Non-Bonding Interaction of Neighboring Fe and Ni Single-Atom Pairs on MOF-Derived N-Doped Carbon for Enhanced CO₂ Electrocatalysis

Long Jiao, Juntong Zhu, Yan Zhang, Weijie Yang, Siyuan Zhou, Aowen Li, Chenfan Xie, Xusheng Zheng, Wu Zhou, Shu-Hong Yu, and Hai-Long Jiang*

Cite This: J. Am. Chem. Soc. 2021, 143, 19417−19424

ABSTRACT: Single-atom catalysts (SACs), featuring high atom utilization, have captured widespread interests in diverse applications. However, the single-atom sites in SACs are generally recognized as independent units and the interplay of adjacent sites is largely overlooked. Herein, by the direct pyrolysis of MOFs assembled with Fe and Ni-doped ZnO nanoparticles, a novel Fe₁−Ni₁−N−C catalyst, with neighboring Fe and Ni single-atom pairs decorated on nitrogen-doped carbon support, has been precisely constructed. Thanks to the synergism of neighboring Fe and Ni single-atom pairs, Fe₁−Ni₁−N−C presents significantly boosted performances for electrocatalytic reduction of CO₂ far surpassing Fe₁−N−C and Ni₁−N−C with separate Fe or Ni single atoms. Additionally, the Fe₁−Ni₁−N−C also exhibits superior performance with excellent CO selectivity and durability in Zn-CO₂ battery. Theoretical simulations reveal that, in Fe₁−Ni₁−N−C, single Fe atoms can be highly activated by adjacent single-atom Ni via non-bonding interaction, significantly facilitating the formation of COOH* intermediate and thereby accelerating the overall CO₂ reduction. This work supplies a general strategy to construct single-atom catalysts containing multiple metal species and reveals the vital importance of the communitive effect between adjacent single atoms toward improved catalysis.

INTRODUCTION

Single-atom catalysts (SACs), a unique heterogeneous catalyst realizing active sites dispersed on the atomic scale, have presented enormous advantages on catalyzing various reactions and have been regarded as promising candidates to mimic the catalytic sites of metalloenzyme to a large extent. In the nature enzymes, the adjacent monomers beyond the primary coordination shell, although without direct bonding, can usually interact with each other by their microenvironments and work cooperatively to activate the molecules of interest.8,9 Taking the Ni−Fe carbon monoxide dehydrogenase (CODH) as an example, the single-atom Fe and Ni sites bridged by sulfide ligands can synergistically catalyze the efficient interconversion of CO₂ and CO under mild conditions.8 In contrast, the single-atom sites in SACs, even if with enzyme-like structure, are still regarded as isolated units in general; related regulations are mainly based on the change of the atoms directly coordinated with central metal atoms, which is similar to the primary coordination sphere in the enzyme.10−20 Learning from nature’s blueprint, the long-range interaction between adjacent single-atom sites in SACs, which is largely overlooked in current reports, should also be of great significance to catalysis. Despite this, the accurate construction of such adjacent single-atom sites in SACs remains a great challenge and related catalytic investigations are still in their infancy.21−23 Metal−organic frameworks (MOFs),24−27 possessing diverse components and structures, have shown great promises for various applications.28−32 Particularly, MOFs have been proven to possess superiorities on the precise construction of SACs in recent years.33−39 Given the great advantages on structural and component regulation, MOFs should be one of the most ideal choices to the construction of SACs with adjacent single-atom sites in a well-controlled manner; unfortunately, very few attempts have been made in this aspect thus far.31 Among all kinds of MOF-derived SACs, single metal atom decorated nitrogen-doped carbon (M−N−C), with planar and conjugated carbon structures, can readily achieve the long-range electron delocalization and is promising to couple adjacent non-bonding single metal atoms. Based on the analysis above, MOF-derived M−N−C,

Received: August 2, 2021
Published: November 15, 2021
integrating both merits of MOFs (ideal platform for the precise construction of SACs) and M–N–C materials (hosts for the interplay between adjacent single-atom sites), would pave a promising way to the accurate construction of adjacent single-atom sites and understanding of their cooperation in catalysis.

