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Abstract: In this paper, we present a focused femtosecond laser Bessel beam scanning 
technique for the rapid fabrication of large-area 3D complex microtube arrays. The 
femtosecond laser beam is converted into several Bessel beams by two-dimensional phase 
modulation using a spatial light modulator. By scanning the focused Bessel beam along a 
designed route, microtubes with variable size and flexible geometry are rapidly fabricated by 
two-photon polymerization. The fabrication time is reduced by two orders of magnitude in 
comparison with conventional point-to-point scanning. Moreover, we construct an effective 
microoperating system for single cell manipulation using microtube arrays, and demonstrate 
its use in the capture, transfer, and release of embryonic fibroblast mouse cells as well as 
human breast cancer cells. The new fabrication strategy provides a novel method for the rapid 
fabrication of functional devices using a flexibly tailored laser beam. 
© 2017 Optical Society of America 
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1. Introduction 
Microtubes are widely used in the fields of microoptics [1–3], biomedical devices [4–7], 
microfluidics [8], micropumps [9–11], microsensors [12–14] and cell biology [12, 15]. In the 
field of microoptics, microtubes fabricated from glass capillary tubes are used for focusing 
light in the subwavelength level. Fu et al. [2] reported a focal spot of size ~435 nm at a 
distance of ~1.47 μm from the output end. Microtubes in the optical mode have been used as 
optical ring resonators [3]. In the field of biomedical devices, microtubes are widely used as 
microneedles for drug delivery. The relationship between the geometry of the microtube and 
the liquid flow properties is investigated in [5, 6]. In microfluidics, microtubes are integrated 
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into a microfluidic device by photolithography for integrative fluid analysis on a chip [8]. 
Microtubes can also be used as self-propelling micropumps in cargo transportation, which is a 
promising way to construct versatile and intelligent tubular microrobots [9]. In microsensor 
development, microtubes are enclosed and patterned with a SU-8 polymeric matrix to form an 
integrated tubular optofluidic sensor, which has high sensitivity to refractive index changes 
[13]. Impedimetric microsensors are developed by integrating Au-base electrodes on 
microtubes for determining the in-flow of monovalent and divalent ionic species and HeLa 
cells [14]. Two-dimensional cultures such as patterned planar substrates are often used for 
cell biology study. However, cellular processes usually happen in 3D spatially confined 
physiological environments. Microtubes are used to encapsulate single cells to provide a 
confined 3D microenvironment for the analysis of cellular dynamics, which determines the 
proliferation, growth, apoptosis, and differentiation of a cell [9, 12]. 

Several methods have been developed for the fabrication of microtubes. Schmidt 
fabricated microtube arrays by using the self-rolling property of organic and inorganic films 
[16–18]. However, only straight microtubes can be fabricated due to the intrinsic character of 
the technology. Microtubes can also be manufactured by the continuous accumulation of 
nanoparticles; this is achieved by guiding the meniscus upward in a solution of nanoparticles 
[19]. However, this technology results in microtubes that exhibit poor uniformity and weak 
strength. Electrospinning is a straightforward and cost-effective method to produce 
microtubes. However, using this method, only one-dimensional microtubes can be produced 
and it is difficult to control their size [20]. Other methods include mask-based diffraction 
lithography [21], template base deposition [22], and holographic lithography [23]. However, 
these methods also lack flexibility. Femtosecond two-photon polymerization (TPP) is a 
promising tool for the fabrication of microstructures of arbitrary size [24–26]. In this method, 
the microstructures are prototyped by point-to-point scanning. Nevertheless, this technique 
too has a serious drawback in that the processing time scale increases as the third power of 
the object size, which is unacceptable for the fabrication of large-area microtube arrays. 

