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ABSTRACT Proper organelle size is critical for many cell functions. However, how cells sense and control their organelle size
remains elusive. Here, we develop a general model to study the size control of mitotic spindles by considering both extrinsic and
intrinsic factors, such as the limited number of building blocks of the spindle, the interaction between the spindle and cell bound-
ary, the DNA content, the forces generated by various molecular motors, and the dynamics of microtubules. We show that mul-
tiple pairs of chromatids, two centrosomes, and microtubules can self-assemble to form a mitotic spindle robustly. We also show
that the boundary-sensing and volume-sensing mechanisms coexist in small cells, but both break down in large cells. Strikingly,
we find that the upper limit of spindle length naturally arises from the geometric asymmetry of the spindle structure. Thus, our
findings reveal, to our knowledge, a novel intrinsic mechanism that limits the organelle size.
INTRODUCTION
Improper organelle size can lead to cell dysfunction (1). For
example, as the main organelle accomplishing chromosome
segregation, spindle size is critical for cell division process.
The defects in mitotic spindle size can reduce the fidelity of
the chromosome separation (2). Spindle size was tradition-
ally expected to scale up with cell size because bigger organ-
elles may be required to fulfill their biological functions in
bigger cells (3–6). However, experiments showed that the
diameter of dividing cells changes two orders of magnitude
from 1200 to 12 mm when the Xenopus laevis egg develops
from a fertilized egg into a tadpole (7). During this process,
spindle length is proportional to cell size only in small cells,
but it reaches an upper limit (~60 mm) in large cells (7). The
spindle size can be regulated by many intrinsic factors, such
as the growth dynamics of microtubules (MTs) (8–10), the
length distribution of MTs (11,12), signaling gradients
(13,14), and the mass conservation of the building blocks
of spindles (15–17). However, how mitotic spindle size is
detected and controlled by the cell across multiple length
scales and why there exists a size limit of mitotic spindles
is still elusive.

In the prevailing models about the spindle size, only the
polar MTs and kinetochore MTs were considered (9,18).
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These models did not contain the effects of cell size, and
thus cannot be used to study how the cell size regulates
the spindle size. In the models for positioning (19–21) and
orientation (22,23) of spindles, the interactions between
MTs and cell cortex were mainly considered, which is prob-
ably one of the ways in which the cell boundary influences
the spindle. But these models did not consider the spindle
structure and spindle size, and only treated the spindle as
a point or a rigid body with fixed size and shape. In addition,
it has been shown that the cell volume can influence the
number of building blocks of spindles, and thus it can influ-
ence the spindle size (15–17). Therefore, to study how the
cell size regulates the spindle size, we need a more general
model that considers not only the spindle structure, but also
the effects of cell boundary and cell volume.

In this article, we develop such a general model to answer
these questions. We show mitotic spindles can be robustly
self-assembled from chromosomes, centrosomes, and
MTs. Strikingly, we find that although many factors can
regulate spindle size, geometric asymmetry directly leads
to the existence of the upper limit of the mitotic spindle
size. Our results also verify the experimental observations
and reveal the mechanism about whether cell volume or
cell shape determines the spindle length.
MATERIALS AND METHODS

The self-assembly of mitotic spindles is investigated in a computational

model. As shown in Fig. 1, the mitotic spindle has two centrosomes and
Biophysical Journal 112, 1503–1516, April 11, 2017 1503

mailto:jianghy@ustc.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2017.02.030&domain=pdf
http://dx.doi.org/10.1016/j.bpj.2017.02.030


Chromosome            Dynein                Astral MTs      
Kinetochore              Kinesin               Polar MTs
Centrosome               Cortex                 Kinetochore MTs

1

3

2 1

1

2

3

vs
f* β

f -

f +

F
F

c,i

4

F

5

r

r

2

345

FIGURE 1 Schematic of the five force-generation mechanisms in mitotic

spindles, including the pushing force generated by MT polymerization

(inset 1), the pulling force general by cortical dynein (inset 2), the pushing

force generated by cortical kinesin (inset 3), the pulling force generated by

cytoplasmic dynein (inset 4), and the pushing force generated by kinesin on

the antiparallel MTs. The chromosome provides similar forces to the cortex

in insets 1–3 (dotted box). To see this figure in color, go online.
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several pairs of chromatids. Each pair of chromatids has two attachment

sites, named kinetochores. MTs nucleated from centrosomes switch be-

tween growing and shrinking states randomly (dynamic instability) to

search for kinetochores (24). After MTs catch both kinetochores, tension

between duplicated chromatids is built up and the whole structure is stabi-

lized. So, chromosomes can be aligned near the spindle equator. In the

meanwhile, the whole spindle can be positioned to the cell center and ori-

ented to the long axis of the cell when other specified mechanisms are ab-

sent (22,25–27). During this self-assembly process, various mechanical

forces are crucial for the positioning, orientation, and size control of mitotic

spindles. Descriptions of force-generation mechanisms and kinetics of

MTs, molecular motors, centrosomes, and chromosomes are given in the

following.
Nucleation and dynamic instability of
microtubules

The MTs are nucleated either from the centrosome radially (Fig. 1) or

from the existing MTs as branches, and their minus ends are anchored

in the centrosome or the original MT (20,28–30). For the nucleation

from centrosomes, we assume a nucleating rate k0. Considering the facts

that the forces on the branching MTs are all transmitted to the centrosome

to drive its motion, we assume all MTs are nucleated from the centrosome

as proposed in previous works (20,21,31). In these previous models, the

directions of MTs were usually distributed uniformly, because only the

astral MTs were considered. However, there is a much higher density of

MTs on the toward-chromosome side, which is mainly because much

MTs can be nucleated in the region from the centrosome to the chromo-

somes (30). To describe a more realistic spindle, we firstly assume MTs

are nucleated randomly and uniformly in all directions at a nucleating

rate of k0. And then we superpose a nucleating rate (kn¼ k0/2) in the region

from the centrosome to the chromosomes. Considering the ratio of spindle

width to spindle length is almost constant (32), we define the region as a

cone whose axis is the spindle axis (pole-to-pole axis) and the apex angle

is 60�.
Besides, MTs display the dynamic instability, i.e., they randomly switch

between growing state and shrinking state. In this work, we define the

rescue rate (from shrinking to growing) and catastrophe rate (from growing
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to shrinking) of MTs are k1 and k2, respectively. Both of them are assumed

to be constant in the cytoplasm. The MTs elongate at a speed of v1 in the

growing state, and shorten at a speed of v2 in the shrinking state. As a result,

the length of freely growing MT varies wavily over time.
Pushing force induced by microtubule
polymerization

Due to the confinement of cell boundary, MTs cannot grow infinitely. Once

a growing MT contacts the cell cortex, it will generate a pushing force on

the cell cortex due to its growth (5,33,34). If the pushing force exceeds a

critical value, the MT will be buckled (35,36). The critical force is given

by Euler buckling formula fc ¼ p2k/l2 (19,21,37,38), where k and l denote

the bending rigidity and the length of the MT, respectively. Because the

pushing force increases slowly with the growth of MT after it exceeds

the buckling force, we assume the pushing force is a constant and equals

the Euler buckling force once the MT is buckled (19,21,37,38). When

MTs are very short, the Euler buckling force fc will exceed the stall force

of MTs fstall. In this case, the pushing force is limited by the polymerization

of MTs. Therefore, the pushing force induced by MT polymerization is

given as (38)

f � ¼ min
�
fstall;p

2k
�
l2
�
: (1)

The pushing force given in Eq. 1 is naturally length-dependent so that the

buckled MTs can behave as not only the force generator but also the posi-

tion sensor inside the cell. Equation 1 can also be easily modified to

consider the effects of the lateral confinement by the surrounding elastic

cytoskeleton (38).

In addition, experiment has shown that the blocked MTs can slip along

the cell cortex (37) (Fig. 1, inset 1). The slipping of MTs can change their

orientation and length. The velocity of the tip is given by (21)

vs ¼ ðf �=xÞsin b: (2)

Here x is the friction coefficient associated with the slipping; and b is the

angle between the MT and the normal to the cell cortex (Fig. 1, inset 1).

Apparently, the slipping behavior can influence the distribution of MTs.

It should be noted that if MTs attach the chromosome arms, they can also

apply pushing forces on the chromosome and slip along the chromosome

arms (Fig. 1). We assume that the pushing force and slipping velocity on

the chromosome arms follow the same rules defined in Eqs. 1 and 2.
Forces and dynamics of molecular motors

Molecular motors widely distribute in cells. Driven by the energy of the hy-

drolysis of ATP, they can bind to and walk along MTs (33). If molecular

motors bind to MTs and cell cortex simultaneously, they can generate forces

on the MTs. The direction of the force is opposite to the walking direction.