Herein, a Zn-assisted atomization strategy (ZAAS) has been developed to incorporate Fe and Ni single atoms to MOF-derived nitrogen-doped carbon (Fe$_1$−Ni$_1$−N−C). By the assembly of Fe-doped ZnO (i.e., Fe−ZnO) and Ni-doped ZnO (i.e., Ni−ZnO) nanoparticles (NPs) onto ZIF-8 (ZIF = zeolitic imidazolate framework) via electrostatic interaction, the Fe&Ni-ZnO/ZIF-8 composite can be facilely obtained. Upon pyrolysis, ZnO can be reduced to Zn and evaporated away, affording ZIF-8 derived nitrogen-doped carbon implanted by adjacent Fe−N$_4$ and Ni−N$_4$ sites (denoted Fe$_1$−Ni$_1$−N−C; Scheme 1). Thanks to the long-range electronic interaction of adjacent Fe and Ni single-atom pairs, Fe$_1$−Ni$_1$−N−C presents enhanced performance for CO$_2$ electroreduction achieving Faradaic efficiency (FE) of 96.2% at −0.5 V, superior to those of nitrogen-doped carbon supports decorated with Fe or Ni single atoms only, denoted as Fe$_1$−N−C and Ni$_1$−N−C. Theoretical simulations suggest, by coupling neighboring Ni and Fe single atoms in Fe$_1$−Ni$_1$−N−C, it can benefit CO$_2$ activation and reduce formation energy barrier for COOH* intermediate, surpassing Fe$_1$−N−C or Ni$_1$−N−C, which greatly improves CO$_2$ reduction performance of Fe$_1$−Ni$_1$−N−C.

RESULTS AND DISCUSSION

Synthesis and Characterizations of Fe$_1$−Ni$_1$−N−C.

The ZIF-8 precursor, also called MAF-4, was synthesized by the assembly of Zn$^{2+}$ and 2-methylimidazole (Figure S1). Scanning electron microscope (SEM) and TEM images illustrate rhombic dodecahedral morphology of ZIF-8 with an average size of 250 nm (Figure S2). Then, Fe-ZnO and Ni-ZnO NPs with positive surface charges were synthesized and co-assembled onto negatively charged ZIF-8 via electrostatic interaction (Figures S3 and S4). It can be seen clearly that the Fe-ZnO and Ni-ZnO NPs, illustrating the particle sizes of ~5 nm, were successfully attached outside of ZIF-8, leading to a Fe&Ni-ZnO/ZIF-8 composite with retained morphology and crystallinity of ZIF-8 (Figures S1, S5, and S6). Via direct pyrolyzation of Fe&Ni-ZnO/ZIF-8, ZIF-8 can be transformed to nitrogen-doped porous carbon. Meanwhile, ZnO NPs can be reduced to metallic Zn (boiling point: 907 °C) by the carbon and evaporated away easily along the carrier gas flow. The CO and CO$_2$ gases detected during the pyrolysis process further confirms the carbon thermal reduction of ZnO (Figure S7). Finally, the doped Fe and Ni atoms in ZnO were captured by N-doped carbon, yielding Fe$_1$−Ni$_1$−N−C material with retained polyhedral morphology (Figure 1a,b). The elemental mapping demonstrates the homogeneous dispersion of Fe and Ni elements on the carbon support in Fe$_1$−Ni$_1$−N−C as is observed in the TEM image (Figure 1b). Only two broad peaks centered on ~26° and 44° for Fe$_1$−Ni$_1$−N−C, which are (002) and (101) crystal faces of carbon, are found in powder X-ray diffraction (XRD) analysis, further excluding crystalline metal species formation (Figure S9). N$_2$ sorption isotherm suggests that Fe$_1$−Ni$_1$−N−C possesses large surface area (595 m2/g) with highly porous feature (Figure S10), which could benefit catalytic sites exposure and accelerate substrates/products transfer within catalysts.

The aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) detection for Fe$_1$−Ni$_1$−N−C illustrates isolated dispersion of Fe and Ni atoms and a large part of the bright spots come in pairs (typically circled by red boxes), consequently named as single-atom pairs (SAPs; Figures 1c and S11). Three-dimensional (3D) atom-overlapping Gaussian-function fitting mappings in Figures 1c and S12a clearly present the existence of atom pairs (Figures 1c and S12). In addition, the distances of atom pairs identified by the intensity profiles in the 20 randomly selected regions of Figure 1c are all close to ~4.1 Å.
verifying the formation of particular SAPs in Fe₁−Ni₁−N−C (Figures 1d and S13). Furthermore, the atomic-resolution elemental analysis via electron energy-loss spectroscopy (EELS) line-scan clearly shows the single-atom pair analyzed contains one Fe atom and one Ni atom, strongly confirming the Fe−Ni single-atom pairs formation in Fe₁−Ni₁−N−C (Figure 1e,f). The Fe and Ni single-atom loads in Fe₁−Ni₁−N−C are 0.45 and 0.42 wt %, suggesting an Fe/Ni molar ratio of ~1:1 (Table S1). For better comparison, Fe₁−N−C (with only single Fe atoms) and Ni₁−N−C (with only single Ni atoms), with similar Fe or Ni loadings, N contents, morphology, graphitization degree, and porous structure to Fe₁−Ni₁−N−C, have been also constructed in a similar way, respectively from Fe−ZnO/ZIF-8 and Ni−ZnO/ZIF-8 (Figures S14 and S15 and Table S1). As is shown in Figure S16, Fe₁−N−C and Ni₁−N−C possessing single metal species, present only isolated atoms on carbon support and no atom pairs can be observed (Figure S16). This is in stark contrast with the formation of SAPs when Fe and Ni are coexisted, implying that heteroatom Fe−Ni pairs are formed in Fe₁−Ni₁−N−C.

X-ray photoelectron spectroscopy (XPS) is implemented for identification of chemical compositions in Fe₁−Ni₁−N−C and their corresponding electronic states. The N 1s spectrum of Fe₁−Ni₁−N−C is fitted by four peaks and metal-N peak manifests the existence of metal−nitrogen coordination configurations (Figure S17). The near-edge X-ray absorption fine structure (NEXAFS) spectrum of N K-edge for Fe₁−Ni₁−N−C suggests an evident absorption at ~400.1 eV, further proving the formation of metal−nitrogen bonding (Figure S18). The Fe 2p₁/₂ peaks of Fe₁−Ni₁−N−C and Fe₁−N−C locate between Fe²⁺ (709.6 eV) and Fe³⁺ (711.6 eV), manifesting the partially oxidative state of Fe (Figure 2a). Similarly, in Figure 2b, the valence states of Ni on Fe₁−Ni₁−N−C and Ni₁−N−C also locate between 0 (853.0 eV) and +2 (855.7 eV), exhibiting its partially oxidized state. The binding energy of Fe 2p₁/₂ in Fe₁−Ni₁−N−C is revealed to shift by ~0.7 eV compared with that in Fe₁−N−C (Figure 2a). Meanwhile, Ni 2p₁/₂ in Fe₁−Ni₁−N−C shifts to a higher energy by +0.3 eV than that in Ni₁−N−C. The XPS results suggest that, in Fe₁−Ni₁−N−C, the Ni atoms donate partial electrons to Fe (Figure 2b). To further clarify the electronic states of Fe and Ni in Fe₁−Ni₁−N−C, the NEXAFS analysis for Fe and Ni has been performed. The Fe L-edge of Fe₁−N−C shows a dominate peak at 710.5 eV at the L₁ region assignable to Fe²⁺ (Figure 2c). In contrast to Fe L-edge of Fe₁−N−C, the shoulder peak at relatively smaller energy (707.8 eV) becomes more prominent in Fe₁−Ni₁−N−C, implying that Fe is partially reduced in Fe₁−Ni₁−N−C (Figure 2c). On the contrary, Fe₁−Ni₁−N−C illustrates a positively shifted Ni L-edge compared with Ni₁−N−C, manifesting a higher valence of Ni in Fe₁−Ni₁−N−C (Figure 2d). Therefore, the L-edge NEXAFS spectra, accompanied by the XPS results, present solid evidences for the existence of long-range electronic interaction between adjacent Fe and Ni atom in Fe₁−Ni₁−N−C, and the interaction between Fe and Ni might serve as the intrinsic driven force to form Fe−Ni pairs.

