Introduction

During the last two decades, as a relatively new type of porous crystalline materials, metal–organic frameworks (MOFs), also called porous coordination polymers, have attracted widespread attention due to their modular assembly, structural diversity, chemical tailorability and tunability, as well as potential applications in many fields, such as gas sorption and separation, catalysis, sensing, drug delivery, and so on.\(^1\)–\(^5\) In comparison with traditional porous materials, such as zeolites, activated carbon and mesoporous silica, it is fair to say that MOFs have many advantages, especially their crystallinity, tunability and modular nature, which allow MOF pore sizes ranging from ultra-microporous to mesoporous (0–4 nm or even larger). Thus, it is considered that MOFs with wide ranges of pore sizes bridge the gap between mesoporous silica with large pores and zeolites with very small pores.\(^6\) However, most previously reported MOFs are moisture sensitive, which has been recognized as an imperative issue for their practical applications. For example, as a classical and representative MOF, MOF-5 has been intensively studied for different ends, however the Zn\(_4\)O clusters are readily hydrolyzed upon exposure to water vapor, giving rise to collapse of the porous structure and/or phase change.\(^6\) So far, several types of stable MOFs have been reported, such as zeolitic imidazolate frameworks (ZIFs), the MIL series, the UiO series, pyrazolates and triazolates, etc.,\(^7\)–\(^9\) which have been intensively studied for functional applications. Considering that the moisture sensitivity of MOFs could be caused by the weak metal–carboxylic oxygen bonds that are readily attacked by water molecules, we and others have recently developed a series of MOFs with very high chemical stability, based on the combination of a “hard acid”, zirconium(IV), and a “hard base”, carboxylate anions.\(^9\),\(^10\)

To continue this research on targeting MOFs with enhanced moisture stability, we are interested in MOFs linked by organic phosphate monoesters. Although phosphonic acid has been widely employed as an organic linker in the synthesis of metal phosphonates,\(^11\) organic phosphonate monoesters are an underexplored class of ligands.\(^12\) Recently, the bidentate oxygen donor ligation by phosphonate monoesters has been reported to be similar to the coordination mode of carboxylate anions.\(^12\)–\(^14\) The self-assembly process of the phosphonate monoester with metal ions proceeds steadily to yield single crystals with suitable sizes. Moreover, it has been reported that moisture resistant MOFs can be obtained by post-synthetically grafting alky groups onto the organic linkers.\(^13\) Therefore, the hydrophobic
alkyl group (–R) tethered on the ligand might function as a steric shield to protect the hydrolytically vulnerable M–O bonds and thus enhance the moisture stability of the resultant MOFs. Bearing this in mind, 4,4’-biphenyldiphosphonate bis(monoethyl ester) (H₂BPDP) was isolated, followed by assembly with an auxiliary N-donor ligand, bis(imidazol-1-yl)methane (BIM) or 1,3,5-tri[1H-imidazol-1-yl]benzene (TIB) to afford a series of MOFs: [Cd(BPDP)(BIM)(H₂O)₂] (1), [Cd(BPDP)(BIM)]·7H₂O (2), [Co(BPDP)(TIB)(H₂O)]·7H₂O (3), and [M(BPDP)(TIB)(H₂O)]·6H₂O (M = Cd for 4, Co for 5, and Cu for 6), featuring 1D chains, a double layered structure, a layered structure, and 3D isomorphous frameworks, respectively. It is very interesting that coordination between the BPDP ligand and metal ions gives 1D chains for all MOFs, while the introduction of an auxiliary N-donor ligand extends the 1D chain to different framework dimensionalities. Remarkably, these MOFs based on a phosphonate monoester linker while the introduction of an auxiliary N-donor ligand extends the BPDP ligand and metal ions gives 1D chains for all MOFs, respectively. It is very interesting that coordination between the BPDP ligand and metal ions gives 1D chains for all MOFs, while the introduction of an auxiliary N-donor ligand extends the 1D chain to different framework dimensionalities. Remarkably, these MOFs based on a phosphonate monoester linker with ethyl group protection are highly moisture stable, as expected, and compounds 4 and 6 are capable of CO₂ adsorption, exhibiting permanent porosity upon solvent removal. The Cd-based MOFs have also shown strong fluorescence emissions assigned to intraligand transitions.