In this paper, we present a fast and flexible approach for the fabrication of large-area 
microtube arrays and demonstrate its use in single cell study. This objective is realized in 
three steps. First, a femtosecond laser beam is modulated into several Bessel beams by a 
liquid crystal spatial light modulator (SLM) and then focused into resin for TPP. Then, 
microtubes are effectively fabricated by scanning the focused Bessel beam along a designed 
route. The dimension and geometry of microtubes are controlled by tuning the fabrication 
parameters. This technology retains the high resolution of the TPP approach while reducing 
the processing time by two magnitudes. Finally, the fabricated microtube is used for the 
capture and release of particles and cells. This demonstrates that the proposed method is a 
promising way to study single cell biology in a confined 3D microenvironment that closely 
resembles the in vivo conditions. 

2. Experimental procedure 
2.1 Generation and focusing of femtosecond laser Bessel beam using hologram 
imprinted SLM 

The Bessel beams are generated using a SLM with loaded holograms that have a transmission 
function 

 0( , ) exp( ) exp( 2 / ),nT r in i r rθ θ π= −  (1) 

where r  and θ  are the transverse and polar coordinates respectively, n  is the n-th order 
Bessel beam, and 0r  is an adjustable constant parameter [27–29]. Equation (1) can be divided 

into two terms. The first term is associated with the azimuthal phase. The second term 
generates the zeroth order Bessel beam. Since the SLM display comprises of pixels, we 
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rewrite r as
2 2 1/2( ) ,r i j= + Δ  where i  and j  are integers that indicate each SLM pixel, and Δ  

is the pixel pitch. In the experiment, a blazed grating pattern with phase gratingφ  is directly 

added with the hologram for Bessel beam generation to separate the Bessel beam from zero 
diffraction order. The phase gratingφ required to produce a lateral shift is calculated by 

 ( , ) 2 ( ),grating

i j
i jφ π= +

Γ Γ
 (2) 

where Γ is the period of blazed grating [30]. The final phase pattern loaded to the SLM is: 

 ( ).holo n gratingTφ φ= +  (3) 

According to the grating theory, the diffraction angle of the 1st order, γ , can be derived as 

sin / ,γ λ= Γ  where λ  is the wavelength of incidence and is. In our study, the Bessel beam is 

8 mm shifted from the zero order at a distance of 1.2 m from the SLM. The incidence in our 
experiments is assumed to be Gaussian beam with plane wave front. The electric field at a 
distance z behind SLM is derived from Fresnel diffraction theory: 

 
2 2

2

0 0

exp( ) cos( )
( , , ) exp( ) ( , ) exp( ) exp[ ]2 .

2 2

R

n

ikz ik ikr ikr
E z T r rdrd

ikz z z z

πρ ρ θ ϕρ ϕ θ π θ− −= −  
 (4) 

Here ρ and φ are polar coordinates in the observation plane, and R is the radius of the 
hologram. Substituting Eq. (1) into Eq. (2), performing the angular integral, and using the 
integral definition of Bessel functions, the electric field is derived as: 

 
2.5 2

1/2
2.5 2

00 0

2
( , , ) ( ) exp{ [ ( ) ]}.

2 2n

z k
E z z J i kz n

r zi r r

λ πρ π πλ ρρ ϕ φ= + − + +  (5) 

where nJ  is the n-th order Bessel function of the first kind [27,31–37]. The intensity profile 

of the generated beam is proportional to the square of the Bessel function. The most 
remarkable advantage of this SLM-based approach is that the parameters of the Bessel beam 
can be flexibly controlled by adjusting n  and 0r . 

