
Locking in Linux kernel

Galois @ USTC Linux Users Group
zyf11@mail.ustc.edu.cn

Slides are powered by
OpenOffice.org+Linux+GNU+X31-150$

Copyright © 2005 Galois Y.F. Zheng

Permissions is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the
license can be downloaded from GNU's home:

 http://www.gnu.org/licenses/fdl.txt

Locking in Linux kernel

• OS review: Kernel Control Paths

• Locking in Linux

• Locking and Coding

• Conclusions

OS review: Kernel Control Paths

• CPU is stupid, running endlessly!

• But the codes in RAM is intelligent.
(They compete for CPU resources.)

• We people control the codes.

cpu, operating system, and human

2

1

3

4

2nd floor

1

3

4

2

“CPU” running endlessly

 endless rotating elevator: CPU

X : Codes 1

X : Codes 2

entrance

exit
1st floor

Human

2 31 4... : Kernel Control Path 1

1 2 3 4... : Kernel Control Path 2

OS review: Kernel Control Paths

• Interrupt handlers

• Exception handlers

• User-space threads in kernel(system calls)

• Kernel threads(idle, work queue, pdflush…)

• Bottom halves(soft irq, tasklet,BH...)

Pre-KCP: What is Kernel Control Path ?

Post-KCP: Is mm subsystem a KCP?
 NO, But mm codes are called by KCP.

OS review: Kernel Control Paths

• Kernel Control Paths(KCP).

• Kernel Data (global or local).

• Kernel Codes called by the KCPs.
• Bootstrap Codes, Initialization Codes, ...

What is the composition of a kernel?

Now we need Locking (between KCPs), Let's GO!

Locking in Linux kernel

• OS review: Kernel Control Paths

• Locking in Linux

• Locking and Coding

• Conclusions

Locking in Linux

What is Locking? A Simple example.

KCP 1:

load i; // i = 0
...
inc i;
store i; // i = 1

KCP 2:

load i; // i = 0
inc i;
...
store i; // i = 1

The result is wrong because of accessing “i” at the same time.

int i = 0

i = 1, wrong

Locking in Linux

What is Locking? A Simple example. (cont.)

KCP 1:
<locking starts>
load i; // i = 0
inc i;
store i; // i = 1
<locking ends>

KCP 2:

<locking starts>... failed.
waiting..
waiting..
<locking succeeds>
load i; //now i = 1
inc i;
store i; // i = 2
<locking ends>

int i = 0

i = 2, right!
x86 lock directive.:)

Locking in Linux

Another example...

Heart has no locking: a disordered world.

Give me
your heart.

Give me
your heart.

My heart
will panic.

!
!!

!

Locking: the world is well-ordered.

Give me
your heart.
 and lock it..

Give me
your heart.

My heart will
go on with you

Sigh...
Locking failed
Waiting...

Sorry.
I has been locked.

xixi ...
Locking succeeds.

Locking: the world is well-ordered.

Game over!
Give me
your heart.

Now I can
Lock you.

 now I'm ok.

Locking releases.

Now we know that

locking

makes the world romantic and beautiful.

Locking in Linux

• What is Locking. (cont.)
– Shared Data

– Does Code need locking ? - Yes, surprising!
• Critical Regions

– Concurrency caused by Kernel Control Paths
• Race Conditions ? - Must be avoided.

– Now we needs Synchronization . - Locking.

Locking in Linux

KCP 1
• Locking the queue

• Succeeded: acquired lock

• Access queue

• Unlock the queue

KCP 2
• Locking the queue

• Failed: waiting…

• Waiting…

• …

• Succeeded: acquired lock

• Access queue

• Unlock the queue.

Cited from LKD by R. Love

Concurrency and Locking : another example.

Locking in Linux

• Interrupts and Exceptions.

• Sleeping and synchronization.

• Kernel Preemption.

• SMP ! - a hot topic, even in embedded apps.

What Causes Concurrency?

Locking in Linux

Locking(Sync.) is important.

Let's get into the Locking details.

Locking in Linux

• 1 Atomics operations
• 2 Memory barriers
• 3 Spin locks
• 4 Reader-writer spin locks
• 5 Semaphores
• 6 Reader-writer semaphores

Various Locking mechanisms.

Locking in Linux

– 7 Condition(Completion) Variables
– 8 Sequence locks
– 9 Mask Interrupts(local and global)
– 10 Mask Bottom Halves
– 11 Disable Kernel Preemption
– 12 Read-Copy Update

–
– Big Kernel Lock - Historical, will be removed
– FUTEX ? - NO

Various Locking mechanisms. (cont.)

1 Atomics Operations

• atomic ops is for the concurrency caused by MP. not for other
concurrencies caused by preemption, sleep...

• atomic operations mechanisms(SMP env):

– cpu guaranteed atomic ops: read/write a byte, alined word...

