Achieving free-access metal sites with the ability to regulate interactions with substrates is highly desired yet remains a grand challenge in catalysis. Herein, naked Pd nanoparticles were encapsulated inside a metal-organic framework (MOF), giving Pd@MIL-101-NH₂. Its activity and selectivity toward de/hydrogenation reactions can be greatly promoted via the MOF pore wall engineering to regulate Pd surrounding microenvironment and substrate adsorption behavior.
Integration of Pd nanoparticles with engineered pore walls in MOFs for enhanced catalysis

Luyan Li,1 Zhixin Li,1 Weijie Yang,2 Yamin Huang,3 Gang Huang,1 Qiaoqiao Guan,1 Yemin Dong,3 Junling Lu,1 Shu-Hong Yu,1 and Hai-Long Jiang1,4,*

SUMMARY
Creating free-access active sites and regulating their interaction with substrates are crucial for efficient catalysis, yet remain a grand challenge. Herein, naked Pd nanoparticles (NPs) have been encapsulated in a metal-organic framework (MOF), MIL-101-NH2, to afford Pd@MIL-101-NH2. The hydrophobic perfluoroalkyls were post-synthetically modified onto -NH2 group to yield Pd@MIL-101-Fx (x = 3, 5, 7, 11, 15), which engineer the MOF pore walls to regulate Pd surrounding microenvironment and interaction with substrates. As a result, both the dehydrogenation coupling of organosilane and hydrogenation of halogenated nitrobenzenes show that their activity and selectivity can be greatly promoted upon hydrophobic modification due to the favorable substrate enrichment and regulated interactions between Pd and the modified MOF hosts, far surpassing the traditional supported or surfactant-protected Pd NPs. We envision metal NPs@MOF composites would be an ideal platform integrating the inherent activity of well-accessible metal sites with engineered microenvironment via readily tunable MOFs.

INTRODUCTION
Catalysis is closely related to ubiquitous industrial and environmental applications in our daily life. The essence to achieve high-performance catalysis lies in the development of ideal catalysts. Metal nanoparticles (NPs) have been demonstrated to be a class of important heterogeneous catalysts for a wide scope of reactions.1–4 The regulation of the interaction between substrates and metal NPs has been recognized to play a central role in catalytic efficiency and selectivity. The surface property modulation of metal NPs requires the modification of diverse functional molecules on their surface, which, unfortunately, is unfavorable to the accessibility of active metal sites and, thus, detrimental to activity.5–7 Therefore, it would be a great target, but it remains a grand challenge to achieve the desired catalysts, which not only feature well-accessible metal NP active sites but also possess tunable interactions between active metal sites and catalytic substrates. Creating hydrophobic microenvironment around metal NPs is highly desirable to afford special affinity to a variety of hydrophobic substrates for improving activity and/or selectivity. Particularly, metal nanoparticle catalysts with the hydrophobic surface have shown promoted catalytic performance toward dehydrogenation and hydrogenation reactions, which are common and important in the industry.8–13 In this context, it is expected to achieve two targets: a hydrophobic environment around metal sites and well-accessible metal NPs (as active sites) for excellent catalytic performance. To meet this challenge, it might be an effective solution to isolate surface property modulation of catalysts
from active sites (i.e., metal NPs). The porous hosts incorporating metal NPs are considered to be excellent candidates to achieve the above two targets simultaneously: porous materials encapsulate and stabilize naked metal NPs; whereas, the pore walls can be modified with various functional groups to provide tunable interactions. To this end, a promising class of crystalline porous materials, metal-organic frameworks (MOFs), the structures of which are well defined and can be readily tailored at the atomic level, would be ideal hosts for metal NPs. It is worth noting that, although metal NPs stabilized by MOFs have been intensively investigated for catalysis in recent years, the chemical environment modulation of MOF pore walls to tailor the catalytic performance of encapsulated metal NPs was rarely explored. The limited reports have indicated that the functional groups dangling on the linkers or the metal substitution on the metal-oxo clusters in MOFs are able to significantly affect the electronic properties of exposed metal NPs and/or interaction with reactants, producing enhanced catalytic activity and selectivity. However, to our knowledge, there has never been a systematic modulation of the wettability environment of MOF pore walls, via simple organic linker modification, to regulate the interaction between the guest metal NPs and substrates for enhanced catalysis.