Atomic Structure Analysis. To further identify chemical environments of Fe and Ni atoms, the X-ray absorption fine structure (XAFS) spectroscopy was performed. The X-ray absorption near-edge structure (XANES) spectrum for Fe K-edge of Fe₁−Ni₁−N−C sits in the middle of Fe₂O₃ and Fe, proving the valence of Fe is positive lower than +3 (Figure 3a). Similarly, XANES spectrum of Ni K-edge for Fe₁−Ni₁−N−C confirms that the Ni oxidation state locates between 0 and +2 (Figure S19a), in good accordance with XPS analysis above. Moreover, in XANES spectra of Fe K-edge, Fe₁−Ni₁−N−C
shows a bit lower adsorption edge than Fe1-N-C, suggesting the decreased valence of Fe in Fe1-Ni-N-C (Figure S23). In contrast, in Ni K-edge XANES spectra, the Fe1-Ni1-N-C exhibits a positive energy shift relative to Ni1-N-C (Figure S19a). The energy shifts of Fe and Ni in XANES spectra agree well with the electron transfer from Ni to Fe, in line with the above observation of XPS and L-edge NEXAFS analysis.

Furthermore, both FT-EXAFS analysis for Fe in Fe1-Ni1-N-C and Fe1-N-C show similar peaks around 1.49 Å originating from Fe-N bonding (Figure S23). Moreover, EXAFS wavelet transform (WT) analysis for Fe1-Ni1-N-C and Fe1-N-C presents similar single intensity maximum assignable to Fe-N path at around 4.7 Å⁻¹ (Figures 3c, 8a, S20). The EXAFS fittings further confirm the Fe-N configuration in both Fe1-N-ni1-N-C and Fe1-N-C (Figures 3d and S21, Table S2). Moreover, Ni K-edge EXAFS spectra analysis as well as curve fittings for Fe1-Ni1-N-C and Ni1-N-C also demonstrates that Ni atoms are atomically dispersed with Ni-N1 configuration (Figures 3e-f, S19b, and S22 and Table S3).

Considering electron microscopy and XAFS results above, different structural models have been constructed by theoretical simulations (Figure S23). Among all simulated structures, the Fe-N-N-Ni model, with the most consistent coordination environment and interatomic distance (∼4.1 Å) to experimental fitting results, has been demonstrated as the most optimized structure of the active unit in Fe1-N-N-C (Figures 3d and S23). For better comparison, the nitrogen-doped carbon (N-C) without Fe/Ni species was also obtained by pyrolyzing the composite of pure ZnO supported on ZIF-8 (ZnO/ZIF-8: Figures S1 and S9).