– lock prefix: add, adc, and, cmpxchg, cmpxch8b, dec, inc, neg, not,
or, sbb, sub ,xor, xadd, btc,bts, btr

– xchg is automatically added lock prefix.

– cache coherency protocols.

1 Atomics Operations
<asm/atomic.h> <asm/bitops.h>

• atomic integer ops: (on atomic_t type v)

– atomic_read(v) v->counter not necessary

– atomic_set(v) v->counter not necessary

– atomic_add(i,v) v->counter+i lock;addl %1,%0

– ...

• atomic bitwise ops:

– set_bit(i,addr) set the i-th bit lock;btsl %1,%0

– clear_bit(i,addr) clear the i-th bit lock;btrl %1,%0

– test_and_set_bit lock;btsl %2,%1;sbbl %1,%0

– ...

• pseudo atomic bitwise ops: carefully!

– __set_bit(), __xxx() there is no lock prefix.

2 Memory Barriers basics

• gcc optimizes instruction streams.

• 386 is strong ordering, where read and write are issued on the system
bus in the order they occur..but pentium 4 is processor ordering, by
which cpu could improve performance.

• memory barriers hardware technologies(x86):

– serializing instructions

• mov(to control register/debug register), wrmsr, invd, invlpg,
wbinvd,lgdt,lldt,lidt,ltr;

• cpuid,iret,rsm (non-previledged)

• sfence(store), mfence(all), lfence(load) (non-preveledged)

– io instructions, read/write to uncached memory, interrupt ocurrence,
lock prefix

– mtrr and pat could control memory ordering.

2 Memory Barriers Methods
<asm/system.h>

• rmb(), prevents loads being reordered

• read_barrier_depends(), prevents data-dependent loads being reordered.

• wmb(), prevents stores being reordered.

• mb(), prevents loads and stores being reordered.

•

• barrier(), prevents GCC optimize loads and stores.

•

• smp_xxx(), on smp, provides xxx; on up provides barrier()

Note: “xxx” refers to rmb, wmb...

3 Spin locks
<linux/spinlock.h><asm/spinlock.h>

• Spinning on SMP. Spinning is null on UP.

• Don't hold it for a long time. less than context
switch time.

• spinlock automatically disables preemption, which
avoids deadlock caused by interrupts.

• when data is shared with interrupt handler, before
holding spinlock we must disable interrupts.

• when data is shared with bottom halves, before
holding spinlock we must disable bottom halves.

4 Spin Locks
(cont.)

• spin_lock() acquire lock

• spin_unlock() release lock

• spin_lock_irq() disable local interrupts and acquire lock

• spin_unlock_irq()

• spin_lock_irqsave() save current state of ints, ...

• spin_lock_irqrestore() restore....

• ...

5 Reader-writer spin locks
<asm/spinlock.h><linux/spinlock.h>

• Writing demands mutual exclusion.

• Multiple concurrent Readings is ok.

• When Reading, Writing must be disabled.

•

• Reading locks and writing locks are seperated.

• read_lock_xxx() read_unlock_xxx()

• write_lock_xxx() write_unlock_xxx()

•

• Problems: This locks favor readers over writers, which may
starve pending writers.

6 Semaphores
<asm/semaphore.h><arch/xxx/kernel/semaphore.c>

• Checking (struct semaphore*)->count, dec&inc is spinlocked.

• when initial count > 1, it allows arbitrary number of lock
holders. when initial count = 1, it is binary semaphore, also
called mutex which is used in many places.

• It is sleeping locks.

• Threads may sleep while holding semaphores.

• Threads can't acquire semaphores while holding spin lock.

•
• down() threads get into uninterruptible state

• down_interruptible(), threads get into interruptible state

• up() inc count, if count<=0, wake up waiting thread

• ...

7 Reader-writer semaphores
<linux/rwsem.h>

• WE can understand it.

•

• down_read(), down_read_trylock()

• up_read()

• down_write(), down_write_trylock()

• up_write()

•

• NOTE: unlike rw-spinlock, we can downgrade from
writelock to readlock.

Spin locks VS. semaphores
(recommended)

• low overhead locking, spinlock

• short lock hold time , spinlock

• long lock hold time , semaphore

• for interrupt context use, spin lock

• sleep while holding lock, semaphore

8 Condition(Completion) Variables
<linux/completion.h><kernel/sched.c>

• It is a very simple solution to a problem that semaphore
could resolve otherwise. but maybe it is not wise to fix
semaphore.

• It just checks a condition to decide what to do: sleep(wake
up) or continue(null). sleeping+spinning==>cv

• It is mainly for SMP.

•

• only 2 functions:

• wait_for_completion() if ok, then continue, else wait.

• complete() signal any waiting threads.