Bearing the above considerations in mind, a representative mesoporous MOF, MIL-101-NH$_2$, was employed to encapsulate Pd NPs via the double-solvent method, affording Pd@MIL-101-NH$_2$ composite. The reactive amino group makes it possible to modulate the chemical environment of MOF pores from hydrophilic –NH$_2$ to hydrophobic perfluoroalkyl groups by post-synthetic modification (PSM) (Figure 1). The MOF crystallinity, Pd sizes, and the accessibility of naked Pd sites remain well after the hydrophobic modification for the MOF. Remarkably, such hydrophobic decoration of pore walls around active Pd NPs significantly boosts the activity toward the dehydrogenation coupling of the organosilane. Moreover, the hydrophobic...
modification regulates the Pd electronic structure, thereby improving activity and chemoselectivity in the hydrogenation of halogenated nitrobenzenes. It is worth noting that, although there have been a lot of reports on hydrophobic modification of metal NPs, electronic structure regulation of metal catalysts by hydrophobic environment engineering remains extremely rare.

RESULTS AND DISCUSSION
The fabrication of Pd@MIL-101-NH₂ and Pd@MIL-101-Fₓ
The MIL-101-NH₂, obtained by functionalization of nitro-groups and subsequent reduction to amino for MIL-101, formulated Cr₃(X(H₂O)₂O(BDC)), (X = F or OH, BDC = benzene-1,4-dicarboxylate), was employed to incorporate tiny metal NPs. MIL-101-NH₂ features a 3D mesoporous network with ~3 nm cages, high stability, as well as large surface area, suitable for hosting metal NPs. To prevent metal NPs from depositing on the MOF surface, a double-solvent approach (DSA) was adopted to introduce Pd²⁺ aqueous solution into the MOF cages, followed by reducing Pd²⁺ by ammonia borane to afford Pd@MIL-101-NH₂. Subsequently, the perfluoroalkyl anhydride or carboxylic acids, CₓF₂ₓ₊₁CO-R (x = 1, 2, 3, R = –OOCCₓF₂ₓ₊₁; n = 5, 7, R = –OH), were grafted onto the pore walls of Pd@MIL-101-NH₂ via post-synthetic modification (PSM) based on the reaction between –NH₂ and –CO-R groups, yielding the products simply denoted as Pd@MIL-101-Fₓ (Figure S1).

Characterizations of Pd@MIL-101-NH₂ and Pd@MIL-101-Fₓ
Powder X-ray diffraction (XRD) profiles suggest that the MOF structure is maintained well during the preparation of Pd@MIL-101-NH₂ and subsequent perfluoroalkyl modification (Figure 2A). The absence of identifiable Pd diffraction peak indicates the possibly low Pd content and/or small Pd sizes. Nitrogen sorption results at 77 K suggest that, in reference to Pd@MIL-101-NH₂ (1,849 m²/g), Brunauer-Emmett-Teller (BET) surface area of the derived Pd@MIL-101-Fₓ presents an apparent decrease to 600–1,500 m²/g, due to the pore space occupation by different lengths of perfluoroalkyl chains (Figure S2A). Pore size distribution indicates that the pore space in the MOF is partly occupied by the introduced perfluoroalkyl chains (Figure S2B). Moreover, the elemental mapping result clearly shows that the introduced perfluoroalkyl chains are well distributed throughout the Pd@MIL-101-F₁₅ (Figure S3).