Then, Bessel beam is focused with a high numerical aperture (NA) objective. Since the 
paraxial approximation does not consider the vectorial nature, the optical field at the focusing 
region is calculated by Debye vectorial diffraction theory, which describes the depolarization 
effect of a high-NA objective by calculating the three orthogonal field components Ex, Ey 
and Ez, respectively [38] and is derived as: 

 

2

2 2 2 2 2 2 2 2 20 0

2 2 2 2 2 2 2 2 2 2

( , , ) sin ( , , ) cos ( , )

exp[ ( cos sin cos sin sin )] .

obj

diff

iC
E x y z E z

ikn z x y d d

α π
θ θ ϕ θ θ ϕ

λ
θ θ ϕ θ ϕ θ ϕ

= −

+ +

 2 P

                                    

 (6) 

Here C is a constant, 2 /k π λ=  is the wave number; λ  is 800 nm, the wavelength of 
incident light; diffn  is 1.518, the refractive index of immersion medium; α  is the maximum 

focusing angle of the objective lens and can be calculated according to 
formula: arcsin( / ).diffNA nα =  NA is the numerical aperture of objective lens, 2θ  represents 

the focusing angle of objective lens and 2ϕ  is the azimuthal angle of object plane. objz is the 
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distance between objective and SLM, which is 1.6 m in this work. 2 2( , )θ ϕP  indicates the 

polarization state of the EM field in the focal region, which can be rewritten as: 

 2
2 2 2 2 2 2 2 2 2( , ) [1 (cos 1)cos ] [(cos 1)cos sin ] sin cosθ ϕ θ ϕ θ ϕ ϕ θ ϕ= + − + − −i jP k (7) 

for incidence with linear polarization at X direction, as used in our experiment. The field 
described by Eq. (6) and Eq. (7) is represented in Fig. 1(b). 

2.2 Fabrication of large-area 3D microtube arrays using scanning of focused 
femtosecond laser Bessel beam 

In this study, the laser source used in the fabrication system is a femtosecond laser with a 
central wavelength of 780 nm (Chameleon Ultra, Coherent Corp., repetition rate: 80 MHz, 
pulse width < 140 fs). The laser power is controlled using a half-wave plate combined with a 
polarization beam splitter. After passing through a beam expander, the laser beam illuminates 
a reflection type liquid crystal SLM (Pluto NIRII, Holoeye, 1920 × 1080 pixels, 256 grey 
levels, pixel pitch of 8 μm), on which the calculated holograms are encoded. Due to the 
Gaussian distribution of the incident laser, the femtosecond laser beam expands and becomes 
larger than the SLM display; only the central 1080 × 1080 pixels are used for phase 
modulation. The femtosecond Bessel beam is generated using the SLM and the zero order is 
filtered before being focused onto a sample with a high numerical aperture objective (60 × , 
NA = 1.35, Olympus) for TPP polymerization. The sample is prepared by drop casting 
SZ2080 photoresist onto a cover glass and then baking on a hot plate for 1 hour. SZ2080 is 
chosen here because of its biocompatibility [39]. The sample is anchored to a 3D stage (E545, 
Physik Instrument), which is controlled along with a shutter (SC10, Thorlab) using a 
computer. The fabrication process is monitored in situ with a charge coupled device (CCD) 
camera. After the microtubes are fabricated, the sample is developed in normal propyl alcohol 
for half an hour and then dried by natural evaporation in air. To avoid the collapse of 
microtubes due to perturbation of liquid developer and surface tension, the sample is placed 
upside down when developing and drying. The samples are sputter coated with Au for 120 s 
and imaged with an Environment Scanning Electronic Microscope (ESEM, XL-30, FEI, 
America). 
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Fig. 1. High efficiency fabrication of microtubes by focused femtosecond laser Bessel beam 
scanning. (a) Femtosecond Bessel beam is generated by phase modulation using a predesigned 
hologram loaded in the SLM. The inset shows the combination of blazed grating and hologram 
for a Bessel beam to separate the Bessel beam from the zero diffraction order. (b) The intensity 
distribution at the focal region of a focused 20th order Bessel beam. The inset shows the 
intensity distribution at the focal plane. (c) Cylindrical microstructures fabricated by ascending 
the focal plane line-by-line. In the fifth line, only two cylinders are left and this is the critical 
position where the cylinder adheres to the substrate. (d) Magnified SEM images of 
polymerized cylindrical microstructure generated in a single shot. The scale bar is 5 μm. (e) 
Schematic of the new strategy for rapid fabrication of microtube by scanning focused Bessel 
beam. (f)-(j) Microtubes fabricated with height of 25 μm, 45 μm, 65 μm, 85 μm, and 105 μm, 
respectively. Focused 20th order Bessel beam is used for single exposure of cylindrical 
microstructure in (c)-(d) and for the fabrication of microtubes in (f)-(j). The scale bars are 20 
μm. 