For example, dynein can walk to the minus end of MTs and generates a

pulling force, while kinesin can walk to the plus end and generates a push-

ing force (33). In this work, we consider both kinesin and dynein, and we

use the superscripts þ and � to indicate them, respectively. The force

generated by the motor is velocity-dependent as (39,40)

f 5 ¼ f 5
0

�
1� v5

v5
0

�
; (3)

where parameters f50 and v50 are the stall force and the unloaded velocity of

kinesin (þ) or dynein (�), respectively; the parameter f5 is the force on the

motor; and v5 is the walking velocity of the motor. Conversely, the velocity

of the molecular motor can also be determined by the force as
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v5 ¼ v5
0

�
1� f 5

f 5
0

�
: (4)

We use kþb and k�b to represent the binding rates of individual kinesin and

dynein, which are usually expected to be proportional to the densities of un-

bound motors. We assume that the density of unbound motors is uniform so

that kþb and k�b are both constant. The binding motors may detach fromMTs

stochastically. We define the unbinding rates of kinesin and dynein as kþu
and k�u , which both increase exponentially with the loads as (33,41)

k5
u ¼ k5

0 ef
5=f 5u ; (5)

where f5 is the force on the motor; f5u is a characteristic force representing

the sensitivity of the unbinding rate to the load; and k50 is the unloaded un-

binding rates of kinesin and dynein.

Motors have various states, such as binding to cortex or chromosome,

free in the cytoplasm, transporting cargos or cross linking MTs. In the

following sections, we will discuss how the motors in different states

generate forces and how they affect the size control of the spindle.
Cortical motors

Some molecular motors are anchored on the cortex. The motor can bind to

and apply forces on the MTs that are slipping on the cell cortex (Fig. 1,

insets 2 and 3). If we neglect the poleward flux of MTs, the relative veloc-

ity between MT and the motor equals the velocity component of centro-

some in the MT direction (38). Thus, the force generated by a cortical

motor (fþ or f�) can be obtained from Eq. 3. If we assume each cortical

motor binding to the same MT has the same velocity, the total force on

the ith MT is Fi ¼ Nþ
i f

þ � N�
i f

�, where Nþ and N� are the numbers of

kinesins and dyneins on the MT. Here the positive value of Fi means push-

ing force while the negative value means pulling force. Usually, the num-

ber of dyneins on the cortex is much larger than that of kinesins so that Fi
is a pulling force (Fi < 0). However, if Fi is a pushing force and the MT is

buckled due to this pushing force, the force equals the buckling force as

shown in Eq. 1. Therefore, the force induced by the cortical motors on the

ith MT is given as

Fi ¼
�
Nþ

i f
þ � N�

i f
� if Nþ

i f
þ � N�

i f
� <p2k

�
l2;

Nþ
i f

þ
c � N�

i f
�
c if Nþ

i f
þ � N�

i f
�Rp2k

�
l2;

(6)

where Nþ
i f

þ
c � N�

i f
�
c ¼ p2k=l2; and f5c is the force on the motor when the

MT is buckled. In this case, the velocity of each motor is still equal so that

the force can be obtained from Eqs. 3 and 6 as

f þc ¼ N�
i

�
f þ0 f� þ f �0 fþ�þ fþp2k

�
l2

Nþ
i f

þ þ N�
i f

� ; (7)

Nþ�f þf� þ f �fþ�� f�p2k
�
l2
f �c ¼ i 0 0

Nþ
i f

þ þ N�
i f

� ; (8)

where fþ ¼ fþ0 =vþ0 , f
� ¼ f�0 =v�0 ; and the velocities of motors on buckled

MTs are

vþc ¼ Nþ
i f

þ
0 � N�

i f
�
0 � p2k

�
l2

Nþ
i f

þ þ N�
i f

� ; (9)

N�f � � Nþf þ þ p2k
�
l2
v�c ¼ i 0 i 0

Nþ
i f

þ þ N�
i f

� : (10)
Cytoplasmic motors

In very large cells, MTs at metaphase are too short to contact the cell cortex.

In this case, it has been proposed that motors anchored in the cytoplasm can

generate length-dependent pulling forces based on the observation that the

centrosome moved to the opposite direction after the MTs on one side were

depolymerized by UV irradiation (42). The cytoplasmic dyneins bind to the

MT and walk to the minus end of the MT to generate pulling forces (Fig. 1,

inset 4). The pulling force is length-dependent because the number of dy-

neins bound to the MT is proportional to the MT length. Therefore, the pull-

ing force induced by the cytoplasmic motors on a MT is given as

Fc;i ¼ hli; (11)

where h is the pulling force per unit MT length; and li is the total length of the

ith MT. The velocity of cytoplasmic dyneins carrying a cargo and walking

along the MT almost equals the unloaded velocity (43,44), which indicates

the pulling force generated by a single motor is very small (see Eq. 3).

It is noted that pushing forces generated by MT polymerization or

cortical motors (Eqs. 1 and 6) and the pulling forces generated by cyto-

plasmic motors (Eq. 11) are all length-dependent. The MTs can be longer

in a larger cell, so that the cell size can regulate these forces in a certain

way. To clearly see the features of the forces generated by the cortex and

cytoplasm, we tentatively fix a single pole centrally in the cell and calculate

the force on the pole generated by each mechanism (Fig. 2 a). It is shown

that the cortical pulling force decreases with the cell size slightly, because

the cortical pulling force is length-independent but fewer MTs can reach the

cortex due to the dynamic instability. The cortical pushing force decreases

with cell size sharply, because the force is inversely proportional to the

square of MT length (Eq. 1), while the cytoplasmic pulling force increases

with cell size, because the force is proportional to MT length (Eq. 11). We

find that in small cells, the cortical force dominates the spindle pole; while

in large cells, the cytoplasmic force dominates the spindle pole (Fig. 2 a).
Chromosome motors

Besides the cortex and cytoplasm, dyneins and kinesins are also distributed

on the chromosome arms and they can also bind to MTs (41). The resultant

force on the chromosome arms is a pushing force, named the ‘‘polar ejec-

tion force’’ (5,33,41). Therefore, without loss of generality, we neglect

the pulling force applied by dyneins on the chromosome arms and assume

only the kinesins on the chromosome arms apply forces. The binding rate of

kinesins is defined as kþb;c. When they bind to MTs, these kinesins can apply

a pushing force like cortical kinesins (Eq. 3). The force on the MT also fol-

lows Eq. 6 with N�
i ¼ 0. Moreover, once a polymerizing MT encounters a

chromosome, it will also apply a pushing force on the chromosome. If the

pushing force due to kinesins or the MT polymerization exceeds the Euler

buckling force, the MTwill also buckle. Therefore, the polar ejection forces

proposed in previous models (33,41) can be attributed to both the pushing of

kinesin motors and the pushing of polymerizing MT plus ends (5,38).

We define the central region of the chromosome as the kinetochore (Figs.

1 and S1 in the Supporting Material). The MTs that encounter the kineto-

chores can attach to the kinetochores and generate pulling forces due to

the depolymerization of MTs (45). Conversely, the binding MTs can also

detach from the kinetochores. Because the dynamics of this process is

similar to the binding and unbinding of dyneins (33,45,46), we simply as-

sume MTs can attach to the kinetochore at a rate k�b;c, and unbind from the

kinetochore at a rate k�u as Eq. 5. The pulling force generated by the depo-

lymerization of MTs also follows Eq. 6 with Nþ
i ¼ 0.
Cross-linking motors

Some cytoplasmic motors can bind to a pair of antiparallel polar MTs to

serve as cross linkers (Fig. 1, inset 5) (5). These motors can also walk
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a

b

L
F
s

r
dαβ

FIGURE 2 The features of the forces by the force-generation mecha-

nisms considered in the model. (a) A quantitative comparison between

the cytoplasmic force and cortical force generated by the MTs on the right

side of the cell when the single centrosome is fixed in the cell center (inset).

Here, the cortical pushing force contains the MT polymerization and molec-

ular motors. (b) The antioverlapping force Fab
d and the repulsive force by

cross-linkers Fr are plotted as the functions of the distances that are defined

in the inset. The repulsive force by cross linkers is obtained by simulations

without chromosomes (see Fig. S1) and is fitted exponentially (green

curve). To see this figure in color, go online.
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actively and apply forces on the antiparallel polar MTs. Experiments

have found that Kip1 and Cin8 can generate pushing forces (9,47,48),

and play an important role in maintaining the spindle length. Thus, it

should be added to the model. We have assumed a portion of MTs are

nucleated (kn) directed to the region that defines the spindle. The cross

linkers are also assumed active in this region. If two MTs that come

from different poles are close enough, the molecular motors can bind

to both of them and apply forces on the two MTs (see Fig. S1). We

define a threshold distance dl. When the minimal distance of two MTs

is <dl ¼ 0.5 mm, they can be bound by a cross linker at a rate of k5b;l
(both kinesin and dynein are considered). And the cross linkers can un-

bind at a rate of k5u , which is also load-dependent as Eq. 5. Besides, the

cross linkers can generate pulling forces or pushing forces like cortical

motors (Eqs. 3 and 6).
Antioverlapping force

The centrosomes and chromosomes are all confined in the cell and they

cannot overlap with each other. Furthermore, neither of them can penetrate

the cell cortex. To avoid the overlap or penetration, we define the repulsive

force between any two objects (centrosomes, chromosomes, or the cell

cortex) as
1506 Biophysical Journal 112, 1503–1516, April 11, 2017
Fab
d ¼

�
C=dab if dab%1 mm;
0 if dab > 1 mm;