The decoration of the hydrophobic perfluoroalkyl groups was probed by Fourier-transform infrared (FTIR) spectroscopy. Compared to Pd@MIL-101-NH₂, two emerged peaks at 1,665 and 1,219 cm⁻¹ are, respectively, corresponding to the C=O and C-N bonds of an amide unit in Pd@MIL-101-Fₓ (Figure S4). The results are supported by X-ray photoelectron spectroscopy (XPS) data. The peak of Pd 3d₅/₂ (335.7 eV) presents an apparent shift to ~336 eV in Pd@MIL-101-Fₓ after modifying the electron-withdrawing perfluoroalkyl groups, implying their successful introduction and the electron transfer from Pd to modified MOF (Figure S5A). The new N 1s peak around 400.8 eV appears in the hydrophobic Pd@MIL-101-Fₓ (x = 3, 5, 15) due to the formation of the amide unit (Figure S5B). The linker modification can be further supported by digested Pd@MIL-101-Fₓ samples by ¹⁹F NMR with a similar modification ratio (Figure S6). The Pd content in Pd@MIL-101-NH₂ is 1.1 wt %, which is slightly decreased to ~0.7–1.0 wt % in Pd@MIL-101-Fₓ (Table S1), probably due to the increased weight of introduced groups and/or slight Pd leaching during the modification, while the sizes of Pd NPs (0.8~2 nm) are well retained (Figures 2B, 2C, and S7). The water contact angle of Pd@MIL-101-NH₂ is ~5°, which significantly increases from 50° to 150° along with introducing longer perfluoroalkyl chains (Figure 2D), clearly demonstrating that the modification enables Pd@MIL-101-Fₓ very hydrophobic. The hydrophobic behavior of Pd@MIL-101-Fₓ is also supported
by the decreased water vapor adsorption with the increased length of perfluoroalkyl chains (Figure S8). Remarkably, the facts of Pd NPs located inside the MOFs before and after perfluoroalkyl modification have been unambiguously verified by taking Pd@MIL-101-NH2 and Pd@MIL-101-F3 as representatives, based on the high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) tomography and 3D reconstruction results (Figures 3 and S9; see Videos S1 and S2).

The determination of accessible Pd sites in Pd@MIL-101-NH2 and Pd@MIL-101-Fx

To determine the available active Pd sites before and after the post-synthetic modification, the CO titration experiments for Pd@MIL-101-NH2, Pd@MIL-101-F3, and Pd@MIL-101-F15 have been carried out. As expected, the Pd@MIL-101-NH2 and Pd@MIL-101-F3 have Pd dispersion of ~50%, corresponding to approximately 2 nm particle diameters, which are comparable to the data (0.8–2 nm) from TEM observation indicated above (Table S2). The results indicate that the Pd sites inside the MOF are well accessible, and the number of available Pd sites does remain well before and after the hydrophobic modification in our catalysts. It is worth noting that the Pd dispersion (~40%) of Pd@MIL-101-F15 presents a slight decrease even after grafting the very long perfluoroalkyl chains, where the dispersion is still larger than that of the Pd/Al2O3-PVP (~5%) because of the blocking of Pd surface by PVP.

Catalytic performance investigation on the dehydrogenation coupling of triethylsilane with H2O