Figure 1(a) shows the modulation of the femtosecond laser beam into several Bessel 
beams by loading holograms into the SLM. Any Bessel beam between the 20thand 40th order 
can be used to fabricate cylindrical microstructures as the beams in this range provide suitable 
intensity profiles for TPP production. By focusing femtosecond Bessel beams using a high 
numerical aperture, a cylinder optical pattern is generated at the focal plane [Fig. 1(b)]. This 
is used for producing cylinder microstructures in photoresist materials [Figs. 1(c) and 1(d)]. 
In this work, we propose a new approach for fabricating microtubes based on the designed 
Bessel beams. By simply moving the sample along the direction of light propagation, 
microtubes can be rapidly fabricated [Fig. 1(e)]. In contrast to the conventional point-to-point 
process that fabricates microtubes in a layer-by-layer fashion using overlapping single voxels, 
microtubes are manufactured by the rapid scanning of a cylindrical laser pattern in our 
method. 

Since the fabrication time is significantly reduced using this technique, microtubes with 
large-area (1 mm2) can be realized. We analyze the size of a polymerized cylindrical structure 
generated by a single shot [Fig. 1(c)]. This is performed by using the ascending scan 
technology, which has been widely used by researchers for investigating the size of a single 
voxel in the TPP process. Cylindrical microstructures are polymerized while the focal plane 
ascends from the bottom to the top of the substrate surface. The power and exposure time are 
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all the same. The only difference between different lines is the position of focal plane. For the 
first line, only a small part of focal pattern is above the substrate. The focal pattern ascends 
for the following lines, and is fully above the substrate for the last line. When the focal 
pattern continue to ascend, the polymerized structure by single exposure will not attach to the 
substrate and finally been flushed away in the development procedure. Using this method, we 
obtain complete cylindrical microstructures that adhere to the substrate, preventing them from 
getting flushing away during development. This is shown in Figs. 1(c) and 1(d). The height 
and diameter of a cylinder microstructure polymerized using a Bessel beam with laser power 
of 50 mW and an exposure time of 500 ms is measured to be 6 μm and 11.8 μm. The 
microtubes from Fig. 1(f) to Fig. 1(j) were fabricated with different scanning duration, while 
the other fabrication parameters including laser power and scanning speed were kept constant. 
When the scanning speed is fixed to be 40 μm/s, the height of microtubes from 25 μm to 
105μm can be precisely controlled by quantitatively setting the scanning duration from 625 
ms to 2625 ms.. 20th order Bessel with laser power of 100 mW and a scanning speed of 40 
μm/s is used for the microtube fabrication. The laser is sent through the substrate and 
microtube growth is performed on the exit side. The height limitation of microtube is decided 
by the work distance of objective used in the experiment system because the deepest distance 
that the laser beam can focus in the photoresist is the work distance of objective lens. In our 
system, we used a 60 × U plan super apochromat objective (Olympus) with a work distance 
of 0.15 mm, which means the ultimate range of microtube height is 0-150 μm. This height 
limit can be overcome by Dip-in laser writing technique [40] or WOW-2PP technique [41] if 
liquid photoresist is used. 

 

Fig. 2. Controlled fabrication of microtube arrays by quantitatively tuning the fabrication 
parameters (a) The threshold power P at different scanning speeds v. (b) The variation of 
external physical characteristic of the microtubes with different fabrication parameters. (c)-(d) 
The relationship between tube diameters and laser power for different scanning speeds. 