Semaphore VS. Con.Varible
down()

lock; dec %0
...
spin_lock(sem->wait.lock)
 //..., wait queue ops;
spin_unlock(sem->wait.lock)

up()
lock; inc %0
...
spin_lock(sem->wait.lock)
 //..., wait queue ops;
spin_unlock(sem->wait.lock)

wait_for_completion()
spin_lock(cv->wait.lock)
 //wait queue ops;
 //may unlock spin and sleep
 //dec cv->done
spin_unlock(cv->wait.lock)

complete()
spin_lock(cv->wait.lock)
 //inc cv->done
 //wait queue ops;
spin_unlock(cv->wait.lock)

complex and seperated locking simple and totally spinlocked

9 Sequence Locks
<linux/seqlock.h>

• For this situation: data has many readers and a few writers. like
RCU mechanism

• Unlike reader-writer locks, seqlock favors writers over readers.

• Readers never blocks, but have to retry for arbitray times if a
writer is in progress.

• Writers are mutually exclusive to change data, which is like spin
locks. But writers do not wait for readers.

do {
 seq = read_seqbegin_xxx(seq);
 // read data ...
} while (read_seqretry_xxx(seq))

write_seqlock_xxx();
// change data...
write_sequnlock_xxx();

Writers Readers

10 Mask interrupts(local and global)
<linux/interrupt.h><asm/system.h><kernel/irq/manage.c><asm/processor.h>

• Deal with CPU IF flag. which disable all interrupts of local
CPU (cli and sti instructions.)

• Masking PIC's irq line is another story. It makes serial
execution of same interrupt. but it could not prevent the
preemption from other interrupt.

• local_irq_disable(), local_irq_enable()

• Do you remember: spin_lock_irq() ? Disabling interrupts
are used with spin_lock().

•

• Global disabling: cruel! I don't know wheather removed. but
 we can use synchronize_irq() to synchronize all CPUs.

11 Mask Bottom Halves
<linux/interrupt.h>

• when data is shared with bottom halves,
maybe we need to disable bottom halves.

•
• local_bh_disable(), local_bh_enable():

– calling add_preempt_count()

• spin_lock_bh()

12 Kernel Preemption Disable
<linux/preempt.h>

• preemption points:
– interrupt return path,

– arbitrary preemption points in kernel codes.

•

• preempt_disable() and preempt_enable()

preempt_disable();
 int cpu = get_cpu();
 // manipulating per_cpu(xxx, cpu);
 // xxx is per_cpu data, such as runqueues.
preempt_enable

Thread 1, running on CPU 0

13 Read-Copy Updates
<linux/rcupdate.h>

• Best for read-mostly linked list(struct list_head).

• another Reader-Writer lock, but more complex and
advantaged.

• Reader will not block.

read grace period
(transition)

Transient state
(spec point)

update

write

Change new copy

(old copy)
create a copy

Big Kernel Lock: history

• Linux 2.0 - BKL about 1996 - SMP

• BSD/OS 4.x:

• FreeBSD 4.x: XXX – Giant (2000 -)
• goal : fine-grained locking

•

• Dragonfly BSD: forked from FreeBSD 4.x
• goal: lockless mem allocator and scheduling system

FUTEX

• Fast User Space Mutex
• It's for user-space threads synchronization.

• It's not a locking mechanism for kernel.

• It is implemented in kernel.

Relation of different locks implementations

atomics ops

mem barriers

spin lock
(rw)

semaphore
(rw)

con.variable

seq lockmask interrupts

preempt disable

disable_bh
RCU

simple complex

Locking in Linux kernel

• Kernel Control Paths

• Locking in Linux

• Locking and Coding

• Conclusions

Locking and Coding

• Is the data shared? Can other threads(contexts) access it?

• Is the data per-CPU’s? Can other CPUs access it? *

• Is the data shared between threads context and interrupt context? Is it
shared between two different interrupt handlers? …

• If a context is preempted while accessing this data, can the newly
scheduled context access the same data?

• Can the current context sleep on anything while accessing the data? If
it does, what state does that leave the shared data in?

• Does the data has special application? Keep in mind. *

• Now LET’S Continue CODING!

Locking and Coding

• Interrupt safe

• Preempt safe

• SMP safe
– (preempt safe ≦SMP safe)

Locking between various KCPs

• Exceptions..

• Interrupts..

• Bottom Halves..

• Kernel threads..

• System calls by user space threads..

1 between exception contexts
(UP:sleeping locks, SMP:+0)

• 1. Exception could not be caused in kernel. If any kernel
codes trigger an exception, this is a bug.

• 2. BUT page_fault and float-point registers exceptions

• 3. Exceptions could be caused by user-space codes.

• 4. According to 1st item, exception contexts could not
trigger another exceptions, including page_fault and float-
point registers exceptions. But exception contexts could be
preempted by interrupts, and after interrupts return ,the
preempted exceptions continue on same CPU.