(12)

where C ¼ 10 pN � mm is a constant used in the simulation; and dab is the

least distance between the two objects (Fig. 2 b). Here we define the circum-

circle of the chromosome as its boundary. Index a and b represent two of

the centrosomes or chromosomes and the cell cortex. The antioverlapping

force Fab
d values are plotted and compared in Fig. 2 b.
Centrosome and chromosome dynamics

All MTs can transfer their axial forces to the centrosome, and MTs attach-

ing chromosomes can apply forces on the chromosomes. Combining the

forces in Eqs. 1, 6, 11, and 12, the force balance equation of centrosome

is given byX
i˛O

Fi~mi þ
X
i˛P

Fc;i~mi þ
X
b˛Q

~F
ab

d þ xp~vp ¼ 0; (13)

where O is the subset of MTs nucleated from this centrosome and associ-

ated with cell cortex, chromosomes, or antiparallel MTs; P is the subset

of MTs nucleated from this centrosome;~mi is the unit vector in the direction

of the ith MT; the parameters xp and~vp are the viscous drag coefficient and

velocity of the centrosome, respectively; the index a represents the centro-

some considered in Eq. 13; and Q includes the other centrosome, chromo-

somes, and the cell cortex. It should be noted that we have neglected the

inertial forces due to the low Reynolds number of this system.

Similarly, the force balance equations of chromosomes are given as

X
i˛H

Fi~mi þ
X
b˛W

~F
ab

d þ xc~vc ¼ 0; (14)

X
ð~r � F ~m Þ þ z _a ¼ 0: (15)
i˛H
i i i c c

Here H is the subset of MTs associated with the chromosome; the param-

eters xc and zc are the translational and rotational viscous drag coefficients

of the chromosome, respectively;~vc is the centroid velocity of the chromo-

some;~ri is a vector pointing from the chromosome center to the location

where the force is applied; ac is the orientation angle of the chromosome;

index a represents the chromosome considered in Eq. 14; and W includes

the other chromosomes, the two centrosomes, and the cell cortex.

The two centrosomes can be treated as particles due to their small

size, but the shape of the chromosome is complex. In this work, based

on experimental observations (49–51), we simply assume each pair of

chromatids is an x-shaped rigid body with a thickness of 0.8 mm (see

Fig. S1), and we use the Eulerian angles to describe their rotating in

the 3D space.
Mass conservation of tubulins

It has been proposed that the depletion of tubulin or other building blocks of

the spindle can lead to a volume-dependent spindle scaling (8,15). In our

model, we can also study how the mass conservation of the building blocks

of the spindle contributes to the size control and the upper limit of the spin-

dle size. The building blocks of the spindle, including the tubulin and MT-

associated protein, all can influence the spindle mass. Because tubulin is the

main component of spindles, here we only consider the mass conservation

of tubulin and assume other components are sufficient, as has been assumed

in previous works (8,15). If the synthesis and degradation of tubulin is
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balanced, the total mass of tubulin is conserved in a cell, i.e., the sum of the

tubulin dimers in the spindle MTs and the soluble tubulin dimers in the

cytoplasm keeps constant as

C0V ¼ CV þ LMT

d0=13
: (16)

Here C0 and C are the number of tubulin dimers per unit volume of the cyto-

plasm before and after spindle assembly, respectively; V is the cell volume;

LMT is the total length of spindle MTs; and d0 is the length of tubulin dimer,

and each tubulin dimer increases the MT length by d0/13 for a MTwith 13

protofilaments.

In the cytoplasm, tubulin has a diffusion coefficient of 4 ~ 10 mm2/s (52),

which means the tubulin has an average displacement ~5 mm/s, while the

MT polymerization rate is ~0.1 mm/s, which is an order-of-magnitude lower

than diffusion. Therefore, the MT self-assembly is not a diffusion-limited

process, and we can assume the concentration of tubulin is always uniform.

Obviously, the soluble tubulin concentration decreases with the spindle as-

sembly, and it will influence the polymerization velocity of MTs (53). The

polymerization velocity can be given as (54)

v1 ¼ d0

0
B@konCe

f �d0
kBT � koff

1
CA: (17)

Here the parameters kon and koff are the association and dissociation rates

of the tubulin dimer, respectively; and the parameter f* is the force on

the growing end of the MT. Particularly, for free MT the force is zero

and we can write the growth velocity as

v1 ¼ kcðC� CcrÞ; (18)

where Ccr is the critical concentration (54); and kc ¼ d0kon. Therefore, the

growth velocity is proportional to the soluble tubulin concentration.

Combining Eqs. 16 and 18, the growth velocity of free MTs is

v1 ¼ kc

�
C0 � 13LMT

Vd0
� Ccr

�
: (19)

Here, both LMT and v1 are the functions of time as the spindle assembles.

The value of koff/kon is very low for growing MTs (53). Therefore,

without loss of generality, in our simulation we assume koff ¼ 0, i.e.,

Ccr ¼ 0. It is worth noting that Eq. 17 can also be used to describe

the shrink velocity of shortening MTs. In this case, the ratio koff/kon
is much bigger than 1 so that the velocity in Eq. 17 is negative and

nearly independent of the force (53). When the mass conservation is

considered, the polymerization velocity decreases to a stable value dur-

ing the self-assembly of spindles (see Fig. S2). However, if the mass

conservation of tubulin is not considered, the polymerization velocity

is assumed as always constant. Moreover, although recent experiment

showed that the tubulin concentration can also influence the nucleation

rate of MTs (53), to simplify the problem and focus on the upper

limit of the spindle, we assume the nucleation rate is constant. In a

word, we can control the mass conservation of tubulin by the polymer-

ization velocity of MTs as in Eq. 19, which can capture the key feature

of the experiment (15). More detail can be found in the Supporting

Material.
Three- and two-dimensional simulations

A three-dimensional (3D) simulation can be carried out based on the

above description. However, such a complex system leads to the very
low computational efficiency, which hinders the deep exploration of spin-

dle size regulation and the discerning of the source of upper limit among

so many influencing factors. Therefore, instead of 3D simulation, we use

two-dimensional (2D) simulation to investigate the regulation of spindle

size. Although the degrees of freedom are greatly reduced, an inevitable

problem in 2D is that MTs cannot bypass the chromosomes so that

some antiparallel MTs cannot be considered in the model. To solve this

problem, we adopt a superposition method, i.e., we first figure out the

interaction of antiparallel MTs separately, and then add it to the system

with chromosomes.

Specifically, we remove the chromosomes and just consider the interac-

tion of antiparallel MTs. We assume only the crossed MTs can be bound

by kinesins, and applied forces. The binding rate, unbinding rate, and

force are the same as the cortical motors (see Fig. S1). For each pole-

to-pole distance, the repulsive force on spindle poles can be calculated.

The repulsive force versus pole-pole distance is shown in Fig. 2 b. We

find that the curve is nonlinear, and it can be fitted very well with an expo-

nential function

Fr ¼ Ae�B Ls ; (20)

where A and B are two constants; and Ls is the pole-to-pole distance, i.e.,

the spindle length (see Fig. S1). The direction of the repulsive force is

along the spindle axis. In our simulation, we use A ¼ 360 pN and B ¼
0.08 mm�1 based on the fitting result (Fig. 2 b). In theory, the overlapping

length, the amount of accessible MTs, and the pushing force (critical

buckling force) all decrease with the pole-to-pole distance nonlinearly,

which results in the exponential decay of the repulsive force. If the

pole-to-pole distance is large enough, the repulsive force will be negli-

gible (Fig. 2 b).
Simulation method

Monte Carlo simulation was performed to investigate the self-assembly and

size limit of mitotic spindles (see Fig. S3). The 3D cell is assumed as a

spheroid with long axis of 30 mm and two short axes of 15 mm. The 2D

cell is assumed to have an elliptical shape with long axis 30 mm and short

axis 15 mm, unless otherwise stated. The parameters used in the simulation

are summarized in Table S1, unless otherwise indicated. The dynamic

process is simulated by using the software MATLAB (The MathWorks,

Natick, MA). Initially, the two centrosomes and multiple chromosomes

are randomly positioned inside the cell. The initial number of the MTs

on each centrosome is 50 and these MTs are evenly distributed in all

directions.

In each time step, new MTs are nucleated in random directions. For

each MT, we record its length, direction, and state. Each MT has four

states, including growing, shrinking, slipping, and binding (see

Fig. S3). In the time step, we firstly determine if the MT switches its state.