It is envisioned that such hydrophobic modification of MOF pore walls around Pd NPs would significantly promote the performance toward catalytic dehydrogenation
and hydrogenation reactions, which are usually based on Pd catalysts. The dehydrogenative cross-coupling (DCC) reactions between organosilanes and water or alcohols are promising to precisely construct new Si–O bonds via direct Si–H activation.\(^8,45\) The dehydrogenation of triethylsilane with H\(_2\)O to triethylsilanol was then investigated. The Pd@MIL-101-NH\(_2\) gave only 50% conversion (Table 1, entry 1). By grafting a short perfluoroalkyl (F\(_3\)) group, the conversion was slightly improved to 58% (Table 1, entry 2). Strikingly, the value was elevated to 100% with Pd@MIL-101-F\(_5\) and its turnover frequency (TOF\(_{Pd}\)) is 1.2 times higher than Pd@MIL-101-NH\(_2\) (Table 1, entry 3). Along with further increased chain length, the conversion inversely decreases, possibly due to the pore size limit and mass transfer hindrance (Table 1, entries 4–6). The results indicate that hydrophobic environment around Pd NPs does greatly enhance the catalytic efficiency, while too long hydrophobic chains might impair the accessibility of Pd active sites. Almost no conversion can be observed over MIL-101-F\(_3\), indicating that both MIL-101-NH\(_2\) and the modified perfluoroalkyl chains are inactive but Pd NPs are the real active sites (Table 1, entry 7). As controls, Pd NPs supported on Al\(_2\)O\(_3\) and Fe\(_2\)O\(_3\) were also synthesized and, respectively, showed 38% and 35% conversions (Table 1, entries 8–9), lower than Pd@MIL-101-NH\(_2\) and Pd@MIL-101-F\(_x\), probably due to the enrichment effect of triethylsilane in MOFs. Despite the conversion displayed a slight increase with the Pd/C catalyst (56%), it is much lower than Pd@MIL-101-F\(_5\) (Table 1, entry 10). Moreover, Pd/Al\(_2\)O\(_3\) modified with
surfactant PVP gave only 31% conversion (Table 1, entry 11). Upon modifying perfluoroalkyl chains onto the Pd/Al₂O₃ surface, the conversion was slightly improved to 40% or 42% (Table 1, entries 12–13). The solvent effect in this reaction can be excluded (Table S3). These results clearly show that the created hydrophobic environment around Pd NPs, via MOF modification, gives much superior activity to the traditional Pd catalysts with or without further modification.

To get insight into the improved activity, triethylsilane adsorption experiments have been investigated (Figure S10). Apparently, the resulting Pd@MIL-101-Fₓ are more favorable to the enrichment and adsorption of hydrophobic triethylsilane than Pd@MIL-101-NH₂. Among all adsorbents investigated, Pd@MIL-101-F₅ possesses optimal adsorption rate while Pd@MIL-101-Fₓ with decreased or increased F numbers present lower rates, following the same order with the catalytic activity (Figure S11). These results unambiguously suggest that the hydrophobic MOF pore environment enables efficient accumulation of hydrophobic substrate (triethylsilane) and facilitates its enrichment around Pd active sites, thereby accelerating conversion. Moreover, the MOF protects Pd NPs from aggregation, thus the structure and activity of Pd@MIL-101-F₅ can be well maintained after 3 runs (Figures S12 and S13).

Activity investigation on dehydrogenation coupling of various organosilanes with H₂O

Upon optimization of reaction conditions using triethylsilane as a probe substrate, various organosilanes have been examined over Pd@MIL-101-F₅. Not surprisingly, irrespective of replacing the ethyl with electron-donating (-CH₃, -iPr) or withdrawing (-OEt) group, the conversion can be completed in an efficient way, suggesting the advantage and power of the hydrophobically modified catalyst (Table S4).

Catalytic performance investigation on the selective hydrogenation of p-nitrochlorobenzene