                                                                                                    Vol. 25, No. 7 | 3 Apr 2017 | OPTICS EXPRESS 8151 



2.3 Quantitative investigation of focused Bessel beam scanning parameters for 
controllable microtube arrays 

Systematic investigation of the experimental parameters is necessary for fabricating high 
quality microtubes using the femtosecond laser Bessel beam. For a specific scanning speed, 
we find that there is a threshold laser power, below which TPP cannot occur or microtubes do 
not have enough strength to survive after developing. The threshold power P for different 
scanning speeds v is shown in Fig. 2(a) and the approximate fitting between P and v 
is 0.3249119.17849P v= × . 

The outer and inner diameters of the microtubes fabricated using a specific focused Bessel 
beam are related to fabrication parameters such as the laser power and scanning speed. We 
performed a series of experiments to analyze the variation of external physical tube 
characteristics with respect to the fabrication parameters. The results are shown in Fig. 2(b). 
Additionally, the relationship between the diameter of the tubes and the laser power for 
different scanning speeds is studied [Figs. 2(c) and 2(d)]. We increased the laser power from 
50 mW to 350 mW in increments of 50 mW, and the scanning speed from 10 μm/s to 500 
μm/s. It was observed that the outer diameter increases and the inner diameter decreases with 
increase in the laser power and decrease in the scanning speed. We could vary the outer 
diameter in the range of 12-20 μm and the inner diameter in the range of 6-10 μm. In Fig. 2, 
all the microtubes have a height of 100 μm, which are fabricated with a scanning speed of 40 
μm/s and illumination time of 2.5 s. Moreover, we were also able to control the periods and 
distribution of microtubes in the array. As shown in Figs. 3(a)-3(d), microtubes with various 
periods of 50 μm, 37.5 μm, 25 μm, and 12.5 μm were fabricated. Figures 3(e)-3(j) show 
microtubes in various patterns, specifically as a hexagon with 25 μm space, a “USTC” 
pattern, and an “Archimedes spiral.” The “Archimedes spiral” microtube array was designed 
by varying the microtube heights from 5 μm to 150 μm; it is very challenging to generate this 
using other techniques. This shows the distinct advantages of our approach in terms of 
flexibility, and 3D and customization capabilities. 

 

Fig. 3. Customized fabrication of microtube arrays by quantitatively tuning the fabrication 
parameters (a)-(d) Microtubes with periods of 50 μm, 37.5 μm, 25 μm, and 12.5 μm, 
respectively. The height of microtubes is 75 μm. (e)-(h) Microtubes with hexagonal 
distribution and 25 μm space (f)-(i) Microtubes arranged in an “USTC” pattern (g)-(j) 
Microtubes in a 3D “Archimedes spiral” with height increasing linearly. The scale bars are 100 
μm in cases (f) and (i), and 50 μm in the other figures. 
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2.4 Tilted scanning of focused femtosecond laser Bessel beam to generate complex 
flower-like microtube arrays 

The blood vessels and other tubular systems in the body have complex geometries and are 
usually not straight tubes. Hence, in addition to straight microtubes that are perpendicular to 
the substrate, we also fabricated slant microtubes by directing the scanning focused Bessel 
beam along a 3D route. Figures 4(a)-4(c) show the schematic diagrams of the focused light 
field scanning in different directions and the fabricated microtubes with slant angles of 15°, 
30°, 45°, and 60°, respectively. By changing the scanning speeds along three directions in real 
time, the focused Bessel beam can be made to scan in a more complex route and thus 3D 
microtubes with zigzag profile were fabricated [Fig. 4(c)]. The tilt angle is controlled by the 
ratio of speeds in the X, Y, and Z directions. Moreover, by positioning microtubes with 
different slant directions and angles, flower-like microtube clusters with 4, 7, and 13 petals 
were fabricated, as shown in Figs. 4(d)-4(i). We can find that the surfaces roughness increase 
for the tilted microtubes. This is because that the accumulation of laser exposure are different 
at different side of microtube when scanning focused Bessel beam along a tilt angle, as there 
is a divergence angle of focused Bessel beam. 