The random switching events include the catastrophe, rescue, binding,

and unbinding, while the other change of states is deterministic based

on the geometric conditions. Each random switching event has its rate,

based on which we can calculate the probability of the event in a time

step. A random number in (0, 1) is generated uniformly, and if it is less

than the probability, the random switching will occur in the time step

(33,55,56). Then we base on the MT state to change its length and orien-

tation deterministically. The force generated by each MT can be calcu-

lated based on length, direction, and state. Therefore, the resultant force

on each centrosome and chromosome can be calculated to obtain their

instantaneous velocity and new position by using Eqs. 13–15. Given

that the magnitude of each rate in Table S1 is ~10�2/s, the time step is

chosen as Dt ¼ 1 s. The system is iteratively solved for up to 24,000

time steps, corresponding to 400 min in real time. For very large cells,

more time steps might be needed due to the increasing time spent on

the larger length scale. More details of the simulation are given in the Sup-

porting Material.
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RESULTS

Self-assembly of mitotic spindles

As an example, two centrosomes and three pairs of chroma-
tids can self-assemble to form a spindle structure (Figs. 3 a
and S4; Movie S1), which shows the robustness of the
model. Similar results can also be obtained by 2D simula-
tions (Figs. 3 b and S5; Movie S2). A movie with high
time-resolution (Movie S3) clearly shows the slipping,
buckling, and random switch between growing and shrink-
ing states of MTs in 2D simulations. We notice that the spin-
dles have similar positioning, orientation, and stable length
in 2D and 3D simulations (Figs. S4 and S5), but the 2D
simulation has lower complexity and computational cost.
Therefore, we use 2D simulations to investigate the regula-
tion and upper limit of the spindle size.

We found if we replace N pairs of chromatids by one pair
of chromatids and increase chromosome size by N times pro-
portionally, spindle length is almost unchanged (see Figs. S5
a

c d e

FIGURE 3 Self-assembly of mitotic spindles. (a) (Top) Self-assembly of three

Fig. S4; Movie S1). (Bottom) The slice view (marked by the black arrow) of the

of three pairs of chromatids and two centrosomes obtained by 2D simulations (se

line width to represent the number of kinetochore MTs because they overlap eac

Self-assembly of one pair of chromatids and two centrosomes obtained by 2D sim

and orientation ac, (e) spindle position ds and orientation as, and (f) spindle len

simulation are summarized in Table S1. To see this figure in color, go online.
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and S6). Therefore, to improve computational efficiency
without loss of generality, we use one pair of chromatids
in the following simulations, although it seems unrealistic.
The self-assembly of one pair of chromatids and two centro-
somes is given in Fig. 3, c–f; Movie S4. Both the position dc
and orientation ac of the chromosome decrease with time,
and finally the chromosome is positioned to the spindle
equator (Fig. 3 d). Simultaneously, the position ds and
orientation as of the spindle approach zero with time, and
finally the whole spindle is positioned to the cell center
and oriented along the long axis of the cell (Fig. 3 e). A sta-
ble spindle length (the pole-to-pole distance) can be ob-
tained (Fig. 3 f), which allows us to investigate how cells
sense and control spindle size. The different initial positions
and orientations of chromosomes and centrosomes can only
alter the self-assembly path, but do not change the stable
spindle length (see Figs. S6 and S7).

Notice that MTs can be in bounded or unbounded growth
regime depending on an average growth rate (57,58), and
f

b

pairs of chromatids and two centrosomes obtained by 3D simulations (see

spindle, and the spindle structure with hidden astral MTs. (b) Self-assembly

e Fig. S5; Movie S2). Here, the antiparallel MTs are hidden, and we use the

h other. The number of overlapping kinetochore MTs is given in Fig. S7. (c)

ulations (see Movie S4). The time evolution of (d) chromosome position dc
gth Ls, is achieved by 20 times of simulations. The parameters used in the
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the MT growth in egg extract is usually bounded (57). So
here we only consider the bounded growth. The length dis-
tribution of MTs is exponential in bounded growth (57,58),
as shown in Fig. S8.

It should be noted that in the simulation, the centrosomes
and chromosomes move with fluctuation, which is inevi-
table for stochastic simulation. The fluctuation will be
decreased with increasing number of MTs. However, we
found the computational efficiency is still very low when
a large number of MTs is used, especially in large cells.
This largely hinders the study of the upper limit of spindle
size. Therefore, we need to simplify the model to some
extent. Firstly, we noticed that the velocities of centrosomes
and chromosomes are almost two orders-of-magnitude
smaller than the unloaded velocity of the motor. This indi-
cates that the force generated by the motor is approximately
equal to the stall force, i.e., f5zf50 (see Eq. 3). We also
found that most MTs only have one motor bound to them
(see Fig. S9). Therefore, to increase efficiency, we assume
each MT can only be captured by one motor. These simpli-
fications only have little quantitative effect on the results
(see the comparison in Fig. S9), but the computational effi-
ciency is significantly increased. Therefore, we use this
simplified model to investigate the upper limit of spindle
size in the following simulations.
Factors that influence the spindle size

We found multiple factors can influence spindle length. For
example, MT dynamics plays an important role in deter-
mining spindle length (Fig. 4 a). In large cells, spindle
length increases with the growing velocity and rescue rate
of MTs, while it decreases with shrinking velocity and ca-
tastrophe rate. This is consistent with the experimental
(8,10,11) and computational (9) results. However, it must
be noted that cell boundary was not considered in these
in vitro experiments and simulations (8–11). Therefore,
these results are only applicable to large cells because cell
boundary is less important for large cells. In small cells,
we found the opposite trend, i.e., spindle length decreases
with growing velocity and rescue rate, while it increases
with shrinking velocity and catastrophe rate. This may be
caused by the confinement of cell boundary in small cells,
and it has not been reported and still needs further experi-
mental verification. Other parameters of MT dynamics,
such as the nucleation rate and katanin-mediated severing
of MTs, may also alter spindle length (11,12), which is
not discussed here.

Because the cell boundary has significant influence on the
spindle size, other cortex-associated factors, such as the mo-
lecular motors and slipping rate on the cortex, may also
regulate the spindle size. As expected, the spindle size in-
creases with the binding rate of cortical dyneins in both
small and large cells (Fig. 4 c), which is because more
cortical MTs apply pulling forces, and pull the spindle poles
outward. This result is reasonable but has not been tested
in experiments. Here, we only change the binding rate of
cortical dyneins; other parameters of cortical motors, such
as the binding rate of kinesin and the unbinding rates of
the two types of motors, may also alter spindle length in a
similar way, but is not shown here. However, we find that
the slipping rate on cortex has little effect on the spindle
size (Fig. 4 b). The reason may be that the slipping of
MTs on cortex only changes the spatial distribution of
MTs, but not the amount of pulling and pushing MTs.

Likewise, the forces inside the spindle, including the
forces generated by kinetochores, chromosome arms, and
the cross linkers, can also regulate the spindle size. For
example, the spindle size increases with the repulsive force
generated by the cross linkers between antiparallel MTs
(Fig. 4 d), which is consistent with the experimental and
computational results (18). Similarly, the spindle size de-
creases with the binding rate of kinetochores (Fig. 4 e),
because the pulling forces increase and pull the spindle
poles inward. This result is in agreement with the experi-
mental observation that if the artificial kinetochores are
added to the spindle, the spindle will shorten (47). We find
that if the binding rate of kinetochores is too low, the spindle
cannot be self-assembled to form a stable structure. In this
case, the chromosomes also cannot be aligned on the equa-
torial plane. In the meanwhile, if the pulling force on kinet-
ochores is too strong, the spindle poles will be pulled
together. Considering the fact that the number of binding
sites is limited on kinetochores, we assumed a kinetochore
cannot bind >60 MTs, thus the spindle size cannot keep
decreasing with the binding rate of kinetochores.

Attachment asymmetry can also regulate spindle length
(38). If the binding or unbinding rates of kinetochores and
kinesins on MT-chromosome attachments are different
from dyneins and kinesins on MT-cortex attachments, the
attachment asymmetry exists (38). This difference breaks
the symmetry between chromosome MTs and astral MTs
so that it can effectively regulate spindle length. Experi-
ments found MT-kinetochore attachments can be stabilized
by tension (46) or Aurora B (59). Therefore, the attachment
asymmetry does exist in spindles. We found spindle length
increases with the unloaded unbinding rate of dyneins that
connect MTs and chromosomes ðk�0;cÞ (Fig. 4 f). The bigger
k�0;c leads to a decreasing number of MTs captured by kinet-
ochores and a smaller pulling force between chromosome
and centrosome, so the spindle length becomes bigger.
There are also other ways to achieve the attachment asym-
metry: for example, the bigger the unloaded unbinding
rate of kinesins connecting MTs and chromosome ðkþ0;cÞ,
the smaller the spindle length becomes.