Experimental section

Materials and general methods

All solvents and reagents for syntheses were commercially available and used as received, except for organic ligands, which were synthesized using published procedures with modifications (see ESI†). The FT-IR spectra were recorded on a Perkin-Elmer Spectrum 2000 FT-IR spectrometer using KBr pellets in the range of 4000–400 cm⁻¹. Thermogravimetric analyses (TGA) were carried out on a Shimadzu DTG-60H thermogravimetric-differential thermal analyzer at a ramp rate of 10 °C min⁻¹ under nitrogen. Powder X-ray diffraction (XRD) patterns were obtained on a Japan Rigaku SmartLab™ rotation anode X-ray diffractometer or a Holland X’Pert PRO fixed anode X-ray diffractometer equipped with graphite monochromatized Cu Kα radiation (λ = 1.54178 Å). Solid state emission spectra were recorded using a Perkin-Elmer LS55 luminescence spectrophotometer under the same measurement conditions. The CO₂ adsorption/desorption isotherms were obtained using a Micrometics ASAP 2020 system, and the sorption temperatures were controlled using a dry ice/acetone bath. Compound 4 was dried under a dynamic vacuum at 120 °C for 24 h. Before the measurements, the sample was dried again by using the “outgas” function of the surface area analyzer for 6 h at 120 °C. Compound 6 was subjected to solvent exchange (by soaking in methanol for over 1 day) and then treated using the same process as that used for compound 4 prior to the adsorption/desorption measurements.

Preparation of compounds 1–6

Preparation of [Cd(BPDP)(BIM)(H₂O)₂] (1). A mixture of H₂BPDP (74 mg, 0.2 mmol) and BIM (30 mg, 0.2 mmol) in 4 mL distilled water was introduced dropwise into a solution of Cd(CH₃COO)₂·2H₂O (53 mg, 0.2 mmol) in 4 mL distilled water under vigorous stirring. The resultant solution was filtered to give a filtrate. The filtrate was heated and spontaneously volatilized at ~80 °C for about 2 hours in a beaker to afford colorless plate-shaped single crystals of compound 1. The measured XRD pattern was in good agreement with the one simulated from the crystal structure data. IR data (KBr, cm⁻¹): 3124 (m), 2974 (m), 1500 (m), 1283 (m), 1238 (m), 1197 (s), 1143 (m), 1041 (s), 936 (m), 828 (m), 766 (m), 650 (m), 593 (m), 482 (m).

Preparation of [Co(BPDP)(TIB)(H₂O)]·7H₂O (2). A mixture of Co(CH₃COO)₂·4H₂O (31 mg, 0.1 mmol) and BIM (15 mg, 0.1 mmol) in 2 mL ethanol was introduced dropwise into a solution of H₂BPDP (55 mg, 0.15 mmol) in 4 mL hot ethanol during vigorous stirring and heating. This was followed by filtration. The filtrate was heated to 65 °C in a 20 mL vial for 1 day to yield colorless rod-shaped crystals of 2. A pure phase of compound 2 has not been obtained, although much effort was exerted.

Preparation of [Co(BPDP)(TIB)(H₂O)]·6H₂O (3). A mixture of Co(CH₃COO)₂·4H₂O (25 mg, 0.1 mmol) and TIB (28 mg, 0.1 mmol) in a mixture of 1 mL ethanol and 1 mL distilled water was introduced dropwise into a solution of H₂BPDP (55 mg, 0.15 mmol) in 4 mL hot ethanol during vigorous stirring and heating. This was followed by filtration. The filtrate was heated to 65 °C in a 20 mL vial for 1 day to yield pink plate-shaped crystals of 3. The measured XRD pattern was in good agreement with the one simulated from the crystal structure data. IR data (KBr, cm⁻¹): 3252 (m), 3113 (m), 1619 (m), 1561 (m), 1506 (vs), 1389 (m), 1309 (w), 1278 (m), 1143 (w), 1076 (m), 1014 (m), 931 (w), 874 (m), 812 (w), 757 (m), 676 (w), 638 (m).

Preparation of [M(BPDP)(TIB)(H₂O)]·6H₂O (M = Cd for 4, and Co for 5). The two compounds were prepared using a similar procedure to that used for 3, except that Co(CH₃COO)₂·4H₂O was replaced by Cd(NO₃)₂·4H₂O for 4 and Co(NO₃)₂·6H₂O for 5. Colorless and pink block-shaped crystals of 4 and 5, respectively, were obtained. The measured XRD pattern of compound 4 was in good agreement with the one simulated from the crystal structure data, while a pure phase of compound 5 has not been obtained. IR data for 4 (KBr, cm⁻¹): 3376 (m), 3129 (m), 1622 (m), 1513 (m), 1381 (s), 1343 (m), 1177 (s), 1045 (vs), 937 (m), 826 (m), 759 (s), 646 (w), 586 (m), 525 (s), 462 (m).

