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As opposed to the point estimators (means, variances) used by classical statis-
tics, Bayesian statistics is concerned with generating the posterior distribution
of the unknown parameters given both the data and some prior density for these
parameters. As such, Bayesian statistics provides a much more complete picture
of the uncertainty in the estimation of the unknown parameters, especially after
the confounding effects of nuisance parameters are removed.

Our treatment here is intentionally quite brief and we refer the reader to
Lee (1997) and Draper (2000) for a complete introduction to Bayesian analysis,
and the introductory chapters of Tanner (1996) for a more condensed treatment.
While very deep (and very subtle) differences in philosophy separate hard-core
Bayesians from hard-core frequentists (Efron 1986, Glymour 1981), our treatment
here of Bayesian methods is motivated simply by their use as a powerful statistical
tool.

BAYES’ THEOREM

The foundation of Bayesian statistics is Bayes’ theorem. Suppose we observe a
random variable y and wish to make inferences about another random variable θ,
where θ is drawn from some distribution p(θ). From the definition of conditional
probability,

Pr(θ | y) =
Pr(y, θ)
Pr(y)

(1a)

Again from the definition of conditional probability, we can express the joint
probability by conditioning on θ to give

Pr(y, θ) = Pr(y | θ) Pr(θ) (1b)

Putting these together gives Bayes’ theorem:

Pr(θ | y) =
Pr(y | θ) Pr(θ)

Pr(y)
(2a)

With n possible outcomes (θ1, · · · , θn),

Pr(θj | y) =
Pr(y | θj) Pr(θj)

Pr(y)
=

Pr(y | θj)
n∑
i=1

Pr(bi) Pr(y | θi)
(2b)
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Pr(θ) is the prior distribution of the possible θ values, while Pr(θ | y) is the
posterior distribution of θ given the observed data y. The origin of Bayes’ theorem
has a fascinating history (Stigler 1983). It is named after the Rev. Thomas Bayes,
a priest who never published a mathematical paper in his lifetime. The paper
in which the theorem appears was posthumously read before the Royal Society
by his friend Richard Price in 1764. Stigler suggests it was first discovered by
Nicholas Saunderson, a blind mathematician/optician who, at age 29, became
Lucasian Professor of Mathematics at Cambridge (the position held earlier by
Issac Newton).

Example 1. Suppose one in every 1000 families has a genetic disorder (sex-bias)
in which they produce only female offspring. For any particular family we can
define the (indicator) random variable

θ =
{

0 normal family

1 sex-bias family

Suppose we observe a family with 5 girls and no boys. What is the probability that
this family is a sex-bias family? From prior information, there is a 1/1000 chance
that any randomly-chosen family is a sex-bias family, so Pr(θ = 1) = 0.001.
Likewise y = five girls, and Pr(five girls | sex bias family) = 1. This is Pr(y | θ). It
remains to compute the probability that a random family from the population with
five children has all girls. Conditioning over all types of families (normal + sex-
bias), Pr( 5 girls) = Pr(5 girls | normal)*Pr(normal) + Pr(5 girls | sex-bias)*Pr(sex-
bias), giving

Pr(y) = (1/2)5 · (999/1000) + 1 · (1/1000) = 0.0322

Hence,

Pr(θ = 1 | y = 5 girls) =
Pr(y | θ = 1) Pr(θ = 1)

Pr(y)
=

1 · 0.001
0.0322

= 0.032

Thus, a family with five girls is 32 times more likely than a random family to have
the sex-bias disorder.

Example 2. Suppose a major gene (with alleles Q and q) underlies a character
of interest. The distribution of phenotypic values for each major locus genotype
follows a normal distribution with variance one and means 2.1, 3.5, and 1.3 for
QQ, Qq, and qq (respectively). Suppose the frequencies of these genotypes for a
random individual drawn from the population are 0.3, 0.2, and 0.5 (again for QQ,
Qq, and qq respectively). If an individual from this population has a phenotypic
value of 3, what is the probability of it being QQ? Qq? qq?
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Let ϕ(z |µ, 1) = (2π)−1/2e−(z−µ)2/2 denote the density function for a normal
with mean µ and variance one. To apply Bayes’ theorem, the values for the priors
and the conditionals are as follows:

Genotype, G Pr(G) Pr(y|G) Pr(G)·Pr(y|G)

QQ 0.3 ϕ(3 | 2.1, 1) = 0.177 0.053
Qq 0.2 ϕ(3 | 3.5, 1) = 0.311 0.062
qq 0.5 ϕ(3 | 1.3, 1) = 0.022 0.011

Since
∑
G Pr(G)·Pr(y |G) = 0.126, Bayes’ theorem gives the posterior probabilities

for the genotypes given the observed value of 3 as:

Pr(QQ | y = 3) = 0.177/0.126 = 0.421

Pr(Qq | y = 3) = 0.311/0.126 = 0.491

Pr(qq | y = 3) = 0.022/0.126 = 0.088

Thus, there is a 42 percent chance this individual has genotype QQ, a 49 percent
chance it is Qq, and only an 8.8 percent chance it is qq.