Mass conservation of the building blocks of the spindle is
another important factor. It has been proposed that the
depletion of tubulin can lead to a volume-dependent spindle
scaling (8,15). In our model, we can also study how the mass
conservation of tubulin regulates spindle size. We found that
Biophysical Journal 112, 1503–1516, April 11, 2017 1509
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FIGURE 4 The factors that influence spindle size. (a) Roles of the parameters of MT dynamics in governing spindle length, including: (i) growing velocity

v1, (ii) shrinking velocity v2, (iii) rescue rate k1, and (iv) catastrophe rate k2. (b) Role of the slipping of MTs on cortex in governing the spindle length. Here, x

is the friction coefficient associated with the slipping in Eq. 2. (c) Spindle length increases with the binding rate of the cortical dyneins k�b , which is normal-

ized by the binding rate of the cortical kinesins. (d) Spindle length increases with the pushing force on the antiparallel MTs. Because the antiparallel MTs are

simulated separately in 2D simulations, we change the parameter A in Eq. 20, which corresponds to the parameters of the cross-linker dynamics. (e) Spindle

size decreases with the pulling force generated by the MTs bound to the kinetochores. Here, we change both the binding rates of kinetochores k�b;c and chro-
mosome kinesins kþb;c. The ranges of parameters are shown in Table S1. On the left of the dotted line, the stable spindle cannot be assembled. (f) The attach-

ment asymmetry can regulate spindle length. k�0;c is the unloaded unbinding rate of dyneins that connect MTs and chromosome. (g) The mass conservation of

tubulin regulates spindle length. The label kc is the concentration coefficient defined in Eq. 18. (h) Spindle length increases with chromosome size (or equiv-

alently chromosome number when chromosome size is fixed). The lengths of the meiosis II spindle and the mitosis stage 1 spindle were measured from the

experimental results (7) and compared with our simulation. Both chromosome size Lc and spindle length Ls are normalized by cell length L. To see this figure

in color, go online.
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the polymerization velocity of MTs is proportional to �1/V,
where V is cell volume (Eq. 19). This indicates tubulin di-
mers are more likely to be depleted in small cells so that
the polymerization velocity is smaller. In fact, experiments
showed that if cell size is smaller than a critical value,
mitotic spindles cannot be formed at all (15). In contrast,
in very large cells (V/N), tubulin is nearly unlimited so
that the polymerization velocity approaches a constant
(Eq. 19). When the mass conservation is considered, we
found spindle length increases with the polymerization
parameter kc defined in Eq. 18 in large cells, but decreases
in small cells (Fig. 4 g). Similar to Fig. 4 a, cell boundary
may provide extra influences in small cells.
1510 Biophysical Journal 112, 1503–1516, April 11, 2017
Finally, for a given cell size, we found spindle length in-
creases with chromosome size if we only consider one pair
of chromosomes (or increases with chromosome number if
the size of each chromosome is fixed) (Fig. 4 h). The result
is in good agreement with the experimental data, which
showed the meiosis II spindle containing only half the num-
ber of chromosomes as the mitosis stage 1 spindle has
smaller spindle length (7).

It should be noted that in all panels of Fig. 4, the spindle
size does not change with the cell size in the large cells,
which indicates the upper limit of spindle size always exists.
Therefore, the dynamics of MTs and molecular motors can
only change the value of the upper limit, but not eliminate it.
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There should be other mechanisms that result in the exis-
tence of spindle size limit.
Geometric asymmetry induces upper limit of
mitotic spindle size

It has been proposed that the mass conservation of tubulin
can lead to a volume-dependent spindle scaling and an up-
per limit of spindle length also exists in vitro experiments
(15,16). This upper limit corresponds to the steady-state
spindle length in unencapsulated extracts (15). However,
tubulin or other building blocks are nearly unlimited in un-
encapsulated extracts (6). This indicates that the size limit of
mitotic spindles might be determined by some intrinsic
mechanism other than the mass conservation of spindle
components.

To test this idea, we considered the mass conservation of
tubulin carefully and applied a series of numerical experi-
ments. Firstly, we considered a one-dimensional (1D) model
(Fig. 5 a) similar to our previous work (38) except that the
dynamic instability of MTs is considered explicitly here
(for detail, see the Supporting Material). For each centro-
some, if the obstacles (cell cortex or chromosomes) on its
left side and right side are geometrically identical, we call
it geometrically symmetric. Otherwise, it is geometrically
asymmetric. If the binding or unbinding rates of kineto-
chores and kinesins on MT-chromosome attachments are
different from dyneins and kinesins on MT-cortex attach-
ments, we say the attachment is asymmetric (38). The ge-
ometry and attachment asymmetry break the symmetry
between chromosome MTs and astral MTs so that they
can effectively regulate spindle length. In the 1D model
(Fig. 5 a), it is obviously geometrically symmetric, but the
attachment asymmetry can still exist.

We found there is no upper limit if the attachment asym-
metry is eliminated in the 1D model (Fig. 5 a, blue curve).
This is quite obvious if we treat the problem of the spindle
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length regulation as the problem of the positioning of the
two centrosomes. Because spindle length is measured as
the pole-to-pole distance, the positions of centrosomes
determine spindle length. Obviously, if both attachment
and geometry are symmetric, each centrosome will be posi-
tioned to the center of the half cell (Fig. 5 a). This is because
the mass conservation of tubulin alone cannot break the left-
right symmetry in the 1D cell. If we neglect the small dis-
tance between the two kinetochores, spindle length will
approximately equal one-half of the cell length no matter
how large the cell is. Therefore, the mass conservation of
tubulin alone cannot result in the size limit of spindles in
the 1D cell.

In the 2D model (Fig. 5, b–e), it is naturally geometrically
asymmetric for each centrosome because the shapes of cell
cortex and chromosomes are different. Therefore, we cannot
eliminate the geometric asymmetry in this case. But we can
do a thought experiment, i.e., we can keep the same degree
of the geometric asymmetry by proportionally increasing
chromosome size with cell size (Fig. 5 e). We studied six
cases (Fig. 5, b–d). We found the mass conservation of
tubulin (Cases 2 and 5) or the attachment asymmetry (Cases
3 and 6) alone cannot guarantee the existence of the upper
limit. Without considering the mass conservation of tubulin
(Cases 4 and 6) or the attachment asymmetry (Cases 4 and
5), the upper limit still exists. In contrast, the upper limit
always exists whenever chromosome size is fixed, but the
degree of geometric asymmetry increases with cell size
(Cases 4–6). However, there is no upper limit whenever
chromosome size is proportional to cell size, because the de-
gree of geometric asymmetry is fixed (Cases 1–3).

Therefore, we conclude that the upper limit of spindle
length in a 2D cell is induced by the inherent geometric
asymmetry of the spindle structure. The upper limit natu-
rally emerges when a chromosome’s size is fixed (or we
have a fixed number of chromosomes), and this limit equals
the steady-state spindle length in unencapsulated extracts
geometric 
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FIGURE 5 Geometric asymmetry induces the

upper limit of mitotic spindle size. (a) Simplified

1D model. The labels p1 and p2 are the positions

of centrosomes; c1 and c2 are the positions of sister

chromatids. Spindle length and cell length are Ls
and L, respectively. (b–e) The 2D computational

model. (b) Spindle length is plotted as the function

of cell size, obtained by simulations. The solid lines

are obtained by solving the minimal analytical

model. (c) The detail of (b) in small cells. (d)

The table summarizes the six simulations in (b)

and (c). (e) Schematic of the mechanism of the geo-

metric asymmetry. The degree of the geometric

asymmetry changes (blue curve) or remains fixed

(red curve). The slope of the straight line in (b) is

determined by the ratio of Lc/L (an indicator of geo-

metric asymmetry) as shown in Fig. 4 h. To see this

figure in color, go online.
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(15) (cell volume V/N). In very large cells, because the
influence of cell cortex is nearly negligible, spindle size is
cooperatively limited by the confinement of the chromo-
somes, the pushing force between antiparallel MTs gener-
ated by cross-linking motors, and the length-dependent
pulling force by cytoplasmic dyneins.

Notice that the attachment asymmetry alone can result in
the upper limit of spindle size in the 1D model (Fig. 5 a),
which seems to contradict the results of the 2D model
(Fig. 5, b–d). In fact, when chromosome size is proportion-
ally increased with cell size, spindle size is mainly deter-
mined by chromosome size (Fig. 4 h). In this case, the
influence of the attachment asymmetry is overridden by
the influence of the proportionally increasing chromosome
size in the 2D model.
Minimal analytical model for upper limit of mitotic
spindle size

To provide a deeper insight about the mechanism of the
spindle size limit, we also develop a minimal analytical
model to capture the key features of the system. Because
the spindle length is measured by the pole-to-pole distance
in experiments and simulations, the problem of the spindle
size regulation is reduced to solve the positions of spindle
poles. The spindle poles interact with the cortex or chromo-
somes through the pushing forces and pulling forces of
MTs. The resultant force is pushing force at short ranges
and pulling force at long ranges, which is similar to the Len-
nard-Jones Potential. Therefore, we write the total energy of
the system as

V ¼
Z2p
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The first two terms of Eq. 21 are the interaction between the
poles and the cortex; the parameters r1 and r2 are the dis-
tance from the pole to the cortex at the direction angle 4

(Fig. S1); ε represents the depth of the potential well, which
is proportional to the total amount of MTs or spindle mass;
and s determines the equilibrium position, which represents
the ratio of pushing astral MTs to pulling astral MTs.