Encouraged by the outstanding catalytic performance of Pd NPs promoted by creating a hydrophobic pore environment in the MOF, the Pd@MOF catalysts
Selective hydrogenation of \(p \)-nitrochlorobenzene (2a) to \(p \)-chloroaniline (2b), an important chemical intermediate in fine chemistry,\(^{46-49}\) was investigated. Typically, the dechlorination process of Pd@MIL-101-NH\(_2\) led to only 59% selectivity to 2b (Table 2, entry 1). Strikingly, the Pd@MIL-101-F\(_3\) showed complete conversion and 98% selectivity to 2b and the selectivity could be maintained for a prolonged time (Table 2, entry 2, and Figure S14). With the increased length of perfluoroalkyl chain, the activity significantly decreased (Table 2, entries 3–6); they gave similar selectivity at the same conversion (Table 2, entries 7–11). The optimal catalyst, Pd@MIL-101-F\(_3\), toward this reaction is not the same as that in the previous dehydrogenation of triethylsilane, which is probably due to the slight hydrophobic difference of the reaction substrates. The results indicated that the hydrophobic modification favors the reduction of the -NO\(_2\) group over dechlorination in the selective hydrogenation of \(p \)-nitrochlorobenzene. After grafting very long perfluoroalkyl chains, the reduced conversion might be caused by the pore-blocking effect to varying degrees, restricting the accessibility of the substrate to Pd sites. It is assumed that both hydrophobic environment and accessibility of Pd active sites play critical roles in the resulting catalytic performance.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Cat.</th>
<th>Con. (%)</th>
<th>Sel. to 2b (%)</th>
<th>Yield (%)</th>
<th>2b</th>
<th>2c</th>
<th>2d</th>
<th>TOF_{Pd} (min(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd@MIL-101-NH(_2)</td>
<td>>99</td>
<td>59</td>
<td>59</td>
<td>41</td>
<td>–</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pd@MIL-101-F(_3)</td>
<td>>99</td>
<td>98</td>
<td>98</td>
<td>2</td>
<td>–</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pd@MIL-101-F(_5)</td>
<td>95</td>
<td>95</td>
<td>90</td>
<td>5</td>
<td>–</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Pd@MIL-101-F(_7)</td>
<td>68</td>
<td>97</td>
<td>66</td>
<td>2</td>
<td>–</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pd@MIL-101-F(_11)</td>
<td>40</td>
<td>97</td>
<td>38</td>
<td>2</td>
<td>–</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Pd@MIL-101-F(_15)</td>
<td>20</td>
<td>98</td>
<td>19</td>
<td>1</td>
<td>–</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>7(^{2})</td>
<td>Pd@MIL-101-F(_3)</td>
<td>91</td>
<td>98</td>
<td>89</td>
<td>2</td>
<td>–</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>8(^{2})</td>
<td>Pd@MIL-101-F(_5)</td>
<td>90</td>
<td>95</td>
<td>86</td>
<td>4</td>
<td>–</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td>9(^{2})</td>
<td>Pd@MIL-101-F(_7)</td>
<td>92</td>
<td>96</td>
<td>88</td>
<td>4</td>
<td>–</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>10(^{2})</td>
<td>Pd@MIL-101-F(_11)</td>
<td>91</td>
<td>94</td>
<td>86</td>
<td>8</td>
<td>–</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>11(^{2})</td>
<td>Pd@MIL-101-F(_15)</td>
<td>90</td>
<td>94</td>
<td>86</td>
<td>8</td>
<td>–</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>MIL-101-F(_3)</td>
<td><1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>13(^{2})</td>
<td>Pd@MIL-101</td>
<td>93</td>
<td>40</td>
<td>37</td>
<td>56</td>
<td>–</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>14(^{2})</td>
<td>Pd@MIL-101(F3)</td>
<td>90</td>
<td>81</td>
<td>73</td>
<td>17</td>
<td>–</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>15(^{9})</td>
<td>Pd/Al(_2)(_2)(_O_5)</td>
<td>47</td>
<td>59</td>
<td>28</td>
<td>19</td>
<td>–</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>16(^{9})</td>
<td>Pd/Fe(_3)(_2)(_O_4)</td>
<td>45</td>
<td>54</td>
<td>24</td>
<td>21</td>
<td>–</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>17(^{9})</td>
<td>Pd/C</td>
<td>49</td>
<td>60</td>
<td>29</td>
<td>20</td>
<td>–</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>18(^{9})</td>
<td>Pd/Al(_2)(_2)(_O_5)-PVP</td>
<td>40</td>
<td>55</td>
<td>22</td>
<td>18</td>
<td>–</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>19(^{9})</td>
<td>Pd/Al(_2)(_2)(_O_5)-F(_3)</td>
<td>50</td>
<td>69</td>
<td>34.5</td>
<td>15.5</td>
<td>–</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>20(^{9})</td>
<td>Pd/Al(_2)(_2)(_O_5)-F(_5)</td>
<td>48</td>
<td>60</td>
<td>29</td>
<td>19</td>
<td>–</td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>

*Reaction conditions: 0.2 mmol 2a, cat. 15 mg, 3.5 mL toluene, H\(_2\) atmosphere, 8 bar, 90°C, 26 min.

*16 min.

*20 min.

*40 min.

*120 min.