Finally, the continuous multivariate version of Bayes’ theorem is

p(Θ |y) =
p(y |Θ) p(Θ)

p(y)
=
p(y |Θ) p(Θ)∫
p(y,Θ) dΘ

(3)

whereΘ = (θ(1), θ(2), · · · , θ(k)) is a vector of k (potentially) continuous variables.
As with the univariate case, p(Θ) is the assumed prior distribution of the unknown
parameters, while p(Θ |y) is the posterior distribution given the prior p(Θ) and
the data y.

FROM LIKELIHOOD TO BAYESIAN ANALYSIS

The method of maximum likelihood and Bayesian analysis are closely related.
Suppose `(Θ |x) is the assumed likelihood function. Under ML estimation, we
would compute the mode (the maximal value of `, as a function of Θ given the
data x) of the likelihood function, and use the local curvature to construct confi-
dence intervals. Hypothesis testing follows using likelihood-ratio (LR) statistics.
The strengths of ML estimation rely on its large-sample properties, namely that
when the sample size is sufficiently large, we can assume both normality of the
test statistic about its mean and that LR tests follow χ2 distributions. These nice
features don’t necessarily hold for small samples.



4 INTRODUCTION TO BAYESIAN ANALYSIS

An alternate way to proceed is to start with some initial knowledge/guess
about the distribution of the unknown parameter(s), p(Θ). From Bayes’ theo-
rem, the data (likelihood) augment the prior distribution to produce a posterior
distribution,

p(Θ |x) =
1

p(x)
· p(x |Θ) · p(Θ) (4a)

=
(

normalizing
constant

)
· p(x |Θ) · p(Θ) (4b)

= constant · likelihood · prior (4c)

as p(x |Θ) = `(Θ |x) is just the likelihood function. 1/p(x) is a constant (with
respect to Θ), because our concern is the distribution over θ. Because of this, the
posterior distribution is often written as

p(Θ |x) ∝ `(Θ |x)p(Θ) (4d)

where the symbol ∝means “proportional to” (equal up to a constant). Note that
the constant p(x) normalizes p(x |Θ) · p(Θ) to one, and hence can be obtained by
integration,

p(x) =
∫
Θ
p(x |Θ) · p(Θ)dΘ (5)

The dependence of the posterior on the prior (which can easily be assessed by
trying different priors) provides an indication of how much information on the
unknown parameter values is contained in the data. If the posterior is highly
dependent on the prior, then the data likely has little signal, while if the posterior
is largely unaffected under different priors, the data are likely highly informative.
To see this, taking logs on Equation 4c (and ignoring the normalizing constant)
gives

log(posterior) = log(likelihood) + log(prior) (6)

Marginal Posterior Distributions

Often, only a subset of the unknown parameters is really of concern to us, the
rest being nuisance parameters that are really of no concern to us. A very strong
feature of Bayesian analysis is that we can remove the effects of the nuisance pa-
rameters by simply integrating them out of the posterior distribution to generate
a marginal posterior distribution for the parameters of interest. For example,
suppose the mean and variance of data coming from a normal distribution are
unknown, but our real interest is in the variance. Estimating the mean introduces
additional uncertainly into our variance estimate. This is not fully capture in stan-
dard classical approaches, but under a Bayesian analysis, the posterior marginal
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distribution for σ2 is simply

p(σ2 |x) =
∫
p(µ, σ2 |x ) dµ

The marginal posterior may involve several parameters (generating joint
marginal posteriors). Write the vector of unknown parameters asΘ = (Θ1,Θn),
where Θn is the vector of nuisance parameters. Integrating over Θn gives the
desired marginal as

p(Θ1 |y) =
∫
Θn

p(Θ1,Θn |y) dΘn (7)

SUMMARIZING THE POSTERIOR DISTRIBUTION

How do we extract a Bayes estimator for some unknown parameter θ? If our
mindset is to use some sort of point estimator (as is usually done in classical
statistics), there are a number of candidates. We could follow maximum likelihood
and use the mode of the distribution (its maximal value), with

θ̂ = max
θ

[ p( θ |x )] (8a)

We could take the expected value of θ given the posterior,

θ̂ = E[ θ |x ] =
∫
θ p( θ |x )dθ (8b)

Another candidate is the medium of the posterior distribution, where the esti-
mator satisfies Pr(θ > θ̂ |x) = Pr(θ < θ̂ |x) = 0.5, hence

∫ +∞

θ̂

p( θ |x )dθ =
∫ θ̂

−∞
p( θ |x )dθ =

1
2

(8c)

However, using any of the above estimators, or even all three simultaneously, loses
the full power of a Bayesian analysis, as the full estimator is the entire posterior
density itself . If we cannot obtain the full form of the posterior distribution, it
may still be possible to obtain one of the three above estimators. However, as we
will see later, we can generally obtain the posterior by simulation using Gibbs
sampling, and hence the Bayes estimate of a parameter is frequently presented as
a frequency histogram from (Gibbs) samples of the posterior distribution.

