
Std. dev. 0.0278 0.0278 0.0276 0.0276 0.0250 0.0250 0.0288 0.0288
Skewness -0.0967 -0.0967 0.1191 -0.0993 -0.7049 -0.7049 0.7635 -0.6160
Max 0.0893 0.0893 0.0774 0.0793 0.0820 0.0820 0.0893 0.0793
Min -0.0871 -0.0871 -0.0784 -0.0770 -0.0716 -0.0716 -0.0784 -0.0882
Profits 2014–2017
Number of obs. 197 197 199 199 163 163 233 233
Mean 0.0003 0.0003 0.0045 -0.0033 -0.0039 -0.0039 0.0039 -0.0024
Std. dev. 0.0282 0.0282 0.0270 0.0271 0.0253 0.0253 0.0288 0.0289
Skewness -0.0700 -0.0700 0.1788 -0.1731 -0.5401 -0.5401 0.4627 -0.2941
Max 0.0893 0.0893 0.0773 0.0776 0.0651 0.0651 0.0879 0.0820
Min -0.0871 -0.0871 -0.0784 -0.0770 -0.0882 -0.0882 -0.0815 -0.0871
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4 Conclusion

While the persistent positive carry trade returns of the early 2000s have posed a challenge to the

UIP, the literature is silent on the new features of carry trade after the global financial crisis. We

introduce a novel machine learning model, LSTM networks, to forecast carry trade returns and

find that LSTM networks improve return forecasts. Excess returns remain low in the post-crisis

periods, suggesting that we may not reject the UIP in the long run. The success of LSTM networks

implies that we can improve carry trade return forecast by a better use of information embodies

in economic fundamentals. LSTM networks may help to construct more profitable carry trade

portfolios. Given that it can explore the flexible interactions between explanatory factors, we

expect that LSTM networks may improve forecast in other economic settings in future research.

References

[1] Accominotti, O., Cen, J., Chambers, D., Marsh, I. (2019). Currency Regimes and the Carry
Trade. Journal of Financial and Quantitative Analysis, 54(5), 2233-2260.

[2] Bekaert, G., Hodrick, R. J. (2001). Expectations Hypotheses Tests. The Journal of Finance,
56(4), 1357-1394.

[3] Burnside, C., Eichenbaum, M., Rebelo, S. (2008). Carry Trade: The Gains of Diversification.
Journal of the European Economic Association, 6(2-3), 581-588.

[4] Chinn, M. D. (2006). The (Partial) Rehabilitation of Interest Rate Parity in the Floating Rate
Era: Longer Horizons, Alternative Expectations, and Emerging Markets. Journal of Interna-
tional Money and Finance, 25(1), 7-21.

[5] Colombo, E., Forte, G., Rossignoli, R. (2019). Carry Trade Returns with Support Vector
Machines. International Review of Finance, 19: 483-504.

[6] Davis, S.J., Liu, D., Sheng, X. (2020). Economic Policy Uncertainty in China Since 1949:
The View from Mainland Newspapers. Working paper.

[7] Diebold, F. X., Mariano, R.S. (1995) Comparing Predictive Accuracy. Journal of Business
and Economic Statistics, 13, 253-263.

[8] Engel, C. (2014). Exchange Rates and Interest Parity. In G. Gopinath, E. Helpman & K.
Rogoff (Eds.), Handbook of International Economics (Vol. 4, pp. 453-522): Elsevier.

[9] Fischer, T., Krauss, C. (2018). Deep Learning with Long Short-Term Memory Networks for
Financial Market Predictions. European Journal of Operational Research, 270(2), 654-669.

10



[10] Gu, S., Kelly, B., Xiu, D. (2020). Empirical Asset Pricing via Machine Learning. Review of
Financial Studies, 33(5), 2223-2273.

[11] Hochreiter, S., Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation,
9(8), 1735-1780.

[12] Jordà, Ò., Taylor, A. M. (2012). The Carry Trade and Fundamentals: Nothing to Fear but
FEER Itself. Journal of International Economics, 88(1), 74-90.

[13] Lustig, H., Verdelhan, A. (2007). The Cross Section of Foreign Currency Risk Premia and
Consumption Growth Risk. American Economic Review, 97(1), 89-117.