 

Fig. 4. 3D slant microtubes and flower-like microtube arrays fabricated by tilted the Bessel 
beam scanning. (a)-(b) Schematic diagrams of the focus light field scanning in different 
directions. (c) Fabricated microtubes with slant angles of 15°, 30°, 45°, and 60°, and the zigzag 
microtube. (d)-(f) Flower-like microtube cluster with 4, 7, and 13 petals respectively. (g)-(i) 
Tilted view of (d)-(f).The scale bars are 20μm in (c), 50 μm in (d), (e), (g), and (h), and 100 
μm in (f) and (i). 

2.5 Capturing microparticles and NIH3T3 cells using microtube arrays 

Effective control and study of single cell behaviors in spatially confined environments is of 
great importance in cell biology, material-cell interactions, and bio-physics [42–45]. 
Microtubes can be used for the capture and release of cells for single cell research [9, 46, 47]. 
In our study, we designed and fabricated closely packed microtube arrays to increase the 
possibility of cell capture and convenience of micro-manipulation. Figure 5(a) depicts our in-
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house micro-manipulation system used for cell capture, which consists of a microneedle, an 
XYZ micro-manipulator, and a syringe. By aspirating using a syringe, it is possible to capture 
cells efficiently using the microtubes [The inset of Fig. 5(a)]. Cover glass, the medium on 
which microtubes are fabricated, is stuck to the bottom of a petri dish. Culture media 
containing cells are dropped around the microtubes. The petri dish is placed on a fluorescence 
inversion microscope (DMI3000B inverted microscopy, Leica). The whole capture and 
release process is monitored using a CCD camera. A micropump, depicted in Fig. 5(a), is 
used to capture and release cells suspended within the culture. The micropump consists of a 
microneedle (inner diameter 60 μm, outer diameter 190 μm), an XYZ micro-manipulator, and 
a syringe. The microneedle is fixed to the XYZ micro-manipulator and connected to the 
syringe with a plastic hose; its tip is positioned at one end of the microtubes. After the 
microneedle is in place, the syringe is used to perform aspiration. 

To implement cell capture and release, microtubes need to be pushed down to form 
through microtubes. There are two effective ways to push down the microtubes. The first way 
is to let the microtubes fall down by themselves under the influence of surface tension and 
perturbation of the liquid developer. In this method, it is critical to control the starting point of 
TPP fabrication. The point should be close enough to the basement to ensure that the 
microtubes are connected to the basement, while making sure that the connection is not too 
tight. However, in this method, it is hard to control the starting point, the microtubes may be 
flushed away while developing, or they might keep standing. In the second technique, 
microtubes are pushed down using a microneedle fixed to the XYZ micro-manipulator in the 
cell capture system. Although the microtubes that are pushed down using external forces may 
not adhere to the substrate tightly, this method allows us to control the parameters and is 
hence preferable. Linear microtube arrays [Fig. 5(b)] are fabricated to improve adhesion to 
the substrate and used for the subsequent particle/cell manipulation. 

 