Electrocatalytic Performance for CO2RR. Based on the analysis above, the electrocatalytic CO2 reduction reaction (CO2RR) measurements of the prepared catalysts have been performed. The linear scanning voltammetry (LSV) measurements reveal that all samples show higher current responses under CO2 atmosphere compared with those under nitrogen, manifesting their catalytic activities for CO2RR (Figures S24–S27). Notably, Fe1-Ni1-N-C with adjacent Fe and Ni SAPs shows much higher current density for CO2RR than Fe1-N-N-C, Ni1-N-N-C, as well as metal-free N-C (Figure 4a). Moreover, Fe1-Ni1-N-C gives an ultrahigh CO selectivity (96.2% at 0.5 V) while Fe1-N-C and N-C present inferior CO FE to Fe1-Ni1-N-C in all potential ranges (Figure 4b). Ni1-N-C, although with the maximum CO selectivity comparable to Fe1-Ni1-N-C, requires a more negative potential (−0.65 V), which is more energy-consuming than Fe1-Ni1-N-C (Figure 4b). For all tested samples, CO and H2 are the main products with the total FE close to 100% in the applied potentials and no liquid product is detected (Figures 4b, S28, and S29). Meanwhile, Fe1-Ni1-N-C achieves superior CO partial current density (JCO: 2.4 mA/cm² at 0.5 V) to Fe1-N-C (2.1 mA/cm²), Ni1-N-C (0.1 mA/cm²), and N-C (0.7 mA/cm²; Figure 4c). Fe1-Ni1-N-C displays smaller tafel slope (83 mV/dec) than Fe1-N-C, Ni1-N-C, and N-C, illustrating a faster kinetics of Fe1-Ni1-N-C for CO2RR (Figure S30). The superior CO2RR activities of Fe1-Ni1-N-C compared to Fe1-N-C and Ni1-N-C with Fe or Ni single atoms only, manifesting great superiority of Fe1-Ni1-N-C with neighboring Fe and Ni atoms. Moreover, Fe1-Ni1-N-C shows similar electrochemical active surface area (ECSA) as well as BET surface area to Ni1-N-C and Fe1-N-C, further supporting that the better CO2RR performance originates from better intrinsic activity of Fe-Ni pairs in Fe1-Ni1-N-C rather than the variation of surface area (Figures S10 and S31). In addition, the physical mixture of Fe1-N-C and Ni1-N-C (mix-Fe1-N-C/Ni1-N-C), without interplay between Fe and Ni atoms, also shows much inferior CO2RR activity to Fe1-Ni1-N-C (Figure S32). Besides, when the single Ni atoms are replaced by Co atoms, the obtained Fe1-Co1-N-C catalyst shows inferior CO selectivity due to the significant hydrogen evolution activity of Co sites (Figure S33). The results above clearly demonstrate that the significant synergy between Fe and Ni atoms contributes to superior CO2RR performance of Fe1-Ni1-N-C. When nitrogen-doped carbon obtained from ZIF-8 is replaced by commercial acetylene black (AB) to loading Fe and Ni atoms, obvious Ni and Fe agglomerations can be observed on the Fe-Ni/AB composite due to the absence of N anchoring sites (Figure S34a). As a result, Fe-Ni/AB presents inferior CO selectivity in the CO2 reduction, further illustrating the superiority of nitrogen-doped carbon obtained from ZIF-8 for the stabilization of single atoms (Figure S34b). Moreover, Fe1-Ni1-N-C can be continuously operated at −0.5 V for 10 h with nearly unchanged current density and FE of CO, exhibiting its excellent stability for CO2RR (Figure 4d).

Due to the superior CO2RR performance, Fe1-Ni1-N-C was further performed in rechargeable Zn-CO2 battery. The Fe1-Ni1-N-C, as a cathode catalyst, is put in KHCO3 solution to proceed CO2RR when supplied with CO2 and the Zn anode is immersed in 6 M KOH (Figure 5a). The charge and discharge voltages under different current densities clearly manifest the rechargeable behavior of assembled Zn-CO2 battery (Figure S35). Meanwhile, the CO2RR products during discharge process are also detected. It is shown that Fe1-Ni1-N-C equipped in the Zn-CO2 battery presents excellent selectivity to CO with a maximized FE up to 93.4% at 1 mA and the excellent FE of CO can be largely maintained in a wide range of current (Figure 5b). Furthermore, Fe1-Ni1-N-C shows good stability over 15 h under continuous discharge-charge processes, manifesting the excellent stability of the assembled Zn-CO2 battery (Figure 5c).
CONCLUSIONS

To sum up, a novel and facile Zn-assisted atomization method is put forward to construct a single-atom Fe−Ni1−N−C catalyst with N-bridged Fe and Ni SAPs. The obtained Fe accounts for Ni1−N−C catalyst achieves ultrahigh CO FE (96.2%) under the potential of −0.5 V, far surpassing Fe−Ni1−N−C with isolated Fe or Ni sites. Moreover, the Fe−Ni1−N−C has been further used as a cathode catalyst for the Zn-CO2 battery, exhibiting excellent FE of CO and operation durability. Mechanism investigations reveal that the N-bridged single-atom Fe and Ni sites in Fe1−Ni1−N−C can work synergistically to facilitate CO2 adsorption and lower the formation energy barrier of COOH* leading to the enhanced CO2RR performance. This work develops a universal strategy to construct SAPs. Meanwhile, it creates new opportunities to optimize performances of single-atom catalysts via manipulating interplay of adjacent single-atom sites.