*Pd content: 0.7 wt%, 100 min.

*Pd content: 0.9 wt%.

*Pd content: 0.8 wt%.

\(^{\text{c}}\) Catalytic reaction products were analyzed and identified by gas chromatography.
control experiments, the hydrogenation reaction did not proceed with MIL-101-F₃, revealing that Pd NPs provided active sites (Table 2, entry 12). The significant dechlorination process observed in the reaction over Pd@MIL-101 revealed that the amine group was not responsible for the selectivity (Table 2, entry 13). Moreover, when modifying the alkyl chains on the MOF pore wall, the dechlorination process cannot be avoided with Pd@MIL-101-CH₃ or Pd@MIL-101-C₇H₁₅, indicating that the perfluorooalkyl groups have a better effect on the selectivity than alkyl chains (Table S5). Accordingly, the derivative of Pd@MIL-101 with trifluoroacetic acid modified onto the Cr-oxo clusters, namely Pd@MIL-101(F₃), can promote the selective hydrogenation (Table 2, entry 14), though slightly inferior to Pd@MIL-101-F₃. The results indicate that the modification of either linker or M-oxo cluster in MOFs is effective to regulate the microenvironment of the hosted Pd NPs for enhanced catalysis. The hydrogenation reaction over Pd/Al₂O₃, Pd/Fe₂O₃, or Pd/C was examined and exhibited below 50% conversions, where the TOF Pd of Pd@MIL-101-F₃ is 2.4–3.1 times higher than these three catalysts (Table 2, entry 1, entries 15–17). The surfactant PVP-modified Pd/Al₂O₃ also gave decreased activity, possibly due to the PVP influence on the transport of the substrates (Table 2, entry 18). After the hydrophobic modification of Pd/Al₂O₃, both activity and selectivity displayed a slight increase (Table 2, entries 19–20), further reflecting the advantage of a hydrophobic environment in promoting catalytic performance. The solvent effect investigation suggests that the improved catalytic performance of the hydrophobic sample is independent of the solvent used in this reaction (Table S6).

The chlorobenzene or nitrobenzene adsorption investigation over different catalysts

To gain insight into the high selectivity achieved with Pd@MIL-101-F₃, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements were carried out to examine the adsorption behavior of Pd@MIL-101-NH₂ and Pd@MIL-101-F₃. With chlorobenzene as the probe molecule, the band at 1,475–1,480 cm⁻¹ assignable to the C=C bond of benzene was observed for both catalysts (Figure 4A), whereas no apparent signal was observed with MIL-101-F₃ (Figure S15). The above facts unambiguously indicate that the chlorobenzene chemisorption takes place on the Pd sites but not by the MOF. However, in contrast to the strong adsorption peak of Pd@MIL-101-NH₂, Pd@MIL-101-F₃ displayed a very weak signal. This weak adsorption of chlorobenzene by Pd@MIL-101-NH₂ should be detrimental to its dechloridation conversion, which is conversely favorable to the targeted hydrogenation selectivity. The comparable C=C signal of Pd@MIL-101-F₃ and Pd@MIL-101-F₅ (Figure S15), acting as a representative of other counterparts with high F numbers, also explains the similar selectivity toward hydrogenation process. This assumption can be further supported by the competitive adsorption experiments with a mixture of chlorobenzene (CB) and nitrobenzene (NB) (Figure 4B). The bands at 1,350 and 1,530 cm⁻¹ are attributed to the N=O bond (nitrobenzene) adsorbed onto the surface of Pd NPs, whereas the 1,480 cm⁻¹ signal is originated from both N=O and C=C bonds. For Pd@MIL-101-NH₂, the adsorption strength at 1,480 cm⁻¹ is evidently stronger than that at 1,350 and 1,530 cm⁻¹, suggesting both CB and NB are easily adsorbed. In contrast, the signal strength at 1,480 cm⁻¹ is almost similar to that at 1,350 and 1,530 cm⁻¹ for Pd@MIL-101-F₃, and the adsorption strength of the N=O bond (NB) is comparable to that for Pd@MIL-101-NH₂. This result can be further supported by the density functional theory (DFT) calculation, in which the -NO₂ group is preferentially adsorbed on the positively charged Pd in Pd@MIL-101-F₅ with a slightly lower adsorption energy (~0.26 eV) than that on the netural Pd surface in the Pd@MIL-101-NH₂ (Figure S16A). Moreover, the negative charge of -NO₂ (~0.238 e) is larger than -Cl (~0.104 e), indicating that compared to the -Cl group, -NO₂ group is also more likely attracted on
the surface of positively charged Pd in Pd@MIL-101-F$_3$ based on Coulomb’s law (Figure S16B). Therefore, it is assumed that the NB tends to be adsorbed on the Pd surface in Pd@MIL-101-F$_3$, and the CB adsorption is negligible in this hydrophobically modified catalyst. These results demonstrate that the hydrophobic environment created by the MOF modification probably contributes to the preferable adsorption of -NO$_2$ over -Cl group onto the positively charged Pd active sites in Pd@MIL-101-F$_x$, leading to the high selectivity of hydrogenation to yield p-chloroaniline.