Highest Density Regions (HDRs)
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Given the posterior distribution, construction of confidence intervals is obvious.
For example, a 100(1− α) confidence interval is given by any (Lα/2, Hα/2) satis-
fying ∫ Hα/2

Lα/2

p(θ |x) dθ = 1− α

To reduce possible candidates, one typically uses highest density regions, or
HDRs, where for a single parameter the HDR 100(1−α) region(s) are the shortest
intervals giving an area of (1−α). More generally, if multiple parameters are being
estimated, the HDR region(s) are those with the smallest volume in the parameter
space. HDRs are also referred to as Bayesian confidence intervals or credible
intervals.

It is critical to note that there is a profound difference between a confidence
interval (CI) from classical (frequentist) statistics and a Bayesian interval. The
interpretation of a classical confidence interval is that is we repeat the experiment a
large number of times, and construct CIs in the same fashion, that (1−α) of the time
the confidence interval with enclose the (unknown) parameter. With a Bayesian
HDR, there is a (1 − α) probability that the interval contains the true value of
the unknown parameter. Often the CI and Bayesian intervals have essentially the
same value, but again the interpretational difference remains. The key point is that
the Bayesian prior allows us to make direct probability statements about θ, while
under classical statistics we can only make statements about the behavior of the
statistic if we repeat an experiment a large number of times. Given the important
conceptual difference between classical and Bayesian intervals, Bayesians often
avoid using the term confidence interval.

Bayes Factors and Hypothesis Testing

In the classical hypothesis testing framework, we have two alternatives. The null
hypothesis H0 that the unknown parameter θ belongs to some set or interval Θ0

(θ ∈ Θ0), versus the alternative hypothesis H1 that θ belongs to the alternative
set Θ1 (θ ∈ Θ1). Θ0 and Θ1 contain no common elements (Θ0 ∩Θ1 = ®) and the
union of Θ0 and Θ1 contains the entire space of values for θ (i.e., Θ0 ∪Θ1 = Θ).

In the classical statistical framework of the frequentists, one uses the observed
data to test the significant of a particular hypothesis, and (if possible) compute a
p-value (the probability p of observing the given value of the test statistic if the
null hypothesis is indeed correct). Hence, at first blush one would think that the
idea of a hypothesis test is trivial in a Bayesian framework, as using the posterior
distribution

Pr(θ > θ0) =
∫
θ0

p( θ |x) dθ and Pr(θ0 < θ < θ1) =
∫ θ1

θ0

p( θ |x) dθ

The kicker with a Bayesian analysis is that we also have prior information and
Bayesian hypothesis testing addresses whether, given the data, we are more or less
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inclined towards the hypothesis than we initially were. For example, suppose for
the prior distribution of θ is such that Pr(θ > θ0) = 0.10, while for the posterior
distribution Pr(θ > θ0) = 0.05. The later is significant at the 5 percent level in a
classical hypothesis testing framework, but the data only doubles our confidence
in the alternative hypothesis relative to our belief based on prior information. If
Pr(θ > θ0) = 0.50 for the prior, then a 5% posterior probability would greatly in-
crease our confidence in the alternative hypothesis. Hence, the prior probabilities
certainly influence hypothesis testing.

To formalize this idea, let

p0 = Pr(θ ∈ Θ0 |x), p1 = Pr(θ ∈ Θ1 |x) (9a)

denote the probability, given the observed data x, that θ is in the null (p0) and
alternative (p1) hypothesis sets. Note that these are posterior probabilities. Since
Θ0 ∩Θ1 = ® and Θ0 ∪Θ1 = Θ, it follows that p0 + p1 = 1. Likewise, for the prior
probabilities we have

π0 = Pr(θ ∈ Θ0 ), π1 = Pr(θ ∈ Θ1 ) (9b)

Thus the prior odds of H0 versus H1 are π0/π1, while the posterior odds are p0/p1.
The Bayes factor B0 in favor of H0 versus H1 is given by the ratio of the

posterior odds divided by the prior odds,

B0 =
p0/p1

π0/π1
=
p0π1

p1π0
(10a)

The Bayes factor is loosely interpreted as the odds in favor of H0 versus H1 that
are given by the data. Since π1 = 1− π0 and p1 = 1− p0, we can also express this
as

B0 =
p0(1− π0)
π0(1− p0)

(10b)

Likewise, by symmetry note that the Bayes factor B1 in favor of H1 versus H0 is
just

B1 = 1/B0 (10c)

Consider the first case where the prior and posterior probabilities for the null were
0.1 and 0.05 (respectively). The Bayes factor in favor of H1 versus H0 is given by

B1 =
π0(1− p0)
p0(1− π0)

=
0.5 · 0.95
0.05 · 0.5 = 2.11

Similarly, for the second example where the prior for the null was 0.5,

B1 =
0.1 · 0.95
0.05 · 0.5 = 19
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When the hypotheses are simple, say Θ0 = θ0 and Θ1 = θ1, then for i = 0, 1,

pi ∝ p(θi) p(x | θi) = πi p(x | θi)

Thus
p0

p1
=
π0 p(x | θ0)
π1 p(x | θ1)

(11a)

and the Bayes factor (in favor of the null) reduces the

B0 =
p(x | θ0)
p(x | θ1)

