Locking in Linux kernel

Galois @ USTC Linux Users Group
zyfll@mail.ustc.edu.cn

Slides are powered by
OpenOffice.org+Linux+GNU+X31-150$

Copyright © 2005 Galois Y.F. Zheng

Permissions is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the
license can be downloaded from GNU's home:
http://www.gnu.org/licenses/fdl.txt

Locking in Linux kernel

OSreview: Kernel Control Paths
Locking in Linux

L ocking and Coding
Conclusions

OSreview: Kernel Control Paths

Cpu, operating system, and human

e CPU isstupid, running endlessly!

« But the codesin RAM isintelligent.
(They compete for CPU resources.)

« \We people control the codes.

endless rotating elevator: CPU

O
2nd floor /’

SN

Human

1st floor

O

; 1 éé éé : Kerndl Control Path 1
oy Codes I I

ﬁ : Codes 2 ﬁﬁ ﬁf : Kernel Control Path 2

OSreview: Kernel Control Paths

Pre-K CP: What i1s Kernel Control Path ?

e Interrupt handlers

e Exception handlers

« User-space threads in kernel (system calls)

« Kernel threads(idle, work queue, pdfiush...)
« Bottom halves(soft irg, tasklet,BH...)

Post-K CP: Is mm subsystem a KCP?
NO, But mm codes are called by KCP.

OSreview: Kernel Control Paths

What is the composition of akernel?

Kernel Control Paths(KCP).
Kernel Data (global or local).

Kernel Codes called by the KCPs.
Bootstrap Codes, Initialization Codes, ...

Now we need Locking (between KCPs), Let's GO!

Locking in Linux kernel

OSreview: Kernel Control Paths
Locking In Linux

L ocking and Coding
Conclusions

Locking In Linux

What isLocking? A Simple example.

int =0
KCP 1. KCP 2.

loadi;: [//i=0
- loadi; //1=0
inci: Inci;

storei; /li=1

> storei; /li=1

| = 1, wrong

The result iswrong because of accessing “i” at the same time.

Locking in Linux

What isLocking? A Simple example. (cont.)

Int 1=0

KCP 1. KCP 2

<locking starts>

loadi; //1=0 <locking starts>... failed.

INCI; waiting..

storei; //i=1 waiting..

<|ocking ends> »<|ocking succeeds>
loadi; /inowi=1
INCI;

storei; /l1=2
<locking ends>

x86 lock directive.:)

| = 2, right!

Locking in Linux

Another example...

My heart
will panic.

Give me
your heart.

Giveme
our heart.

Heart has no locking: a disordered world.

My heart will
go on with you

Sorry.

I\has been locked,| Giveme
/\ your heart.

Sigh...
Locking failed

L ocking succeeds.

//

Locking: the world is well-ordered.

Q\Locki ng rel eases

L
|

—_

Locking: the world is well-ordered.

Now we know that
locking
makes the world romantic and beautiful.

Locking In Linux

« \What is Locking. (cont.)
— Shared Data
— Does Code need locking ? - Yes, surprising!
 Critical Regions
— Concurrency caused by Kernel Control Paths
« Race Conditions ? - Must be avoided.
— Now we needs Synchronization . - Locking.

Locking in Linux

Concurrency and Locking : another example.

KCP1 KCP 2
« Locking the queue « Locking the queue
» Succeeded: acquired lock < Failed: waiting...
« Access queue « Waiting...
e Unlock the queue .

T, Succeeded: acquired lock

e Access queue
Unlock the queue.

Cited from LKD by R. Love

Locking In Linux

What Causes Concurrency?

Interrupts and Exceptions.

Sleeping and synchronization.

Kernel Preemption.

SMP'! - ahot topic, even in embedded apps.

Locking In Linux

L ocking(Sync.) is important.
Let's get into the Locking details.

Locking In Linux

Various Locking mechanisms.

1 Atomics operations

2 Memory barriers

3 Spin locks

4 Reader-writer spin locks
5 Semaphores

6 Reader-writer semaphores

Locking In Linux

Various Locking mechanisms. (cont.)

— 7 Condition(Completion) Variables

— 8 Sequence locks

— 9 Mask Interrupts(local and global)

— 10 Mask Bottom Halves

— 11 Disable Kernel Preemption

— 12 Read-Copy Update

— Big Kernel Lock - Historical, will be removed
— FUTEX ? -NO

1 Atomics Operations

« atomic opsisfor the concurrency caused by MP. not for other
concurrencies caused by preemption, sleep...

e atomic operations mechanisms(SMP env):
— Cpu guaranteed atomic ops. read/write a byte, alined word...