The CO-DRIFTS spectra for Pd@MIL-101-NH$_2$ and Pd@MIL-101-F$_3$

The DRIFTS spectra with CO as the probe molecule were collected to confirm the electron interaction between Pd and the MOF (Figure S17). Compared to the Pd@MIL-101-NH$_2$, the red-shift of the peak to 2,042 cm$^{-1}$ occurs in Pd@MIL-101-F$_3$, suggesting the strong interaction between Pd and the hydrophobically modified framework. The results reflect that the electrons are transferred from the Pd surface to the host framework in Pd@MIL-101-F$_3$, probably resulting in the positively charged Pd surface, which is in good agreement with the peak shift between Pd and hydrophobic host framework in XPS data (Figure S5).
The DFT calculation for the hydrogenation of \(p \)-nitrochlorobenzene

Inspired by the electron transfer based on the XPS and CO-DRIFTS data, the neutral Pd\(_{13} \) and positively charged Pd\(_{13}^+ \) models have been fabricated to calculate the selective hydrogenation process of \(p \)-nitrochlorobenzene. In the beginning, the adsorption energy of substrates on the Pd surface had been calculated. The results show that \(p \)-nitrochlorobenzene tends to be adsorbed on the positively charged Pd surface (Figure S18). Then, to further investigate the reaction mechanism, the Gibbs free energy variation along the reaction coordinate of the two reaction paths (path I and path II) have been investigated according to the previous work (Figures 4C and S19). Compared to path II, path I related to the formation of \(p \)-chloroaniline is thermodynamically favored (Figure S19). In path I, the generation of ClPhNO\(_2^* \) and ClPhNO\(^{*} \) is a similar exothermic process on both neutral Pd and positively charged Pd surface. Significantly, the ClPhNHOH intermediate is prone to be generated on the positively charged Pd surface with the relative energy of \(-2.47 \text{ eV}\) in path I (Figure 4C). Moreover, the hydroxyl dissociation from ClPhNHOH also easily takes place on the positively charged Pd surface, generating the \(p \)-chloroaniline with the relative energy of \(-4.66 \text{ eV}\), which is lower than the neutral Pd (\(-3.64 \text{ eV}\)). Thus, the \(p \)-chloroaniline is preferentially generated on the positively charged Pd sites. The above DFT calculation results clearly suggest that, compared to the neutral Pd in the Pd@MIL-101-NH\(_2\), the positively charged Pd sites in Pd@MIL-101-F\(_3\) contribute to the preferable selectivity to \(p \)-chloroaniline.