(11b)

which is simply a likelihood ratio.
When the hypotheses are composite (containing multiple members), things

are slightly more complicated. First note that the prior distribution of θ condi-
tioned on H0 vs. H1 is

pi(θ) = p(θ)/πi for i = 0, 1 (12)

as the total probability θ ∈ Θi = πi, so that dividing by πi normalizes the distri-
bution to integrate to one. Thus

pi = Pr(θ ∈ Θi |x) =
∫
θ∈Θi

p(θ |x)dθ

∝
∫
θ∈Θi

p(θ)p(x | θ)dθ

= πi

∫
θ∈Θi

p(x | θ)pi(θ)dθ (13)

where the second step follows from Bayes’ theorem (Equation 4d) and the final
step follows from Equation (12), as πi pi(θ) = p(θ). The Bayes factor in favor the
null hypothesis thus becomes

B0 =
(
p0

π0

)(
π1

p1

)
=

∫
θ∈Θ0

p(x | θ)p0(θ)dθ∫
θ∈Θ1

p(x | θ)p1(θ)dθ
(14)

which is a ratio of the weighted likelihoods of Θ0 and Θ1.
A compromise between Bayesian and classical hypothesis testing was sug-

gested by Lindley (1965). If the goal is to conduct a hypothesis test of the form
H0: θ = θ0 vs. H2: θ 6= θ0 and we assume a diffuse prior, then a significance test
of level α follows by obtaining a 100(1−α)% HDR for the posterior and rejecting
the null hypothesis if and only if θ is outside of the HDR.

See Lee (1997) are further discussions on hypothesis testing (or lack thereof)
in a Bayesian framework.
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THE CHOICE OF A PRIOR

Obviously, a critical feature of any Bayesian analysis is the choice of a prior. The
key here is that when the data have sufficient signal, even a bad prior will still
not greatly influence the posterior. In a sense, this is an asymptotic property of
Bayesian analysis in that all but pathological priors will be overcome by sufficient
amounts of data. As mentioned above, one can check the impact of the prior
by seeing how stable to posterior distribution is to different choices of priors.
If the posterior is highly dependent on the prior, then the data (the likelihood
function) may not contain sufficient information. However, if the posterior is
relatively stable over a choice of priors, then the data indeed contain significant
information.

The location of a parameter (mean or mode) and its precision (the reciprocal
of the variance) of the prior is usually more critical than its actual shape in terms of
conveying prior information. The shape (family) of the prior distribution is often
chosen to facilitate calculation of the prior, especially through the use of conju-
gate priors that, for a given likelihood function, return a posterior in the same
distribution family as the prior (i.e., a gamma prior returning a gamma posterior
when the likelihood is Poisson). We will return to conjugate priors and the end
of these notes, but we first discuss other standard approaches for construction of
priors.

Diffuse Priors

One of the most common priors is the flat, uninformative, or diffuse prior where
the prior is simply a constant,

p(θ) = k =
1

b− a for a ≤ θ ≤ b (15a)

This conveys that we have no a priori reason to favor any particular parame-
ter value over another. With a flat prior, the posterior just a constant times the
likelihood,

p(θ |x) = C `(θ |x) (15b)

and we typically write that p(θ |x) ∝ `(θ |x). In many cases, classical expressions
from frequentist statistics are obtained by Bayesian analysis assuming a flat prior.

If the variable of interest ranges over (0,∞) or (−∞,+∞), then strictly speak-
ing a flat prior does not exist, as if the constant takes on any non-zero value, the
integral does not exist. In such cases a flat prior (assuming p(θ |x) ∝ `(θ |x)) is
referred to as an improper prior.

Sufficient Statistics and Data-Transformed Likelihoods

Suppose we can write the likelihood for a given parameter θ and data vector x as

`( θ |x ) = g [ θ − t(x) ] (16)



10 INTRODUCTION TO BAYESIAN ANALYSIS

Here the likelihood is a function ` = g(z), where z = θ − t(x). If the likelihood
is of this form, the data x only influences θ by a translation on the scale of the
function g, i.e., from g(z) to g(z + a). Further, note that t(x) is the only value of
the data that appears, andwe call the function t a sufficient statistic. Other data
sets with different values of x, but the same value of the sufficient statistic t(x),
have the same likelihood.

When the likelihood can be placed in the form of Equation 16, a shift in the
data gives rise to the same functional form of the likelihood function except for a
shift in location, from (θ + t[x1]) to (θ + t[x2]) . Hence, this is a natural scale upon
which to measure likelihoods, and on such a scale, a flat/diffuse prior seems
natural.

Example 3. Consider n independent samples from a normal with unknown
mean µ and known variance σ2. Here

`(µ |x ) ∝ exp
(
−(µ− x )2

2(σ2/n)

)
Note immediately that x is a sufficient statistic for the mean, so that different data
sets with the same mean (for n draws) have the same likelihood function for the
unknown mean µ. Further note that

g(z) = exp
(
−z2

2(σ2/n)

)
Hence, a flat prior for µ seems appropriate.