Fig. 5. Capture of SiO2 microparticles and NIH 3T3 cells. (a) Schematic diagram of the 
micropump system for the capture and release of microparticles and cells. (b) SEM of close-
packed microtube array. (c)-(f) Experimental process and the simulated progress of SiO2 
nanoparticles being captured by the microtube and passing through slowly by pumping with 
syringe. Microtubes on a chip are placed in a culture medium rich of SiO2 microparticles. The 
scale bar is 50 μm. (g)-(j) NIH 3T3 cells are captured into microtubes for single cell research. 
The scale bar is 50 μm. 
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The microtubes are first used for trapping SiO2 microparticles of diameter 3.8 μm in 
deionized water. As shown in the experimental [Figs. 5(c)-5(f)] and simulation results 
generated using a commercial software COMSOL (see Visualization 1), microparticles move 
with a fixed velocity that increases with proximity to the microneedle. In this study, we use 
NIH 3T3 fibroblast mouse cells for single cell study, as they are highly sensitive to 
mechanical changes. NIH/3T3 mouse fibroblasts were cultured in DMEM supplemented with 
1% streptomycin/penicillin and 10% fetal bovine serum (all from Gibco, USA), and incubated 
in an environment of 5% CO2, 37 °C in 60 mm dishes. They were then treated with Trypsin-
EDTA (Gibco, USA) solution after they became confluent for 1 minute. In the cell capture 
experiment, microtubes are placed in a medium rich in NIH 3T3 cells. A syringe is used to 
aspirate at one end, causing the cells to align at the other end of the microtube. They are then 
slowly sucked into it [Figs. 5(g)-5(j)]. Once the cells are completely sucked in, aspiration is 
stopped and the cells are thus captured. Cells that are larger than the inner diameter of the 
microtubes (see Visualization 2) are sucked in in a deformed manner. At the end of the 
aspiration, the NIH 3T3 cells are successfully captured and stay in the microtubes. This 
allows researchers to study single cell behaviors in a confined environment. To release the 
cells, the sample is taken out from the culture and put into another petri dish filled with 
culture. The tip of the microneedle is positioned at the end from which cells are sucked in. By 
aspirating with the syringe, the cells are slowly released from the microtubes. 

The relationship between the migration distance and the duration in the progress of SiO2 
microparticles and NIH 3T3 cells in the microtubes is shown in Figs. 6(a) and 6(b). 
Microparticles in a specific tube exhibit almost uniform motion with a fixed velocity. Due to 
the neglection of friction between microparticles and the tube’s bottom, there are small 
differences between the simulated velocity and the experimentally measured velocity. NIH 
3T3 cells move in a completely different way, which can be divided into three phases. In the 
first phases, NIH 3T3 cells that are just sucked into the microtubes move slowly. In the 
second phase, the NIH 3T3 cells move rapidly and cover a long distance in a short time. 
Finally, when the NIH 3T3 cell is close to the exit of microtube the velocity decreases 
dramatically. The diameters of microtubes are smaller than those of cells. Hence, cells are 
deformed before they are sucked into and pumped out from the tubes, which comes out that 
the cells enter and exit slowly.This is consistent with the simulation results. (see Visualization 
3). 

 

Fig. 6. Movement of SiO2 microparticles and NIH 3T3 cells in the microtubes (a)-(b) 
Relationship between migration distance and time duration in the progress of SiO2 
microparticles and NIH 3T3 cells in the microtubes. 
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2.6 Simulation of the movement of microparticles and NIH3T3 cells in microtube 
arrays 

By modeling the process of capturing microparticles and cells in COMSOL, some 
characteristics of the capture process can be verified. The capture progress of microparticles 
and cells is simulated using COMSOL, a commercial software. In the simulation of capturing 
the microparticles, the motion of solid microparticles in a fluid was modeled and the fluid-
structure interaction model [48] is adapted. Microparticles were considered as SiO2 with the 
similar physical property. The fluid flow in the channel was described by the incompressible 
Navier-Storkes equations. Slip boundary condition and constant pressure are assumed. The 
fluid speed in the microtubes is found to be related to the distance between the microtubes 
and the aspirating needle. As the diameter of SiO2 microparticles is smaller than the inner 
diameter of microtubes, the speed ratio of microparticles is coincident with the flow velocity 
ratio between different microtubes. 