[14] Menkhoff, L., Sarno, L., Schmeling, M., Schrimpf, A. (2012). Carry Trades and Global
Foreign Exchange Volatility. The Journal of Finance, 67(2), 681-718.

[15] Rossi, B. (2013). Exchange Rate Predictability. Journal of Economic Literature, 51(4), 1063-
1119.

[16] West, K. D. (2012). Econometric Analysis of Present Value Models When the Discount Fac-
tor is Near One. Journal of Econometrics, 171(1), 86-97.

11



Online Appendix (Not for Publication)

LSTM networks. Below we first explain the information transmission within a memory cell, then

show the full model structure.

We elaborate the mechanism in a memory cell in Figure 1. There are three types of gates

that control how information flows in a memory cell: the input gate, the forget gate, and the

output gate. Denoting the hidden state as ht and the input as xt+1, we define the combined input

as mt+1 = [ht, xt+1]. First, the forget gate activation ft+1 determines how information in the

combined input can be transmitted:

ft+1 = σ (Wfmt+1 + bf ) , (4)

whereWf is the forget gate weight, bf is its associated bias, and the sigmoid function σ(s) = 1
1+e−s

ranges between 0 and 1. The forget gate passes little information to period t+ 1 if ft+1 is close to

0. Second, the input gate activation int+1 is also a sigmoid function:

int+1 = σ (Winmt+1 + bin) , (5)

where Win is the input gate weight and bin is the bias vector. The input gate allows more informa-

tion to “enter” if int+1 is close to 1. Third, denoting the cell state as c and the cell state candidate

as g, its evolution process follows

gt+1 = tanh (Wgmt+1 + bg) , (6)

ct+1 = ft+1 · ct + int+1 · gt+1, (7)

where Wg and bg are the weight and bias respectively, and the state activation function tanh(s) =

e2s−1
e2s+1

with range [-1,1] guarantees a reasonable cell state value. Overall, the forget gate ft+1
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Fig. 1: A memory cell in LSTM networks

controls how the cell state ct passes into ct+1, and the input gate int+1 controls how the combined

inputs are incorporated into ct+1. Finally, the output gate ot+1 and the hidden state ht+1 are

ot+1 = σ (Womt+1 + bo) , (8)

ht+1 = ot+1 · tanh (ct+1) , (9)

where Wo is the output gate weight and bo is its bias vector. The output gate determines how

the information in the cell state ct+1 can be transmitted into the new hidden state. Following

Sherstinsky (2020), let Q be an invertible map that transforms the hidden state to the output, then

the output is

yt+1 = Q(ht+1). (10)

Figure 2 illustrates how LSTM networks evolve over periods. LSTM networks update the cell

state and the hidden state from ct and ht to ct+1 and ht+1 with the input xt+1, and generate the
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... ... ... ...

...Period t Period t+1

Hidden layer

Input layer

Output layer

xt+1

yt+1

ct

ht 

ct+1

ht+1 

...

Fig. 2: LSTM networks in multiple periods

output yt+1. This process iterates until the last period t = T .

During the evolving process, the model minimizes the loss function in the data. Given the out-

put is the exchange rate movement êt+1, the mean squared error between the actual and predicted

values is a natural loss function. Following Fischer and Krauss (2018), the number of parameters

in LSTM layers is 4d(j+d)+4d, where d and j are the numbers of hidden units and input features

respectively. The term 4d(j+d) is the number of parameters in four weight matrices, and the term

4d is the number of parameters in bias.

In summary, the LSTM networks have four input features ∆et, π∗t −πt, i∗t−it, and qt− q̄ (all are

stationary after unit root tests), and we choose time step 2 as the best fit from time step candidates

1 to 5. The hidden layer has eight hidden neurons, corresponding to 416 parameters. Zhang et al.

(2017) show that neutral networks allow a relatively high ratio of the number of parameters over

that of observations. The output layer contains two neurons as a standard configuration.

Note. LSTM networks may degenerate to its parent model, the recurrent neural network

(RNN), by shutting down gates in (7) and (9):

ct+1 = Wcct +Whht +Wxxt+1 + bc,

ht+1 = tanh(ct+1),
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where Wc, Wh, Wx, and bc are weight matrices and bias to be estimated. The RNN model also fits

time series prediction but cannot optimize long and short term data transmission without gates.
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