What is the natural scale for a likelihood function that does not satisfy Equa-
tion 16? Suppose that the likelihood function can be written in data-translated
format as

`( θ |x ) = g [h(θ)− t(x) ] (17)

When the likelihood function has this format, the natural scale for the unknown
parameter is h(θ). Hence, a prior of the form p[h(θ) ] = constant (a flat prior on
h[ θ ]) is suggested. Using a change of variables to transform p[h(θ) ] back onto the
θ scale suggests a prior on θ of the form

p(θ) ∝
∣∣∣∣ ∂h(θ)
∂θ

∣∣∣∣ (18)
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Example 4. Suppose the likelihood function assumes data follow an expo-
nential distribution,

`(θ |x) = (1/θ) exp(−x/θ)
To express this likelihood in a data-translated format, we will make use of the
useful fact that we can multiply any likelihood function by a constant and still
have a likelihood function. In particular, since the data x is known (and hence
treated as a constant), we can multiply the likelihood function by any function of
the data, e.g. f(x) `(Θ |x) ∝ `(Θ |x). In this example, we simply multiply the
likelihood function by x to give

`(θ |x) = (x/θ) exp(−x/θ)

Noting that

x/θ = exp
[

ln
(x
θ

) ]
= exp [ lnx− ln θ ]

we can express the likelihood as

`(θ |x) = exp[ (lnx− ln θ)− exp(lnx− ln θ) ]

Hence, in data-translated format the likelihood function becomes

g(y) = exp[y − exp(y) ], t(x) = lnx, g(θ) = ln θ

The “natural scale” for θ in this likelihood function is thus ln θ, and a natural
prior is p( ln θ ) = constant, giving the prior as

p(θ) ∝
∣∣∣∣ ∂ ln θ
∂θ

∣∣∣∣ =
1
θ

The Jeffreys’ Prior

Suppose we cannot easily find the natural scale on which the likelihood is in
data-translated format, or that such a decomposition does not exist. Jeffreys (1961)
proposed a general prior in such cases, based on the Fisher information I of the
likelihood. Recall that

I(θ |x ) = −Ex
(
∂2 ln `(θ |x )

∂ θ2

)
Jeffreys’ rule (giving the Jeffreys’ Prior) is to take as the prior

p(θ) ∝
√
I(θ |x ) (19)
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A full discussion, with derivation, can be found in Lee (1997, Section 3.3).

Example 5. Consider the likelihood for n independent draws from a binomial,

`(θ |x) = Cθx(1− θ)n−x

where the constant C does not involve θ. Taking logs gives

L(θ |x) = ln [ `(θ |x) ] = lnC + x ln θ + (n− x) ln(1− θ)

Thus
∂L(θ |x)

∂θ
=
x

θ
− n− x

1− θ
and likewise

∂2L(θ |x)
∂θ2

= − x

θ2
− (−1) · (−1)

n− x
(1− θ)2

= −
(
x

θ2
+

n− x
(1− θ)2

)
Since E[x ] = nθ, we have

−Ex
(
∂2 ln `(θ |x )

∂ θ2

)
=
nθ

θ2
+
n(1− θ)
(1− θ)2

= n θ−1(1− θ)−1

Hence, the Jeffreys’ Prior becomes

p(θ) ∝
√
θ−1(1− θ)−1 ∝ θ−1/2(1− θ)−1/2

which is a Beta Distribution (which we discuss later).

When there are multiple parameters, I is the Fisher Information matrix, the
matrix of the expected second partials,

I(Θ |x )ij = −Ex
(
∂2 ln `(Θ |x )
∂ θi∂ θj

)
In this case, the Jeffreys’ Prior becomes

p(Θ) ∝
√

det[I(θ |x ) ] (20)
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Example 6. Suppose our data consists of n independent draws from a normal
distribution with unknown mean and variance, µ and σ2. In earlier notes on
maximum likelihood estimation, we showed that the information matrix in this
case is

I = n

 1
σ2

0

0
1

2σ4


Since the determinant of a diagonal matrix is the product of the diagonal elements,
we have det(I) ∝ σ−6, giving the Jeffreys’ Prior for µ and σ2 as

p(Θ) ∝
√
σ−6 = σ−3

Since the prior does not involve µ, we assume a flat prior for µ (i.e. p(µ) =
constant). Note that the prior distributions of µ and σ2 are independent, as

p(µ, θ) = constant · σ−3 = p(µ) · p(σ2)

POSTERIOR DISTRIBUTIONS UNDER NORMALITY ASSUMPTIONS

To introduce the basic ideas of Bayesian analysis, consider the case where data
are drawn from a normal distribution, so that the likelihood function for the ith
observation, xi is

`(µ, σ2 |xi) =
1√

2πσ2
exp

(
− (xi − µ)2

2σ2

)
(21a)

The resulting full likelihood for all n data points is

`(µ |x ) =
1√

2πσ2
exp

(
−

n∑
i=1

(xi − µ)2

2σ2

)
(21b)

=
1√

2πσ2
exp

[
− 1

2σ2

(
n∑
i=1

x2
i − 2µnx+ nµ2

)]
(21c)

Known Variance and Unknown Mean

Assume the variance (σ2) is known, while the mean µ is unknown. For a Bayesian
analysis, it remains to specify the prior forµ, p(µ). Suppose we assume a Gaussian
prior, µ ∼ N(µ0, σ

2
0), so that

p(µ) =
1√

2πσ2
0

exp
(
− (µ− µ0)2

2σ2
0

)
(22)
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The mean and variance of the prior, µ0 and σ2
0 are referred to as hyperparameters.