EXPERIMENTAL SECTION

Synthesis of ZIF-8. The synthesis method follows the previous report with some modifications.46,52 First, the Zn(NO3)2·6H2O (1.116 g) in methanol (30 mL) was mixed with methanol (30 mL) solution of 2-methylimidazole (1.232 g). After being sonicated for 6 min, the mixture was put into a 100 mL Teflon reactor, which is then reacted under 120 °C for 2 h. After natural cooling, the white powders were obtained via centrifugation and washed by methanol three times. Then the as-obtained precipitates were put in a vacuum oven at 60 °C overnight.

Synthesis of M-ZnO (M = Fe, Co, Ni) and ZnO NPs. The synthesis follows a previous report with some modifications.53 Taking the synthesis of Fe-ZnO/ZIF-8 as an example, Zn(CH3COO)2·2H2O (550 mg) and Fe(CH3COO)2·2H2O (22 mg) were dissolved in 25 mL of dimethylsulfoxide (DMSO) first. Then 7.7 mL of ethanol solution of tetramethylammonium hydroxide pentahydrate (0.1 g/mL) was gradually dropped into the above DMSO solution within 1.5 min under stirring. After the addition of 60 mL of ethanol, the Fe-ZnO NPs were isolated by centrifugation and redispersed into 6 mL of methanol, affording the ethanol solution of Fe-ZnO NPs (25 mg/mL). The ethanol solution of Ni-ZnO NPs (20 mg/mL) or Co-ZnO NPs (20 mg/mL) was obtained following the same procedure as Fe-ZnO NPs except for Ni(CH3COO)2·4H2O (31 mg) or Co(CH3COO)2·4H2O (31 mg) was used instead of Fe(CH3COO)2. The ZnO NPs (25 mg/mL) were synthesized following the same procedure as Fe-ZnO NPs without the addition of Fe(CH3COO)2.

Synthesis of Fe&Ni-ZnO/ZIF-8, M-ZnO/ZIF-8 (M = Fe, Co, Ni), ZnO/ZIF-8, and Fe&Co-ZnO/ZIF-8. For Fe&Ni-ZnO/ZIF-8 synthesis, ZIF-8 (90 mg) was introduced into 9 mL of ethanol and ultrasonically dispersed for 5 min. Then, the mixture of Fe-ZnO solution (800 μL) and Ni-ZnO solution (400 μL) was injected to the dispersion solution of ZIF-8, respectively. After being stirred for 10 h, the yellow powders were collected by centrifuging and dried at 60 °C.

Synthesis of Fe-ZnO/ZIF-8 solution (800 μL) and Ni-ZnO solution (400 μL) was injected to the dispersion solution of ZIF-8, respectively. After being stirred for 10 h, the yellow powders were collected by centrifuging and dried at 60 °C.
the pyrolysis of M-ZnO/ZIF-8 (M = Fe, Co, Ni) and ZnO/ZIF-8 composites, respectively.

Synthesis of Fe–Ni/AB. Commercial acetylene black (90 mg) was introduced into 9 mL of ethanol and ultrasonically dispersed for 5 min. Then, the mixture of the Fe-ZnO (800 μL) and Ni-ZnO solutions (400 μL) were injected to the dispersion solution of acetylene black. After being stirred for 10 h, powders were separated and dried at 60 °C, which were then pyrolyzed in nitrogen under 900 °C for 2 h and Fe–Ni/AB powders were finally obtained.