Preparation of [Cu(BPDP)(TIB)(H₂O)]·3H₂O (6). A 4 mL aqueous solution (–75 °C) of Cu(NO₃)₂·3H₂O (93 mg, 0.2 mmol) was added dropwise to a mixture of H₂BPDP (93 mg, 0.25 mmol) and TIB (55 mg, 0.2 mmol) in 4 mL distilled water (~75 °C). The resultant solution was filtered to give a filtrate, which was heated and spontaneously volatilized at ~75 °C for about 2 hours in a beaker to yield green block-shaped crystals of 6. The measured XRD pattern was in good agreement with the one simulated from the crystal structure data. IR data (KBr, cm⁻¹): 3122 (m), 2974 (w), 1618 (m), 1507 (s), 1292 (m), 1248 (m), 1179 (s), 1136 (w), 1046 (vs), 934 (s), 827 (m), 757 (m), 594 (m), 518 (m).
X-ray crystallography

Single crystal X-ray data collections for the organic ligands and all coordination compounds were performed on a Smart ApexII CCD diffractometer equipped with graphite monochromated Mo Kα radiation (\(\lambda = 0.71073\) Å). Intensity data for all compounds were collected at 296 K. The data sets were corrected for Lorentz and polarization factors, as well as for absorption, using the SADABS program.\(^{15}\) All structures were solved by direct methods and refined by full-matrix least-squares fitting on \(F^2\) using SHELX-97.\(^{16}\) C-bound H atoms were generated geometrically, while O-bound H atoms were located in the difference Fourier maps. All non-hydrogen atoms were refined with anisotropic thermal parameters, whereas all hydrogen atoms were refined isotropically. The hydrogen atoms in the water molecules in compounds 3–6 were not included in the refinements. The contributions of the disordered water molecules removed by the SQUEEZE process\(^ {17}\) are included in Table 1 for compounds 2, 4, 5 and 6. The number of water molecules was estimated from the contribution of the electrons removed from the unit-cell contents, and detailed information can be found in the CIF files (see _platon_squeeze_details). The structures of compounds 4–6, the position disorder of the C(18) and N(4) atoms in one non-coordinated imidazole group of the TIB ligand was refined anisotropically using the PART, EXYZ and EADP instructions of SHELXL. Crystallographic data and structural refinements are summarized in Table 1. Important bond lengths are listed in Table 2.

Results and discussion

Monoester and diester ligands

In each phosphonate group, there are three O atoms connected to the P atom: one O atom is bonded to the P center with a double bond, while the other two O atoms are in hydroxide or ester form, and are bonded to the P center with single bonds. If both oxygen atoms are esterified (ESI, Fig. S1), it would be difficult to coordinate the phosphonate diester group to any metal cations. If one oxygen atom is esterified (ESI, Fig. S2), the phosphonate monoester group might behave as a carboxylic acid group and coordinate to metal cations to afford MOFs. Therefore, the monoester was employed for the following MOF syntheses.

\[[\text{Cd(BPDP)}][\text{BIM}]][\text{H}_2\text{O}]_2\] (1). Compound 1 crystallizes in the \(P1\) space group. It contains two crystallographically unique cadmium(II) ions, two independent bridging ligands (BPDP and BIM) and two aqua ligands in the asymmetric unit. The unique Cd(1) and Cd(2) cations are located at two independent inversion centers, and each is octahedrally coordinated by three pairs of symmetry-related donors, \(i.e.,\) two O atoms from two phosphonate ligands, two N atoms from two BIM ligands, and two aqua ligands (Fig. 1). The water O–Cd bond lengths (2.368(2) and 2.414(2) Å) are slightly longer than the PO3 O–Cd bond lengths (2.261(2) to 2.323(2) Å), and all of the bond lengths are comparable to those in previously reported cadmium(II) MOFs.\(^\text{16,18}\)

The BPDP and BIM ligands both act as end-to-end bidentate bridging ligands (Fig. S3), and the interconnection of the Cd(II) ions by the above two types of ligands forms a 1D double-chain (Fig. 2a), which features an asymmetric four-membered ring unit containing one BPDP, one BIM and two Cd(II) ions. Corner-sharing of these ring units at the Cd(II) inversion centers results in a unique double-chain running along the \(b\)-axis. The discrete double-chains in compound 1 are further assembled into a compact three-dimensional structure via van der Waals forces, and no lattice water molecules are present in the structure (Fig. 2b).