One important trick we will use throughout when calculating the posterior
distribution is to ignore terms that are constants with respect to the unknown pa-
rameters. Suppose x denotes the data andΘ1 is a vector of known model param-
eters, while Θ2 is a vector of unknown parameters. If we can write the posterior
as

p(Θ2 |x,Θ1) = f(x,Θ1) · g(x,Θ1,Θ2) (23a)

then
p(Θ2 |x,Θ1) ∝ g(x,Θ1,Θ2) (23b)

With the prior given by Equation 22, we can express the resulting posterior
distribution as

p(µ |x) ∝ `(µ |x ) · p(µ)

∝ exp

(
− (µ− µ0)2

2σ2
0

− 1
2σ2

[
n∑
i=1

x2
i − 2µnx+ nµ2

])
(24a)

We can factor out additional terms not involving µ to give

p(µ |x) ∝ exp
(
− µ2

2σ2
0

+
µµ0

σ2
0

+
µnx

σ2
− nµ2

2σ2

)
(24b)

Factoring in terms of µ, the term in the exponential becomes

−µ
2

2

(
1
σ2

0

+
n

σ2

)
+ µ

(
µ0

σ2
0

+
nx

σ2

)
= −µ

2

σ2
∗

+
2µµ∗
2σ2
∗

(25a)

where

σ2
∗ =

(
1
σ2

0

+
n

σ2

)−1

and µ∗ = σ2
∗

(
µ0

σ2
0

+
nx

σ2

)
(25b)

Finally, by completing the square, we have

p(µ |x) ∝ exp
(
− (µ− µ∗)2

2σ2
∗

+ f(x, µ0, σ
2, σ2

0

)
(25c)

The posterior density function for µ thus becomes

p(µ |x) ∝ exp
(
− (µ− µ∗)2

2σ2
∗

)
(26a)

Recalling that the density function for z ∼ N(α, β) is

p(z) ∝ exp
(
− (z − α)2

2β

)
(26b)
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shows that the posterior density function for µ is a normal with mean µ∗ and
variance σ2

∗, e.g.,
µ | (x, σ2) ∼ N

(
µ∗, σ

2
∗
)

(26c)

Notice that the posterior density is in the same form as the prior. This occurred
because the prior conjugated with the likelihood function – the product of the
prior and likelihood returned a distribution in the same family as the prior. The
use of such conjugate priors (for a given likelihood) is a key concept in Bayesian
analysis and we explore it more fully below.

We are now in a position to inquire about the relative importance of the prior
versus the data. Under the assumed prior, the mean (and mode) of the posterior
distribution is given by

µ∗ = µ0
σ2
∗
σ2

0

+ x
σ2
∗

σ2/n
(27)

Note with a very diffuse prior on µ (i.e., σ2
0 >> σ2), that σ2

∗ → σ2/n and µ∗ → x.
Also note that as we collect enough data, σ2

∗ → σ2/n and again µ∗ → x.

Gamma, Inverse-gamma, χ2, and χ−2 Distributions

Before we examine a Gaussian likelihood with unknown variance, a brief aside
is needed to develop χ−2, the inverse chi-square distribution. We do this via the
gamma and inverse-gamma distribution.

The χ2 is a special case of the Gamma distribution, a two parameter dis-
tribution. A gamma-distributed variable is denoted by x ∼ Gamma(α, β), with
density function

p(x |α, β) =
βα

Γ(α)
xα−1e−βx for α, β, x > 0 (28a)

As a function of x, note that

p(x) ∝ xα−1e−βx (28b)

We can parameterize a gamma in terms of its mean and variance by noting that

µx =
α

β
, σ2

x =
α

β2
(28c)

Γ(α), the gamma function evaluated at α (which normalized the gamma distri-
bution) is defined as

Γ(α) =
∫ ∞

0

yα−1e−ydy (29a)

The gamma function is the generalization of the factorial function (n!) to all pos-
itive numbers, and (as integration by parts will show) satisfies the following
identities

Γ(α) = (1− α)Γ(1− α), Γ(1) = 1, Γ(1/2) =
√
π (29b)
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The χ2 distribution is a special case of the gamma, with a χ2 with n degrees of
freedom being a gamma random variable with α = n/2, β = 1/2, i.e., χ2

n ∼
Gamma(n/2, 1/2), giving the density function as

p(x |n) =
2−n/2

Γ(n/2)
xn/2−1e−x/2 (30a)

Hence for a χ2
n,

p(x) ∝ xn/2−1e−x/2 (30b)