The last two terms of Eq. 21 are the interaction between
the two spindle poles. It should be noted that the chromo-
some is not considered explicitly in this simplified model.
The two spindle poles interact with each other through the
chromosomes or antiparallel polar MTs indirectly.

The third term of Eq. 21 is the interaction between the two
poles through chromosomes, where Lc is the chromosome
size; Ls is the spindle length; L0 is constant; and sp represents
the ratio of pushing chromosome MTs to pulling chromo-
1512 Biophysical Journal 112, 1503–1516, April 11, 2017
some MTs. It should be noted that the chromosome arms
only provide pushing forces. Therefore, both chromosome
size Lc and spindle mass ε can change the ratio of pushing
chromosome MTs and pulling chromosome MTs sp. There-
fore, for simplicity, we assume sp ¼ (ε/ε0)(Lc/L0)sc, where
sc is the reference value for the ratio of pushing chromosome
MTs and pulling chromosome MTs, and ε0 is a constant.
When mass conservation is not considered, ε ¼ ε0.

The fourth term of Eq. 21 is the interaction between the
two poles through antiparallel polar MTs. As we derived
in Eq. 20, the repulsive force between antiparallel MTs
is Fr ¼ Ae�BLs , where A and B are two constants. There-
fore, the interaction of antiparallel polar MTs U can be ob-
tained by integration of the repulsive force Fr because
Fr ¼ �dU/dLs.

We can minimize the total energy to obtain the stable
spindle length Ls. The results are shown as the solid lines
in Fig. 5, b and c. The mass conservation, the attachment
asymmetry, and the geometrical asymmetry can be manipu-
lated by changing ε, sc, and Lc/L0, respectively (Table S2). It
is noted that the interaction between spindle poles and the
cortex varies with the cell size (the first two terms of Eq.
21). However, the interaction between two poles cannot
keep changing with the cell size (the last two terms of Eq.
21). Therefore, the upper limit of spindle size still exists
in the absence of mass conservation and attachment asym-
metry. When we keep the same degree of the geometric
asymmetry, i.e., keep the chromosome size Lc proportional
to the cell size L, the interaction between two poles will
keep changing with the cell size, and the upper limit disap-
pears. These results agree with the numerical simulations
very well (Fig. 5, b and c).
Boundary-sensing and volume-sensing
mechanisms coexist in mall cells but fail in large
cells

Interestingly, experiments found that Xenopus egg extract
droplets possessing the same volume but different shapes
have the same spindle length (15,16). Therefore, in extract
droplets, cell volume rather than cell shape determines spin-
dle length (15,16). However, in vivo experiments showed
that the spindle elongates after the cell is compressed
(60). If cell volume determines spindle length as proposed
in the limit component model (15,16), spindle length should
decrease after the compression. The reason is that after
compression, cell volume will decrease due to the efflux
of water and ions induced by external forces (61) so that
spindle length decreases accordingly. Apparently, this is
inconsistent with the compression experiment (60). This in-
dicates that different mechanisms of spindle length regula-
tion may be employed or dominant in vivo and in vitro
experiments (3,5,60). We noticed the major difference be-
tween these experiments is that astral MTs are lacking in
the spindles assembled in extract droplets (15,16). Thus,
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we wonder whether astral MTs lead to the different experi-
mental results.

In Fig. 6, we increase cell size of the compressed and un-
compressed cells with fixed aspect ratio and calculate spin-
dle length. We found if astral MTs are removed artificially
(Fig. 6 a), spindle length curves of the compressed and un-
compressed cells collapse onto the same curve when plotted
as the function of cell volume (cell area in the 2D model)
(Fig. 6 b), but they separate when plotted as the function
of cell length (Fig. 6 c). This is consistent with in vitro ex-
periments (15,16). Without astral MTs, spindles cannot
sense the droplet boundary through the interaction between
MTs and droplet boundary, but it can sense droplet volume
though the depletion of tubulin. Therefore, the volume-
sensing mechanism dominates in extract droplets.

In contrast, if astral MTs exist (Fig. 6 d), we get the oppo-
site conclusion, i.e., the two curves collapse onto the same
curve when plotted as the function of cell length (Fig. 6 f).
This indicates that when astral MTs exist, the boundary-
sensing mechanism dominates even if the mass conservation
of tubulin is considered. This is consistent with the experi-
ment (60). Movie S5 shows the dynamic evolution of spin-
dle length after the cell is compressed, which agrees with the
experiment (60) qualitatively. Many components of our
model, such as the velocity-dependent forces by motors
(Eq. 3), the force-dependent unbinding rates of motors
(Eq. 5), and the length-dependent MT buckling and cyto-
plasmic pulling force (Eqs. 1 and 11), are controlled me-
chanically. Therefore, length, velocity, and force can be
sensed accordingly, and the whole spindle can sense cell
shape and size, and adjust its own size accordingly.

Therefore, in small cells, spindles can sense cell size and
control their own size due either to the confinement of cell
boundary (boundary-sensing mechanism) or to the limit
component of building blocks (volume-sensing mecha-
In Vitro (droplet)

In Vivo

a

d

cb

fe
nism). However, the boundary-sensing mechanism over-
rides the volume-sensing mechanism when astral MTs
exist. The latter mechanism is significant only when astral
MTs vanish. Both mechanisms fail to regulate spindle size
in very large cells because MTs can barely reach the cell
boundary (see Fig. S8) and the number of building blocks
is nearly unlimited in very large cells (6) (see Fig. S2).
Therefore, in very large cells, the spindle loses the ability
to sense cell size, and the spindle size is determined by
the inherent geometric asymmetry of the spindle structure,
as we proposed above.
DISCUSSION

In this work, we developed a mechanical model to investi-
gate the control mechanism of spindle size and why there
is an upper limit of spindle size. Our model reproduced
the scaling law that the spindle size increases with cell
size and approaches an upper limit, which is in agreement
with the in vivo and in vitro experiments (7,16). Like previ-
ous models for spindle size (8,9,18), we perturbed various
parameters of MT dynamics and molecular motors to inves-
tigate their influence on the spindle size. But the upper limit
of the spindle size always exists, which indicates there are
other inherent mechanisms that lead to the spindle size limit.
An experiment can be used to test whether the perturbation
of MTs or motors can recover the scaling with cell size when
spindle size has reached its upper limit. A possible explana-
tion of the upper limit is the limited component model (15).
However, we still observed the size limit of spindles when
the component is supplied unlimitedly. Another explanation
of the upper limit is the attachment symmetry, i.e., the MT-
kinetochore attachments are more stable than the MT-cortex
attachments (38). But we still observed the size limit of
spindle when the stability of the two attachments are the
FIGURE 6 Volume-sensing mechanism versus

boundary-sensing mechanism. (a–c) Spindle length

scaling in uncompressed and compressed extract

droplets (in vitro). Spindle length in extract droplets

is plotted as the function of (b) cell volume and (c)

cell length. Astral MTs are removed here because

they are lacking in the spindles assembled in the

extract droplets. (d–f) Spindle length scaling in un-

compressed and compressed cells (in vivo). The

solid lines are obtained by solving the minimal

analytical model. To see this figure in color, go

online.
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same. An experiment can be designed to test whether the up-
per limit will disappear when the MT-kinetochore attach-
ments are perturbed to reduce their stability.

Strikingly, we found the existence of the upper limit of
spindle size is only induced by the inherent geometric asym-
metry. In other words, the chromosome always has a limited
size (i.e., limited content in experiments), which is indepen-
dent of the increase of cell size. In very large cells, because
fewMTs can reach the cell boundary, the spindle size is only
determined by the chromosome size. Therefore, the spindle
has a size limit no matter whether the cell boundary exists.
Only if the chromosome size increases with the cell size
proportionally will the upper limit disappear, because the
degree of geometric asymmetry is kept. This is consistent
with the previous experiment that the geometrical condition
can influence the spindle width (32). Such a thought exper-
iment cannot be achieved in practice because the chromo-
some content is always limited in cells. But it is possible
to explore whether the inherent length of spindles can in-
crease with the chromosome size.

Besides the spindle size limit, the regulation of the spin-
dle size was also studied and plentiful results were obtained.
We got some outputs that are in agreement with experi-
mental results. For example, the spindle can elongate
when increasing the growing velocity (or MT length) (8),
increasing the spindle components (15), increasing the
kinetochore pulling force (47), compressing the cell (60),
or decreasing the pushing force on antiparallel MTs (18).
These results indicate our model can successfully capture
many key phenomena and features of spindle size. In the
meanwhile, we also have some results that have not been
tested in experiments. For instance, we found that in small
cells the spindle size decreases linearly with the growing ve-
locity of MTs under the influence of cell boundary, which is
different from the results of in vitro experiments done
without considering the cell boundary (8). We also found
that the spindle size is independent of the slipping rate of
MTs on the cortex, but can increase with the enhancing of
cortical pulling force. And these results can be tested exper-
imentally in the future.