In contrast to this, the diameter of the NIH 3T3 cells is in the range of 8~12 μm, while the 
inner diameter of microtubes is 8 μm. We neglect the extrusion deformation of the nucleus. In 
the simulation of cell capture, the motion of fluid was modeled and two-phase laminar flow 
model [49] were used. Cells are treated as liposome, having a flow phase with a high 
viscosity of 2000 Pa*s [50]. We gave a high surface tension to prevent the cell phase 
diffusion or fission. Level set interface automatically set up the equations for the convection 
of the interface. The density of cells is set to be a little greater than that of water. Assuming 
that cells maintain a spherical shape in the free state, a surface tension at the interface of the 
cell and surrounding phase is applied to simulate the constriction of the cell membrane. Slip 
boundary condition is used for all the microtube shells. 

2.7 Multifunctional micromanipulation (capture/transfer/release) of cancer cells using 
microtube arrays 

Study of the motility, growth, and proliferation of cancer cells in a confined environment 
close to that of the body in vivo environment is of significant importance for cancer research 
[51–53]. SUM159 triple-negative breast cancer cells were extensively characterized in [54]. 
In our study, cell lines were grown in 60 mm petri dishes (Thermo Fisher Scientific, USA) 
using the recommended culture conditions as described in [55]. Then, the cells lines were 
treated with Trypsin-EDTA (Gibco, USA) solution after they became confluent for 1 minute. 
Cell suspensions were then centrifuged at a rate of 1000 rounds per minute for 5 min in a 
centrifuge tube. New culture media were added after removing the supernatant. The cells 
were resuspended by gently pipetting 5 times. Coverslips with the fabricated structures were 
placed in 35 mm petri dishes and immersed in 2 mL of the former cell suspension. 

Using the procedure described previously, we conducted a series of experiments on the 
capture, transfer, and release of breast cancer cells [Fig. 7]. First, the cancer cells were 
captured using the procedure followed for NIH 3T3 cell capture; this is marked with a yellow 
circle in Fig. 7(f). Then, the microtubes together with substrate were transferred to another 
medium [Figs. 7(g)-7(i)]. From observing the transferred cells using an optical and 
fluorescence microscope [Figs. 7(h) and 7(i)], we found that cells outside the microtubes were 
diluted, while the captured cells were stable inside the microtubes. To release the captured 
cancer cells, the tip of the microneedle was positioned at one end of the microtube. Using a 
syringe, the cancer cells were aspirated slowly and released into the medium [Figs. 7(j)-7(l) 
and see Visualization 4]. 
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Fig. 7. Capture, transfer, and release of breast cancer cells. (a) Immersion of microtubes into a 
medium containing breast cancer cells (b)-(c) Optical and fluorescence microscope images of 
microtubes immersed into cancer cell medium (d) Capture of breast cancer cells into 
microtubes using the micro-manipulation system (e)-(f) Optical and fluorescence microscope 
images of breast cancer cells captured in microtubes. The captured cancer cells are marked 
with a yellow circle. The yellow arrow points to a group of three captured cells, which serves 
as a position mark. (g) Transfer of microtubes along with the cover glass to another 
environment. (h)-(i) Preservation of the captured cancer cells in microtubes after the transfer 
operation. (j) Cell release process (k)-(l) Microtube after releasing the cancer cells 

3. Conclusion 
In this paper, we proposed a novel approach for rapid and flexible fabrication of complex 3D 
microtubes using a focused femtosecond Bessel beam. A liquid crystal SLM was used to 
convert a femtosecond laser beam into Bessel beams for the two-photon polymerization of 
microtubes. The dimension, geometry, and distribution of microtubes were precisely 
controlled by varying the parameters of the fabrication process. The fabrication efficiency 
was enhanced by two orders of magnitude in comparison with the conventional point-to-point 
scanning. The ability of the fabricated microtubes to participate in the accurate trapping, 
transfer, and release of microparticles as well as cells was demonstrated. The proposed 
focused Bessel beam scanning technique and the fabricated microtubes provide the first step 
toward the creation of customized spatial platform mimicking complex 3D biological 
environments, which creates new opportunities for lab-on-a-chip systems [56–58] and in vitro 
study of single cell behaviors. 
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