Characterizations. Powder XRD measurements were performed on Japan Rigaku Miniflex 6000 using Cu Kα radiation. N2 sorption analysis were carried out at 77 K using the Micromeritics ASAP 2020 system. TEM were carried out on JEM-2010. Aberration-corrected HAADF-STEM observations were implemented using JEM-ARM200F at 200 keV. SEM observations were realized on Zeiss Supra 40. A Renishaw System 2000 spectrometer was used to obtain Raman scattering spectra excited by 514.5 nm line. Zeta potential measurements were made using the zeta potential analyzer (Zetasizer Nano ZSE, Malvern, U.K.) using ethanol as the solvent. The metal contents were quantified on an Optima 7300 DV instrument. XPS analysis was performed by an ESCALAB 250 electron spectrometer with the excitation source of monochromatized Al Kα. Thermog-ravimetry-mass spectrometry (TG-MS) was performed using a PerkinElmer TGA and mass spectrometer. Atomic-resolution EELS analysis was implemented by Nion HERMES-100 STEM with a C3/ CS corrector, working under 60 kV with convergence and collection semiangles of ~32 and ~75 mrad. The HAADF Z-contrast image was collected in the identical region employing an annular detector with a range of 75–210 mrad. To illustrate Fe L2,3 edge and Ni L2,3 edge signal dispersions, the EELS mapping with a probe current of ~15 pA was performed, sampling with a dwell time of 150 ms per pixel and a pixel size of ~0.02 nm. Principal component analysis was used for the raw data of experiments using MSA plugin for Gatan’s Digital Micrograph to optimize signal-to-noise ratio of datum obtained by EELS.

Electrochemical Analysis. CHI 760E electrochemical workstations were employed to implement electrocatalytic analysis. H-type cell divided by a cation exchange membrane (Naion115, du Pont) was used to perform CO2 electrochemical reduction. The scan rate for LSV measurements is 5 mV/s. All potentials were calculated to vs RHE from vs Ag/AgCl via adding 0.197 + 0.059 × pH. The electrochemical data are all illustrated without iR compensation.

The catalyst powders (5 mg) were mixed with 20 μL of Naflon (5 wt %) and 1 mL of ethanol. After being sonicated for 10 min, 60 μL of ink was sprayed on carbon paper (1.0 cm2). The gas products were detected by GC per 30 min. Quantifications for produced gas were realized by thermal conductivity and flame ionization detectors. Nuclear magnetic resonance (NMR) measurements were used for detection of liquid product, and a solvent preaturation method was employed to suppress the water peak.

Zn-CO2 Battery. The rechargeable Zn-CO2 battery tests were carried out using H-cell divided by bipolar membrane. The KOH (0.8 M) and Zn(CH3COO)2 (0.02 M) were filled in the anode compartment, and the cathodic electrolyte was 0.8 M K2CO3. The cathode compartment was bubbled with CO2 at 20 mL/min during the measurements. A Zn plate (2 × 5 cm2) was polished and employed as the anode electrode. The measurement for the cell was implemented by a cell testing instrument (CT2001A, LANHE).

X-ray Adsorption Spectra. The NEXAFS spectroscopy measurements for N, Fe, and Ni were performed in total electron yield (TEY) mode at the BL10B station of NSRL.

The XANES and EXAFS analysis for the Fe/Ni K-edge was performed at the 1W1B station of NSRL and 1W1B1 beamline of SSRF. All data of metal foils were obtained via transmission mode and other catalysts were tested using fluorescence mode. Data analysis was implemented on Athena and Artemis software packages. Energy calibration was performed based on metal foils. For EXAFS modeling, EXAFS of the metal foil was fitted, and the obtained amplitude reduction factor S02 value was set for the EXAFS fitting to determine coordination numbers (CNs) of the M-N scattering path in different samples.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c08050. Additional experimental materials and details, XRD results, SEM and TEM images, Raman spectra, XPS analysis, zeta potential, TG-MS measurement, XAFS spectra, N2 sorption isotherm, electrochemical measurements, and DFT calculations (PDF)

AUTHOR INFORMATION

Corresponding Author

Hai-Long Jiang — Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China; orcid.org/0000-0002-2975-7977; Email: jianglab@ustc.edu.cn

Authors

Long Jiao — Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China

Juntong Zhu — School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Yan Zhang — Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China

Weijie Yang — Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei 071003, P. R. China

Siyuan Zhou — School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Aowen Li — School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Chenfan Xie — Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China

Xusheng Zheng — National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China

Wu Zhou — School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, P. R. China; CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Shu-Hong Yu — Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China; orcid.org/0000-0003-3732-1011