Compared with the previous model, our model has a
major advantage in that more complete mechanisms are
considered. Therefore, we not only reproduced the control
mechanisms of spindle size that have been found in exper-
iments, but also provided some interesting predictions that
can be tested in the future. Here, we considered not only the
mass conservation of tubulins affected by the cell volume,
but also the interaction between the spindle and the cell
boundary—so our model can capture the spindle size
scaling, and reveal why spindle size limit exists. The previ-
ous models for positioning or orientation of spindles usu-
ally described the spindle by a point or a rigid body with
fixed size and shape (20–23); in contrast, we added the
spindle structure in the model explicitly, which allows us
to investigate the potential impact of spindle size on posi-
1514 Biophysical Journal 112, 1503–1516, April 11, 2017
tioning and orientation, and chromosome segregation in
the future. Finally, unlike the previous analytical model
(21,22), our computational model is dynamic, so that it
can be used to investigate what can influence the efficiency
of cellular activity in future work. Our model may also be
applicable to the spindlelike structures (62,63).

We have shown that there is only a quantitative difference
between 2D and 3D simulations (see Figs. S4 and S5).
Therefore, to improve computational efficiency, we used a
2D computational model. One limitation of the 2D model
is that it is more difficult for MTs to bypass chromosomes.
We introduced a superposition method to solve this prob-
lem, i.e., we first figured out the interaction of antiparallel
MTs separately, and then added it to the system with chro-
mosomes. But in 3D cells, MTs can easily bypass chromo-
somes because their volume is small. To simplify the
problem, here we neglected the branching MTs as proposed
in previous works (9,20,21,31), because they have the same
polarity as mother MTs and the forces on the branching MTs
are all transmitted to centrosomes to drive their motion (30).
We further neglected the severing of MTs. It has been shown
that the severing of MTs can decrease the MT length, and
thus, can also influence the spindle size (9). But, obviously,
they cannot lead to the existence of the upper limit of spin-
dle. Also, due to the spindle size being defined by the dis-
tance between two poles, we described the mechanical
deformation of MTs implicitly. We only recorded their
states and calculated the forces that they apply on the
chromosomes, centrosomes, or cortex as done by many pre-
vious models (20,21). Therefore, MTs were all represented
by straight lines in the movies. We can treat MTs as
elastic rods and compute their deformations (9,64), but the
complexity is largely increased. Although we made these as-
sumptions and simplifications, our model can capture the
key features of spindle size and it can be used to study other
related problems.
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Supplemental Text: 

1. Mass Conservation of Tubulin 

The influence of the mass conservation of the tubulin on the growth velocity of MTs and 

the fraction of tubulin in the spindle is obtained in 2D simulation and shown in Fig. S2. 

During the self-assembly of the spindle, the growth velocity of MTs decreases with time, and 

approaches a steady state when the tubulin assembling into spindle MTs equals the tubulin 

leaving the spindle (Fig. S2A). The growth velocity decreases more dramatically in smaller 

cells when the mass conservation is considered. The fraction of tubulin incorporated into the 

spindle versus the cell volume (Fig. S2B) can be calculated after the stable spindle structure is 

obtained in Fig. S2A. The fraction decreases linearly with the cell volume in log-log 

coordinate in larger cells (red curve in Fig. S2B). However, as cell volume decreases, the 

fraction of tubulin in the spindle approaches 100%, i.e., the soluble tubulin becomes 

completely depleted. This result is in agreement with the experimental result reported in Ref. 

(1). In contrast, if there is no mass conservation and the growth velocity of MTs is constant, 

the tubulins never deplete. The fraction of tubulin in the spindle (blue curve in Fig. S2B) is 

also normalized by 0C V  so that the two curves can be compared. Notice that the fraction can 

be bigger than 1 since the mass is not conserved in this case.  

2. Stochastic Simulation Method 

 As shown in Fig. S3A, initially the positions of centrosomes and chromosomes are given 

randomly inside the cell. The initial number of the MTs on each centrosome is 50 and these 

MTs are evenly distributed in all directions. In each time step, new MTs are nucleated in 

random directions. For each MT, we record its length, direction and state. Each MT has four 

states, including growing, shrinking, slipping, and binding (see Fig. S3B). In the time step, we 

firstly determine if the MT switches its state. The random switching events include the 

catastrophe, rescue, binding and unbinding, while the other change of states is deterministic 

based on the geometric conditions. Then we change MT length and orientation 

deterministically according to its state. And the force generated by every MT can be 

calculated based on its length, direction and state. Therefore, the resultant force on each 

centrosome and chromosome can be calculated to obtain their instantaneous velocity and new 

position by using Eq. 13-15. The system is iteratively solved. 

Specifically, each growing MT elongates at the velocity of 1v  (Eq. 19) until it switches to 

the shrinking state or touches the cortex or chromosomes. If the catastrophe occurs, the MT 

switches to the shrinking state. Otherwise, if the length of MT exceeds the distance between 

the centrosome and the cortex (or chromosomes) in the MT direction, the MT switches to the 

slipping state. In particular, the catastrophe rate is 2k , and the catastrophe event is treated as 
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a Poisson process, in which the occurrence of catastrophe within time   follows a Poisson 

interval distribution   2
2 2

kf k e   (2-5). Thus the growing state has an average duration of 

21 k . Thus we can calculate the probability of catastrophe occurrence in a time step t  

easily as 2
2 1 k tk e   . In each time step, a random number 2n  in (0, 1) is uniformly 

generated, and if 2 2n k , the catastrophe occurs in this time step. We use the same method to 

determine other random events.  

Each shrinking MT shortens at the velocity of 2v  until it switches to the growing state or 

depolymerizes completely. If the rescue event occurs, the MT switches to the growing state. 

Otherwise, if the length of MT is less than or equals to zero, the MT is deleted. The rescue 

rate is 1k , and in each time step, a random number 1n  in (0, 1) is uniformly generated, and if 

1 1n k , where 1
1 1 k tk e   , the rescue occurs in this time step.  

Each slipping MT can slip on the cortex or chromosome arms at a tip velocity sv  (Eq. 2) 

until it switches to the shrinking state or it is bound by a motor (or the kinetochore). We 

assume the minus end of the MT is fixed on the centrosome, thus the angular velocity of the 

slipping MT is  cossv v l  , where l  is the MT length. The direction of the slipping 

MT changes at the velocity v  and the MT length increase slowly to keep the MT  

contacting the cortex (or chromosome). It should be noted that we consider the buckling of 

MTs, but assume the force equals the critical buckling force (Eq. 1). But we do not describe 

the bending deformation of MTs explicitly, so the MT length is assumed as the length of the 

straight line. The slipping MT switches to the shrinking state if the catastrophe occurs, which 

is determined in a same way as the growing MTs. Otherwise, if a motor (or kinetochore) binds 

to the MT, it switches to the binding state. We consider both dyneins and kinesins on the 

cortex. Dyneins and kinesins have the binding rated bk   and bk   respectively. Similarly, the 

binding occurs if 1 bk t
bn e

     or 1 bk t
bn e

    . Considering multiple motors can bind to 

the MT simultaneously, we further determine that if 1(1 ) (1 )b bk t n k t n
be n e

          , there 

are n  dyneins bind to the MT, and if 1(1 ) (1 )b bk t k tm m
be n e

         , there are m   

kinesins bind to the MT (2). 

For each binding MT, its tip is fixed at the binding point on the cortex or chromosomes, 

until all binding motors detach. New motors can also bind to the MT. The unbinding rate is 

load-dependent as Eq. 5. For each binding motor, a random number mn  is generated to 

determine the unbinding of the motor if 1 uk t
mn e

   . If all motors detaches, the MT 

switches to the shrinking state. 

Besides the four states, we also consider the crosslinking of antiparallel MTs. We assume 

all growing MTs and shrinking MTs inside the spindle, i.e., the angle between the MT and the 

spindle axis (pole-to-pole axis) is less than 60 , should be considered. For these MTs, if the 

minimal distance between two MTs from different centrosomes is less than a critical value

0.5ld m , they can be bound by cross-linkers at a rate of ,b lk , and the crossing MTs both 
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become binding state. For simplicity, we assume the MTs bound by cross-linkers do not 

elongate or shorten in order to avoid touching the chromosomes or cortex. And also the 

cross-linkers can detach at a rate of uk  , and if all motors on a pair of MTs detach, the MTs 

can become growing or shrinking states again. 

Then the force on each MT can be calculated based on their length and state (Eq. 1, 6, 11), 

and the resultant forces on centrosomes and chromosomes can be calculated (Eq. 13-15) to 

obtained their velocities, which are used to calculate their motion and determine the force 

generated by motors in next step. The finite difference method is used to solve the kinematic 

equations. The positions of every centrosome or chromosome p  can be calculated as 

   t t t t    p p v , where v  is the velocity vector.  

3. The Length Distribution of MTs 

MTs can be in bounded or unbounded growth regime depending on an average growth rate 

(6, 7), and experiments have shown that the growth of MTs in egg extract is bounded (6). So 

we only consider the bounded growth of MTs in our model. The length distribution of MTs is 

exponential in bounded growth (6, 7). This is exactly what we found in very large cells (Fig. 