The inverse gamma distribution will prove useful as a conjugate prior for
Gaussian likelihoods with unknown variance. It is defined by the distribution
of y = 1/x where x ∼ Gamma(α, β). The resulting density function, mean, and
variance become

p(x |α, β) =
βα

Γ(α)
x−(α−1)e−β/x for α, β, x > 0 (31a)

µx =
β

α− 1
, σ2

x =
β2

(α− 1)2(α− 2)
(31b)

Note for the inverse gamma that

p(x) ∝ x−(α−1)e−β/x (31c)

If x ∼ χ2
n, then y = 1/x follows an inverse chi-square distribution, and

denote this by y ∼ χ−2
n . This is a special case of the inverse gamma, with (as for a

normal χ2) α = n/2, β = 1/2. The resulting density function is

p(x |n) =
2−n/2

Γ(n/2)
x−(n/2−1)e−1/(2x) (32a)

with mean and variance

µx =
1

n− 2
, σ2

x =
2

(n− 2)2(n− 4)
(32b)

The scaled inverse chi-square distribution is more typically used, where

p(x |n) ∝ x−(n/2−1)e−σ
2
0/(2x) (33a)

so that the 1/(2x) term in the exponential is replaced by an σ2
0/(2x) term. If x

follows this distribution, then σ2
0 · x follows a standard χ−2 distribution. The

scaled-inverse chi-square distribution thus involves two parameters, σ2
0 and n

and it is denoted by SI−χ2(n, σ2
0) or χ−2

(n,σ2
0)

. Note that if

x ∼ χ−2
(n,σ2

0)
then σ2

0 x ∼ χ−2
n (33b)
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Table 1. Summary of the functional forms the distributions introduced.

Distribution p(x)/constant

Gamma (α, β) xα−1 exp(−βx)
χ2
n xn/2−1 exp(−x/2)

Inverse-Gamma (α, β) x−(α−1) exp(−β/x)
Inverse-χ2

n x−(n/2−1) exp[−1/(2x)]
Scaled Inverse-χ2

n,S x−(n/2−1) exp[−S/(2x)]

Unknown Variance: Inverse-χ2 Priors

Now suppose the data are drawn from a normal with known mean µ, but un-
known variance σ2. The resulting likelihood function becomes

`(σ2 |x, µ) ∝ (σ2)−n/2 · exp
(
−nS

2

2σ2

)
(34a)

where

S2 =
1
n

n∑
i=1

(xi − µ)2 (34b)

Notice that since we condition on x and µ (i.e., their values are known), the S2

is a constant. Further observe that, as a function of the unknown variance σ2,
the likelihood is proportional to a scaled inverse-χ2 distribution. Thus, taking the
prior for the unknown variance also as a scaled inverse χ2 with hyperparameters
ν0 and σ2

0 , the posterior becomes

p(σ2 |x, µ) ∝ (σ2)−n/2 exp
(
−nS

2

2σ2

)
(σ2)−ν0/2−1 · exp

(
− σ2

0

2σ2

)
= (σ2)−(n+ν0)/2−1 exp

(
−nS

2 + σ2
0

2σ2

)
(35a)

Comparison to Equation 33a shows that this is also a scaled inverseχ2 distribution
with parameters νn = (n+ ν0) and σ2

n = (nS2 + σ2
0), so that

σ2
n σ

2 | (x, µ) ∼ χ−2
νn (35b)

Unknown Mean and Variance

Putting all the pieces together, the posterior density for draws from a normal with
unknown mean and variance is obtained as follows. First, write the joint prior by
conditioning on the variance,

p(µ, σ2) = p(µ |σ2) · p(σ2) (36a)
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As above, assume a scaled inverse chi-square distribution for the variance and,
conditioned on the variance, normal prior for the mean with hyperparameters µ0

and σ2/κ0. We write the variance for the conditional mean prior this way because
σ2 is known (as we condition on it) and we scale this by the hyperparameter κ0.
Hence, we assume

σ2 ∼ χ−2( ν0, σ
2
0), (µ |σ2) ∼ N

(
µ0,

σ2

κO

)
(36b)

The resulting posterior marginals become

σ2 |x ∼ χ−2( νn, σ2
n), and µ |x ∼ tνn

(
µn,

σ2
n

κn

)
(37)

where tn(µn, σ2
n) denotes a a t-distribution with νn degrees of freedom, mean µn

and variance σ2
n. Here

νn = ν0 + n, κn = κ0 + n (38a)

µn = µ0
κ0

κn
+ x

n

κn
= µ0

κ0

κ0 + n
+ x

n

κ0 + n
(38b)

σ2
n =

1
νn

(
ν0σ

2
0 +

n∑
i=1

(xi − x )2 +
κ0n

κn
(x− µ0)2

)
(38c)

CONJUGATE PRIORS

The use of a prior density that conjugates the likelihood allows for analytic ex-
pressions of the posterior density. Table 2 gives the conjugate priors for several
common likelihood functions.

Table 2. Conjugate priors for common likelihood functions.