• 5 so we could conclude that sleeping locking are enough.

2 between interrupts contexts
(UP:mask local interrupts, SMP:+spinlock)

• Interrupts contexts have no kernel stack. It
could not sleep. Do not use sleeping locks.

• Same interrupt context runs serially on same
CPU because irq_desc->handler.ack() in do_IRQ() masks
the irq line. On UP, This situation is simple.

• Same or different interrupts could be
triggered on different CPUs, so SMP
requires spinlock to prevent race condition.

3 between Bottom Halves
(UP:null, SMP:+spinlock)

• Do not use old BH mechanism, it has poor performance and
has been removed in 2.6.

• Softirqs could not been preempted, except by interrupts. so
on UP, there is no race conditions.

• Bottom Halves could not sleep like interrupts for the same
reasons.

• Same or different softirqs could run on different CPUs.

• Tasklets are based on softirqs. Only different tasklets could
run on different CPUs.

• From above descriptions, we can conclude that on SMP
softirqs and different tasklets should be protected with
spinlocks, same tasklet could be used locklessly.

4 between exceptions and interrupts/bh
(UP: mask interrupts, SMP:+spinlocks)

• Interrupts could not be preempted by exceptions, if
this situation happens, this is a bug!

• So exceptions could disable interrupts to avoid
preemption by interrupts.

•

• bh is like interrupts, it is executed in interrupt
contexts.

• However, exceptions could use local_bh_disable()
to disable bottom halves.

5 between BottomHalves and interrupts
(UP: mask interrupts, SMP: spinlock)

• Bottom halves could use disabling interrupts
to avoid concurrency.

• for SMP, spinlock is necessary and enough.

6 between kernel threads and interrupts/bh
(UP: mask interrupts, SMP:+spinlock)

• Interrupts could preempt threads. so disable
interrupts to protect data used by threads.

• Because interrupts could not be preempted,
so we use spinlock.

7 between threads
(spinlock or sleeping lock)

• NOTE: in 2.6, spinlock automatically disabling
preemptions.

• what to use: spinlock or sleeping lock?

low overhead locking, spinlock
short lock hold time, spinlock
long lock hold time, semaphore
sleep while holding lock, semaphore

8 between system calls
(spinning lock or sleeping lock)

• This is same as between kernel threads.

Locking used between various KCPs

 UP SMP+
exceptions -----------------------------sleepinglock null
interrupts ------------------------------mask interrupts spinlock
bottom halves -------------------------null spinlock or null
exceptions and interrupts/bh --------mask interrupts spinlock
bottom halves and interrupts -------mask interrupts spinlock
kernel threads and interrupts/bh ----mask interrupts spinlock
kernel threads ------------------------- sleeping or spin lock
system calls --------------------------- sleeping or spin lock

Kernel Configuration Tree and Debug
<make menuconfig>

• arch/xxx/Kconfig (mainmenu, <menu,endmenu>*)
– arch/xxx/Kconfig.debug

• lib/Kconfig.debug

– init/Kconfig

– fs/Kconfig.binfmt

– fs/Kconfig

– drivers/Kconfig.binfmt

– lib/Kconfig

– ...

• CONFIG_DEBUG_KERNEL
– CONFIG_DEBUG_SPINLOCK, CONFIG_SPINLOCK_SLEEP

– CONFIG_DEBUG_STACKOVERFLOW, CONFIG_4KSTACKS

– CONFIG_KDB(patches)

– ...

Locking in Linux kernel

• Kernel Control Paths

• Locking in Linux

• Locking and Coding

• Conclusions

Conclusions

• Locking or synchronization is a complex
problem, especially for large and/or complex
system.

• The problem caused by Locking in kernel is
not entirely predictive.

Locking: What is the problem?

• Implementing the actual locking in the code
to protect shared data is not hard.

• The tricky part is identifying the actual
shared data and corresponding critical
sections.

Cited from LKD, by R. Love

Locking: What is the problem?

• Deadlocks

• Priority Inversion

• Locking latency

• Locking: Coarse or fine-grained.
– Scalability VS. Overheads(performance).

– Not only Linux has the dilemma.

– Let’s keep close eyes at DragonflyBSD's progress

References

• Linux kernel source tree by Linus Torvalds and various
patches by hackers.

• Linux Kernel Development. by Robert Love.

• Understanding the Linux Kernel. by Daniel Bovet etc.

• www.freebsd.org/smp

• www.dragonflybsd.org

• .../kernel/Documents/*, google, gcc document...

• Pentium 4 software development document(3 volumes).

Thanks

• USTC BBS embedded board master: dj

• All the organizers and/or friends of the USTC 2005
developer workshop of embedded system.

• USTC Linux Users Group.

Happy Life, Happy Hacking.

THANKS