S8D) since the influence of cell cortex is nearly negligible in large cells. However, in small 

cells, there is a peak in the length distribution of MTs (Fig. S8A-C). The peak is induced by 

the MTs captured by the molecular motors since the lifetimes of these MTs are longer than 

free MTs and the number of these MTs becomes larger. Therefore, in small cells, the length 

distribution of MTs can be regarded as the superposition of the exponential and Gaussian 

distribution. The peak becomes smaller with increasing cell size since the smaller fraction of 

MTs can touch the cell cortex or chromosomes and be captured by motors on them in larger 

cells (Fig. S8). 

It should be noted that long MTs can be severed by katanin which makes MTs into small 

pieces (8) so that the average length of MTs is several microns. But the spindle can still span 

tens of microns, which relies on the cross-linking of MTs. The force is usually applied on the 

outermost MT end, but it can be transmitted to the spindle pole through intermediate 

cross-linking MTs. Therefore, without loss of generality, we can use a single MT to replace 

the intermediate cross-linking MTs, and neglect the severing and cross-linking of MTs.  
Besides the cross-linking of MTs, the branching of MTs can also make the short MTs span 

large cells (hundreds of microns in Xenopus laevis embryos) (9). The force applied on the 

outermost MT end can be transmitted to the spindle pole through branching nodes. Therefore, 

similar to the cross-linking of MTs, we use a single MT to replace the branching MTs. The 

main reason that we make this simplification is that the branching of MTs remains 

complicated for modeling at present. The branching of MTs will significantly increase the 
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complexity of the model, including many additional parameters and very complicated 

mechanical structures.  

4. One-dimensional Model   

To remove the geometric asymmetry completely, we develop a one-dimensional model 

similar to what we did in our previous work (10) except that the dynamic instability of MTs is 

considered explicitly here. As shown in Fig. 5a, 1p  and 2p  are the positions of the two 

centrosomes, 1c  and 2c  are the positions of the two sister chromatids. It must be noted that 

1c  and 2c  represent not only the kinetochores, but also the chromosome arms in the 1D 

model. Therefore, both pushing and pulling forces can be applied to it. If the binding rate and 

unbinding rate of dyneins and kinesins on the MT-chromosome attachments are different from 

those on the MT-cortex attachments, the attachment asymmetry exists (10). Otherwise, there 

is no attachment asymmetry. This simplified 1D model includes all the essential components 

of the 2D model, such as the pushing forces due to the polymerization of MTs, and the forces 

induced by the cortical motors, cytoplasmic motors and cross-linking motors. Using this 

simplified 1D model, we wonder whether the mass conservation can lead to the upper limit of 

the spindle size when the geometric asymmetry does not exist at all. 
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Table S1. Parameters used in the simulations. 

Class Parameter Definition 
Value used in 

model 

Range tested in 

model 

Reference 

 t  Time step 1s    

Friction 

coefficient 

  Friction coefficient of MT slipping 50 pNs m  10 280,inf  (11, 12) 

p  Drag coefficient of the centrosome 10 pN s nm   Estimatea 

c  Translational drag coefficient of the chromosome 30 pN s nm   Estimateb 

c Rotational drag coefficient of the chromosome 1255.5pN s nm  Estimatec 

Dynamics of 

MTs 

1v  Growth rate of MT without mass conservation 0.12 m s  0.12 0.15  (6, 13-19) 

2v  Shrinking rate of MT  0.25 m s  0.21 0.27  (6, 13-19)

1k  Rescue rate of MT 10.04s  0.032 0.06  
(6, 14, 15, 

18-20) 

2k  Catastrophe rate of MT 10.02s  0.01 0.024  
(6, 14, 15, 18, 

19) 

0k  Nucleation rate of MT 1120 min   (11, 12, 15, 21)

  Bending rigidity of MT  233.12 pN m   (22) 

stallf  Stall force of MT  10pN  (23) 

Dynamics of 

molecular 

motors 

,b ck   Binding rate of kinesin on the chromosome arms 10.005s  0.0005 0.2  (24) 

,b ck   Binding rate of dyneins on the kinetochore 10.1s  0.002 1  (20, 24) 

bk  Binding rate of cortex dynein 10.03s  0 0.08  (14, 25) 

bk  Binding rate of cortex kinesin 10.02s   (12, 14, 25) 

,b lk   Binding rate of dynein as cross-linker 10.02s   (26-28) 

,b lk   Binding rate of kinesin as cross-linker 10.08s   (26-28) 

0k  Unloaded unbinding rate of kinesin  10.02s   (11, 12, 29) 
-
0k  Unloaded unbinding rate of dynein  10.02s   (11, 12, 29) 

uf
 Characteristic force in the unbinding rate of kinesin 20 pN (29) 

uf
 Characteristic force in the unbinding rate of dynein 20 pN (29) 

0f
  Stall force of kinesin  5 pN   (19, 29-31) 

0f
  Stall force of dynein  5 pN   (29-31) 

 Cytoplasmic pulling force per unit MT length 0.004 pN m Estimated 

0v Unloaded velocity of kinesin 0.2 m s (29-31) 

0v Unloaded velocity of dynein 0.2 m s (29-31) 

Mass 

conversation 

ck  Concentration coefficient 7 32.5 10 m s a 71.5 3.5 10   (6, 16-18)e

0d  length of tubulin dimer 8nm  (13) 

0C Initial concentration of tubulin 5 25 10 m a (16, 32)e 

Attachment 

asymmetry 

-
0,ck  Unloaded unbinding rate of kinetochore 10.005s  0.002 0.02  Decreasef

0,ck   Unloaded unbinding rate of chromosome kinesin 10.005s   Decreasef

2,ck  Catastrophe rate of chromosome MT 10.005s   Decreasef

Geometry 

L Cell length 30 m 30 800   

b Cell width 15 m 15 400   

cL Chromosome length 9 m 0.025 0.4L L   

cL L   Geometric asymmetry  0.3 0.3L or   

*The background color indicates whether the parameter has a significant influence on the spindle size and the existence of upper 

limit. Not every parameter has been tested in the simulations. If the range tested in model is vacant, the parameter is thought a 

significant influence factor because it has the similar function as the tested parameter in the same class. 

(White) The parameter has little influence on the spindle size and the upper limit.  

(Blue) The parameter has a significant influence on the spindle size, but has no influence on the existence of upper limit. 



11 

 

(Red) The parameter play an essential role in the existence of upper limit. 
aThe centrosome is regarded as a sphere, whose diameter is 0.5 5 m . Based on the viscous drag coefficient formula of sphere,

6 a  , the estimated value were obtained. The viscosity of cytoplasm is around 310 Pa s  . 
bThe viscous drag coefficient of chromosome is also regarded as a sphere like centrosome, but the diameter is around 5 25 m . 
cThe rotational viscous drag coefficient of chromosome is estimated by c c cI   . Here cI is the equivalent rotational inertia,

2 6cI r . 
dGiven the dynamic viscosity of cytoplasm 0.001 Pa s   , the radius of the cargo 10R nm  and the velocity of the motor 

1 /v m s , the pulling force generated by a single motor can be estimated from Stokes' law, i.e., 46 2 10f Rv PN    . 

Assuming the density of the dynein is 120 m  , the value of   is estimated to be 0.004 pN m  in the simulation. 
eThe unit of concentration of tubulin is 31 m . But in our 2D model we need to reduce dimensionality. The magnitude of cell 

diameter is 30 500 m  in this paper, so we set the concentration is two orders of magnitude more and unit is 21 m . And the 

ck is estimated when 1 0.125v m s  and 0MTL  . 
fThe stabler connection between MTs and chromosomes when the attachment asymmetry is considered. 

 

 

Table S2. Parameters used in the minimal analytical model. 

Parameter Value or expression Description Comments 

0  44.4 10 pN m   Reference value for the spindle mass.  

   0 1 2Le   
Actual value for the spindle mass, dependent on the cell 

size L . It is derived from the red line in Fig. S2B. 

When the mass conservation is 

not considered, 0  . 

  0.00432  
The sensibility of the total amount of MTs to the cell 

size, when the mass conservation is considered. 
 

  18 m  
Represent the ratio of pushing MTs to pulling MTs on 

the cortex 
 

c  54 m  
Represent the ratio of pushing MTs to pulling MTs on 

the chromosome. 

When the attachment asymmetry 

is considered, 36c m  . 

0cL L  0.6  Represent the normalization of the chromosome size. 
When the geometrical asymmetry 

is kept, 0 7.2cL L L . 

 

 

Legends for the movies: 

Movie S1: The self-assembly process of three pairs of chromosomes and two centrosomes in 

3D. The movement of chromosomes are shown synchronously. 

Movie S2: The self-assembly process of three pairs of chromosomes and two centrosomes in 

2D. 

Movie S3: The high time-resolution movie shows the slipping, buckling, and the random 

switch between growing and shrinking states of microtubules. 

Movie S4: The self-assembly process of one pair of chromosomes and two centrosomes in 

2D. 

Movie S5: The dynamic evolution of the spindle length after the cell is compressed. 
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