Stability and recyclability have been further investigated. Significantly, both catalytic activity and selectivity of Pd@MIL-101-F\(_3\) can be well maintained in the hydrogenation of \(p \)-nitrochlorobenzene even after 10 consecutive runs (Figure 5A). Importantly, the supernatant fluid after the recycling experiment does not give \(^{19}\text{F}\) NMR signal (Figure S20), revealing high stability of the Pd@MIL-101-F\(_3\) catalyst during the process. Moreover, both TEM image and powder XRD pattern of Pd@MIL-101-F\(_3\) are well retained after reaction, indicating that the MOF is robust under these reaction conditions and it prevents Pd NPs from aggregation (Figure S21). The optimal catalyst, Pd@MIL-101-F\(_3\), has also been examined by the hot filtration test. No Pd leaching can be found in the filtrate based on inductively coupled plasma atomic emission spectrometer (ICP-AES) analysis and no further increase in the conversion occurs after removing the solid catalyst (Figure S22), demonstrating its nature of truly heterogeneous catalysis. To explore the scope of substrates, the nitrobenzene functionalized with chloro group at different positions have been
investigated over Pd@MIL-101-F3 (Figure 5B). Both α-nitrochlorobenzene and m-nitrochlorobenzene can be converted to the corresponding chloroaniline completely with 97% selectivity. Moreover, after replacing the -Cl with -Br, p-nitrobromobenzene can also be transformed to p-bromoaniline with 94% selectivity (Figure 5B). Therefore, the microenvironment around well-accessible Pd NPs endowed by facile MOF hydrophobic modification can not only boost the activity but also cause the selective adsorption to improve the catalytic selectivity.

Conclusion

In summary, by integrating well-accessible Pd NPs and easily functionalizable MOF, we have synthesized Pd@MIL-101-NH$_2$ and its furnished materials Pd@MIL-101-F$_x$ (x = 3, 5, 7, 11, 15), where perfluoroalkyl groups are grafted onto the MOF pore walls to regulate the hydrophobic environment around Pd sites. The Pd@MIL-101-F$_5$ exhibits high catalytic activity and recyclability in the dehydrogenation coupling of organosilanes due to the enrichment effect for the hydrophobic substrates. In addition, the highly selective hydrogenation of nitrochlorobenzenes, where the dechlorination process is significantly suppressed, can be effectively promoted with Pd@MIL-101-F$_3$. The optimized hydrophobic modification of the MOF pore walls creates the interaction with Pd and gives rise to the positively charged Pd surface in Pd@MIL-101-F$_x$, leading to the favorable adsorption of -NO$_2$ over -Cl and the highly selective hydrogenation. Furthermore, both catalysts present excellent recyclability due to the MOF protection for Pd NPs against aggregation/leaching. It is acknowledged that the naked Pd NPs facilitate access to substrates, accelerating their conversion; and the engineered MOF pore walls not only benefit the substrate enrichment but also regulate the electronic state of Pd to control the interaction between Pd and substrates, further boosting the activity and dominating the high selectivity. This work, by rationally fabricating a single composite catalyst, would open a new avenue to the integration of well-accessible active sites with their surface microenvironment regulation based on the tailorability of host porous materials for enhanced catalysis.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Hai-Long Jiang (jianglab@ustc.edu.cnjianglab@ustc.edu.cn).

Materials availability

The materials generated in this study will be made available on request.

Data and code availability

All data supporting this study are available in the manuscript and Supplemental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.chempr.2020.11.023.

ACKNOWLEDGMENTS

We are grateful to the editors and the anonymous reviewers for their insightful comments and valuable help and suggestions. This work was supported by the NSFC (21725101, 21871244, 21673213, and 21521001), the Fundamental Research Funds
for the Central Universities (WK2060030029), and Fujian Institute of Innovation (CAS).

AUTHOR CONTRIBUTIONS

H.-L.J. conceived the idea and supervised the project; L.L. performed the experiments and collected the data; Z.L. and G.H. assisted in some experiments; W.Y. conducted and analyzed the DFT calculations; Q.G. and J.L. conducted the DRIFTS experiments; Y.H. and Y.D. worked on the HAADF-STEM tomography and related 3D reconstruction; H.-L.J. and L.L. co-wrote the manuscript and all authors contributed to the overall scientific interpretation and editing of the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: October 5, 2020
Revised: November 3, 2020
Accepted: November 19, 2020
Published: February 2, 2021

REFERENCES