— lock prefix: add, adc, and, cmpxchg, cmpxch8b, dec, inc, neg, not,
or, sbb, sub ,xor, xadd, btc,bts, btr

— xchg isautomatically added lock prefix.
— cache coherency protocols.

1 Atomics Operations

<asm/atomic.h> <asm/bitops.h>

atomic integer ops. (on atomic _t typev)

— atomic _read(v) v->counter not necessary
— atomic_set(v) V->counter not necessary
— atomic_add(i,v) v->counter+i lock;addl %1,%00

atomic bitwise ops:

— set_bit(i,addr) set the i-th bit lock;btdl %1,%0
— clear_bit(i,addr) clear thei-th bit lock;btrl %1,%0
— test and set hit lock;btd %2,%1;sbbl %1,%0

pseudo atomic bitwise ops. carefully!
— __set_bit(), __ xxx() thereisno lock prefix.

2 Memory Barriers basics

gcc optimizes instruction streams.

386 is strong ordering, where read and write are issued on the system
bus in the order they occur..but pentium 4 is processor ordering, by
which cpu could improve performance.

memory barriers hardware technol ogies(x86):
— serializing instructions

« mov(to control register/debug register), wrmsr, invd, invlpg,
whbinvd,|gdt,lldt,lidt,Itr;

e cpuid,iret,rsm (non-previledged)
« sfence(store), mfence(all), Ifence(load) (non-preveledged)

— loinstructions, read/write to uncached memory, interrupt ocurrence,
lock prefix

— mitrr and pat could control memory ordering.

2 Memory Barriers Methods

<asm/system.h>

rmb(), prevents loads being reordered

read barrier_depends(), prevents data-dependent |oads being reordered.
wmb(), prevents stores being reordered.

mb(), prevents loads and stores being reordered.

barrier(), prevents GCC optimize loads and stores.

smp _xxX(), onsmp, provides xXxx; on up provides barrier()

Note: “xxx” refersto rmb, wmb...

3 Spin locks

<linux/spinlock.h><asm/spinlock.h>

Spinning on SMP. Spinning is null on UP.

Don't hold it for along time. less than context
switch time.

spinlock automatically disables preemption, which
avolds deadlock caused by interrupts.

when data is shared with interrupt handler, before
holding spinlock we must disable interrupts.

when data is shared with bottom halves, before
holding spinlock we must disable bottom halves.

4 Spin Locks

(cont.)
spin_lock() acquire lock
spin_unlock() release lock

spin_lock irq() disablelocal interrupts and acquire lock
spin_unlock_irg()

spin_lock_irgsave() save current state of ints, ...
spin_lock_irgrestore() restore....

5 Reader-writer spin locks

<asm/spinlock.h><linux/spinlock.h>

Writing demands mutual exclusion.
Multiple concurrent Readings is ok.
When Reading, Writing must be disabled.

Reading locks and writing locks are seperated.
read lock xxx() read unlock xxx()
write lock xxx() write _unlock xxxX()

Problems: This locks favor readers over writers, which may
starve pending writers.

6 Semaphores

<asm/semaphore.h><arch/xxx/kernel/semaphore.c>

Checking (struct semaphore*)->count, dec&inc is spinlocked.

when initial count > 1, it allows arbitrary number of lock
holders. when initial count = 1, it is binary semaphore, also
called mutex which is used in many places.

It is slegping locks.
Threads may sleep while holding semaphores.
Threads can't acquire semaphores while holding spin lock.

down() threads get into uninterruptible state
down_interruptible(), threads get into interruptible state
up() inc count, if count<=0, wake up waiting thread

/ Reader-writer semaphores

<linux/rwsem.h>

WE can understand it.

down _read(), down read trylock()
up_read()
down_write(), down_write trylock()

up_write()

NOTE: unlike rw-spinlock, we can downgrade from
writelock to readlock.

Spin locks VS. semaphores

(recommended)
low overhead locking, » Spinlock
short lock hold time = Spinlock
long lock holdtime » semaphore
for interrupt context use, » Spinlock

sleep while holding lock, » semaphore

8 Condition(Completion) VVariables

<linux/completion.h><kernel/sched.c>

It isavery simple solution to a problem that semaphore
could resolve otherwise. but maybe it is not wise to fix
semaphore.

It just checks a condition to decide what to do: sleep(wake
up) or continue(null). sleeping+spinning==>cv

It ismainly for SMP.

only 2 functions:
wait_for_completion() If ok, then continue, else walt.
complete() signal any waiting threads.