Likelihood Conjugate prior

Binomial Beta
Multinomial Dirichlet
Poisson Gamma
Normal
µ unknown, σ2 known Normal
µ known, σ2 unknown Inverse Chi-Square

Multivariate Normal
µ unknown, V known Multivariate Normal
µ known, V unknown Inverse Wishart
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We first review some of the additional distributions introduced in Table 2
and then conclude by discussing conjugate priors for members of the exponential
family of distributions.

The Beta and Dirichlet Distributions

Where we have frequency data, such as for data drawn from a binomial or
muiltinomial likelihood, the Dirichlet distribution an appropriate prior. Here,
x ∼ Dirichlet(α1, · · · , αk), with

p(x1, · · ·xk) =
Γ(α0)

Γ(α1) · · ·Γ(αk)
xα1−1

1 · · ·xαk−1
k (39a)

where

α0 =
k∑
i=1

αi, 0 ≤ xi < 1,
k∑
i=1

xi = 1, αi > 0 (39b)

where

µxi =
αi
α0
, σ2(xi) =

αi(α0 − αi)
α2

0(α0 + 1)
, σ2(xi, xj) = − αi αj

α2
0(α0 + 1)

(39c)

An important special case of the Dirichlet is the Beta distribution,

p(x) =
Γ(α+ β)
Γ(α)Γ(β)

xα−1(1− x)β−1 for 0 < x < 1, α, β > 0 (40)

Wishart and Inverse Wishart Distributions

The Wishart distribution can be thought of as the multivariate extension of the
χ2 distribution. In particular, if x1, · · · ,xn are independent and identically dis-
tributed with xi ∼ MVNk(0,V) – that is, each is drawn from a k-dimensional
multivariate normal with mean vector zero and variance-covariance matrix V,
then the random (k × k symmetric, positive definite) matrix

W =
n∑
i=1

xi xTi ∼ Wn(V) (41)

Hence, the sum follows a Wishart withndegrees of freedom and parameter V. For
the special case of k = 1 with V = (1), this is just a χ2

n distribution. The Wishart
distribution is the sampling distribution for covariance matrices (just like the χ2

is associated with the distribution of a sample variance). The probability density
function for a Wishart is given by

p(W) = 2−nk/2π−k(k−1)/k |V |−n/2 |W |(n+k+1)/2 exp
(
− 1

2 tr
[
V−1W

])∏k
i=1 Γ

(
,n+1−i

2

) (42)
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If Z ∼ Wn(V), then Z−1 ∼ W−1
n

(
V−1

)
, where W−1 denotes the Inverse-

Wishart distribution. The density function for an Inverse-Wishart distributed
random matrix W is

p(W) = 2−nk/2π−k(k−1)/k |V |n/2 |W |−(n+k+1)/2 exp
(
− 1

2 tr
[
VW−1

])∏k
i=1 Γ

(
n+1−i

2

) (43)

Thus, the Inverse-Wishart distribution is the distribution of the inverse of the
sample covariance matrix.

Conjugate Priors for the Exponential Family of Distributions

Many common distributions (normal, gamma, poission, binomial,, etc.) are mem-
bers of the exponential family, whose general form is given by Equation 44a. Note
that this should not be confused with the simple exponential distribution, which
is just one particular member from this family. When the likelihood is in the form
of an exponential family, a conjugate prior (also a member of the exponential
family of distributions) can be found.

Suppose the likelihood for a single observation (out of n) is in the form of an
exponential family,

`(yi | θ) = g(θ)h(y) exp

 m∑
j=1

φj(θ) tj(yi)

 (44a)

Using the prior

p(θ) ∝ [ g(θ) ]b exp

 m∑
j=1

φj(θ) aj

 (44b)

yields the posterior density

p(θ | y) ∝
[

n∏
i=1

`(yi | θ)
]
p(θ)

=∝ [ g(θ) ]b+n exp

 m∑
j=1

φj(θ) dj(y)

 (45a)

where

dj = aj +
n∑
i=1

tj(yi) (45b)

Thus Equation 44b is the conjugate prior density for the likelihood given by Equa-
tion 44a, with the posterior having the same form as the prior, with n+ b (in the
posterior) replacing b and dj replacing aj .



INTRODUCTION TO BAYESIAN ANALYSIS 21

References

Draper, David. 2000. Bayesian Hierarchical Modeling. Draft version can be found
on the web at http://www.bath.ac.uk/∼masdd/

Efron, B. 1986. Why isn’t everyone a bayesian? American Statistician 40: 1-11.

Glymour, C. 1981. Why I am not a Bayesian, in The philosophy of science, ed. by D.
Papineau. Oxford University Press.

Jeffreys, H. S. 1961. Theory of Probability, 3rd ed. Oxford University Press.

Lee, P. M. 1997. Bayesian statistics: An introduction, 2nd ed. Arnold, London.

Lindley, D. V. 1965. Introduction to Probability and Statistics from a Bayesian Viewpoint
(2 Volumes), University Press, Cambridge.

Stigler, S. M. 1983. Who discovered Bayes’s theorem? American Statistician 37:
290–296

Tanner, M. A. 1996. Tools for statistical inference: Methods for exploration of posterior
distributions and likelihood functions, 3rd ed. Springer-Verlag.