Semaphore VS. Con.Varible

wait_for_completion()

down()
lock; dec %0 spin_lock(cv->wait.lock)
/lwait queue ops,
spin_lock(sem->wait.lock) //may unlock spin and sleep

//dec cv->done

/l..., wait queue ops,
spin_unlock(cv->wait.lock)

spin_unlock(sem->wait.lock)

up() complete()
lock; inc %0 xspi n_lock(cv->wait.lock)
//inc cv->done
spin_lock(sem->wait.lock) [lwait queue ops;
/l..., wait queue ops, spin_unlock(cv->wait.lock)

spin_unlock(sem->wait.lock)

complex and seperated locking simple and totally spinlocked

O Sequence Locks

<linux/seqglock.h>
For this situation: data has many readers and a few writers. like
RCU mechanism
Unlike reader-writer locks, seglock favors writers over readers.

Readers never blocks, but haveto retry for arbitray timesif a
writer Isin progress.

Writers are mutually exclusive to change data, which is like spin
locks. But writers do not walt for readers.

write_seglock xxx();
I/ change data...
write_sequnlock_xxx();

seq = read segbegin_ xxx(seq);
// read data ...
} while (read _seqgretry xxx(seq))

Writers Readers

10 Mask interrupts(local and global)

<linux/interrupt.h><asm/system.h><kernel/irg/manage.c><asm/processor.h>

Deal with CPU IF flag. which disable all interrupts of local
CPU (cli and sti instructions.)

Masking PIC'sirg line is another story. It makes serial
execution of same interrupt. but it could not prevent the
preemption from other interrupt.

local _irq _disable(), local _irg enable()

Do you remember: spin_lock irq() ? Disabling interrupts
are used with spin_lock().

Global disabling: cruel! | don't know wheather removed. but
we can use synchronize irq() to synchronize all CPUs.

11 Mask Bottom Halves

<linux/interrupt.h>

« When datais shared with bottom halves,
maybe we need to disable bottom halves.

« |ocal bh disable(), local _bh enable():
—calling add_preempt_count()
e spin_lock bh()

12 Kernel Preemption Disable

<linux/preempt.h>
e preemption points:
— Interrupt return path,
— arbitrary preemption pointsin kernel codes.

e preempt_disable() and preempt_enable()

preempt_disable();
int cpu = get_cpu();
/[manipulating per_cpu(xxx, cpu);
I/ Xxx is per_cpu data, such as rungueues.
preempt_enable

Thread 1, running on CPU O

13 Read-Copy Updates

<linux/rcupdate.n>

e Best for read-mostly linked list(struct list_head).

« another Reader-Writer lock, but more complex and
advantaged.

o Reader will not block.

read —»graceperiod . Transient state »update
/4 (transition) (spec point)

_ (old copy
Write > cregte a copy

Change new copy

Big Kernel Lock: history

Linux 2.0 - BKL about 1996 - SMP
BSD/OS 4.x:

FreeBSD 4.x: XXX — Giant (2000 -)
 goal : fine-grained locking

Dragonfly BSD: forked from FreeBSD 4.x

 goal: lockless mem allocator and scheduling system

FUTEX

e Fast Usar Space Mutex

e It'sfor user-space threads synchronization.
o It's not alocking mechanism for kernel.
e Itisimplemented in kernel.

Relation of different locks implementations

smple ——— > complex

mem barriers

preempt disable

disable_bh

Locking in Linux kernel

Kernel Control Paths
Locking in Linux

L ocking and Coding
Conclusions

Locking and Coding

|s the data shared? Can other threads(contexts) access it?
|s the data per-CPU’ s? Can other CPUs access it? *

|s the data shared between threads context and interrupt context? Is it
shared between two different interrupt handlers? ...

If acontext is preempted while accessing this data, can the newly
scheduled context access the same data?

Can the current context slegp on anything while accessing the data? If
It does, what state does that |eave the shared datain?

Does the data has special application? Keep in mind. *

Now LET'S Continue CODING!

Locking and Coding

 Interrupt safe
e Preempt safe
« SMP safe

— (preempt safe =SMP safe)

L ocking between various KCPs

Exceptions..
Interrupts..
Bottom Halves..

Kernel threads..
System calls by user space threads..

1 between exception contexts
(UP:sleeping locks, SMP:+0)

1. Exception could not be caused in kernel. If any kernel
codes trigger an exception, thisis abug.

2. BUT page fault and float-point registers exceptions
3. Exceptions could be caused by user-space codes.

4. According to 1% item, exception contexts could not
trigger another exceptions, including page fault and float-
point registers exceptions. But exception contexts could be
preempted by interrupts, and after interrupts return ,the
preempted exceptions continue on same CPU.

5 so we could conclude that sleeping locking are enough.

2 between Interrupts contexts
(UP:mask local interrupts, SM P:+spinlock)

e Interrupts contexts have no kernel stack. It
could not sleep. Do not use sleeping locks.

e Same interrupt context runs serially on same

CPU because irq desc->handler.ack() IN do_IRQ) MAasSKS
theirg line. On UP, This situation issimple.

« Same or different interrupts could be
triggered on different CPUs, so SMP
reguires spinlock to prevent race condition.

3 between Bottom Halves
(UP:null, SMP:+spinlock)

Do not use old BH mechanism, it has poor performance and
has been removed in 2.6.

Softirgs could not been preempted, except by interrupts. so
on UP, there is no race conditions.

Bottom Halves could not sleep like interrupts for the same
reasons.

Same or different softirgs could run on different CPUs.

Tasklets are based on softirgs. Only different tasklets could
run on different CPUSs.

From above descriptions, we can conclude that on SMP
softirgs and different tasklets should be protected with
spinlocks, same tasklet could be used locklesdly.

4 between exceptions and interrupts/bh
(UP: mask interrupts, SM P:+spinlocks)

 |nterrupts could not be preempted by exceptions, if
this situation happens, thisis abug!

« S0 exceptions could disable interrupts to avoid
preemption by interrupts.

e bhislikeinterrupts, it is executed in interrupt
contexts.

« However, exceptions could use local _bh disable()
to disable bottom halves.

5 between BottomHalves and interrupts
(UP: mask interrupts, SMP: spinlock)

« Bottom halves could use disabling interrupts
to avoid concurrency.

o for SMP, spinlock Is necessary and enough.

6 between kernel threads and interrupts/bh
(UP: mask interrupts, SM P:+spinlock)

e Interrupts could preempt threads. so disable
Interrupts to protect data used by threads.

« Because interrupts could not be preempted,
SO we use spinlock.

/ between threads

(spinlock or slegping lock)

« NOTE: In 2.6, spinlock automatically disabling
preemptions.

« what to use: spinlock or sleeping lock?

spinlock
spinlock
semaphor

low overhead locking,
short lock hold time,
long lock hold time,
slegp while holding lock,

8 between system calls

(spinning lock or sleegping lock)

e Thisis same as between kerndl threads.

L ocking used between various KCPs

UP SMP+
exceptions ----------------=mmmmmmmmmeo sleepinglock null
Interrupts ---------------------=--——---- mask interrupts spinlock
bottom halves --------------------——--- null spinlock or null
exceptions and interrupts/bh -------- mask interrupts spinlock
bottom halves and interrupts ------- mask interrupts spinlock
kernel threads and interrupts/bh ----mask interrupts spinlock
kernel threads ------------------------- sleeping or spin lock

system calls --------=---===nmmmmmmmeea- sleeping or spin lock

Kernel Configuration Tree and Debug

<make menuconfig>

« arch/xxx/Kconfig (mainmenu, <menu,endmenu>*)

— arch/xxx/Kconfig.debug
. lib/K config.debug

— init/Kconfig

— fg/Kconfig.binfmt

— fg/Kconfig

— drivers/Kconfig.binfmt
— lib/Kconfig

. CONFIG DEBUG KERNEL
— CONFIG_DEBUG SPINLOCK, CONFIG_SPINLOCK_SLEEP
— CONFIG_ DEBUG _STACKOVERFLOW, CONFG 4KSTACKS
— CONFIG_KDB(patches)

Locking in Linux kernel

Kernel Control Paths
Locking in Linux

L ocking and Coding
Conclusions

Conclusions

« Locking or synchronization is a complex
problem, especially for large and/or complex
system.

e The problem caused by Locking in kernel is
not entirely predictive.

Locking: What I1s the problem?

« Implementing the actual locking in the code
to protect shared datais not hard.

e Thetricky part isidentifying the actual
shared data and corresponding critical
Sections.

Cited from LKD, by R. Love

Locking: What I1s the problem?

Deadlocks
Priority Inversion
_ocking latency

_ocking: Coarse or fine-grained.

— Scalability VS. Overheads(performance).

— Not only Linux hasthe dilemma.

— Let’skeep close eyes at DragonflyBSD's progress

References

Linux kernel source tree by Linus Torvalds and various
patches by hackers.

Linux Kernel Development. by Robert Love.
Understanding the Linux Kernel. by Daniel Bovet etc.
www.freebsd.org/smp

www.dragonflybsd.org

.../lkernel/Documents/*, google, gcc document...
Pentium 4 software devel opment document(3 volumes).

Thanks

« USTC BBS embedded board master: d

 All the organizers and/or friends of the USTC 2005
devel oper workshop of embedded system.

e USTC Linux Users Group.

Happy Life, Happy Hacking.
THANKS