\[[\text{Cd(BPDP)}][\text{BIM}]][\text{H}_2\text{O}]_2\] (2). When the cadmium(II) source \(\text{Cd(CH}_3\text{COO})_2\cdot2\text{H}_2\text{O}\) used in the synthesis of compound 1 was replaced by \(\text{Cd(NO}_3)_2\cdot4\text{H}_2\text{O}\) in ethanol, compound 2, which has a double layered structure and crystallizes in the \(C2/m\) space group, was obtained. There are one crystallographically independent cadmium(II) ion lying on a 2-fold axis, one unique BPDP ligand related by 2-fold symmetry, and two types of BIM ligands related by 2-fold and mirror symmetries in the asymmetric unit. The Cd(II) ion is coordinated in a pseudo-octahedral environment by four nitrogen atoms from four BIM ligands and two oxygen atoms from two BPDP ligands (Fig. 3). The Cd–O and Cd–N bond distances are in a narrow and normal range of 2.306(4)–2.320(4) Å. Similar to compound 1, the BPDP ligand is bidentate and bridges two Cd(II) ions with two oxygen atoms from P–O single bonds to form a 1D chain. In contrast, each of the two unique BIM ligands bridges two Cd(II) ions with two nitrogen atoms to give a nanoribbon-like chain along the \(a\)-axis, with a ribbon width of 1.67 nm in the \(b\)-direction (ESI, Fig. S4). The two kinds of chains are interconnected in different directions to construct a thick 2D double layer in the \(ac\)-plane, in which quadrangle-like rings are composed of four Cd(II) ions, two BPDP ligands and two BIM ligands (Fig. 4). The thickness of the double layer is about 16.7 Å, and the inter-double-layer distance is 14.5 Å. In this case, the different double layers almost stack together without interlayer openings (ESI, Fig. S4c).

\[[\text{Co(BPDP)}][\text{BIM}][\text{H}_2\text{O}]_7\] (3). By replacing Cd(II) with Co(II) and BIM with TIB, compound 3, which crystallizes in the \(P2_1/c\) space group with similar 2D sheets, was successfully obtained. As shown in Fig. 5, the asymmetric unit of 3 consists of one Co(II) center, one BPDP, one TIB and one aqua ligand, as well as seven lattice water molecules. The Co(II) ion is six-coordinated by three nitrogen atoms from three TIB ligands and two oxygen atoms from two BPDP ligands, as well as an aqua ligand. Similar to compound 1, the water O–Co bond distance of 2.215(3) Å is slightly longer than the phosphonate O–Co bond distances and the TIB N–Co bond distances, which range from 2.065(3) to 2.128(4) Å, and are comparable to those in previously reported cobalt(II) MOFs.\(^\text{19}\) Each of the two oxygen atoms with P–O single bonds in the BPDP ligand connects to one Co(II) ion to form a 1D wave-like chain, and the depth of the “wave” is slightly less than in compound 1. Each nitrogen atom of the TIB ligand is bonded to one Co(II) cation to provide a 2D graphene-like layer in the \(ab\)-plane with large 6-membered rings, which are formed.
Table 1 Crystallographic parameters from single crystal X-ray diffraction for the ligands and compounds 1–6

<table>
<thead>
<tr>
<th>Complexes</th>
<th>Phosphonate monoester</th>
<th>Phosphonate diester</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C₁₈H₂₄O₆P₂</td>
<td>C₂₂H₃₂O₆P₂</td>
<td>C₂₅H₃₄N₄O₈P₂Cd</td>
<td>C₃₂H₅₂O₁₃N₈P₂Cd</td>
<td>C₃₃H₅₀CdN₆O₁₄P₂</td>
<td>C₃₃H₅₀CoN₆O₁₄P₂</td>
<td>C₃₃H₅₀CuN₆O₁₄P₂</td>
<td></td>
</tr>
<tr>
<td>Fw</td>
<td>398.31</td>
<td>454.42</td>
<td>692.90</td>
<td>931.16</td>
<td>875.67</td>
<td>929.13</td>
<td>875.66</td>
<td></td>
</tr>
<tr>
<td>Space group</td>
<td>P</td>
<td>P2₁/c</td>
<td>P2₁/c</td>
<td>P2₁/c</td>
<td>C₂/m</td>
<td>C2/c</td>
<td>C2/c</td>
<td></td>
</tr>
<tr>
<td>a (Å)</td>
<td>7.6515(2)</td>
<td>15.8384(8)</td>
<td>8.9485(4)</td>
<td>17.4704(16)</td>
<td>10.2738(2)</td>
<td>21.7570(3)</td>
<td>21.5310(4)</td>
<td></td>
</tr>
<tr>
<td>b (Å)</td>
<td>8.0147(2)</td>
<td>8.4599(5)</td>
<td>13.0362(6)</td>
<td>28.935(2)</td>
<td>20.8895(5)</td>
<td>14.2474(2)</td>
<td>14.1050(2)</td>
<td></td>
</tr>
<tr>
<td>c (Å)</td>
<td>9.3307(2)</td>
<td>17.7369(11)</td>
<td>13.0950(6)</td>
<td>8.6998(7)</td>
<td>19.9247(5)</td>
<td>14.6058(2)</td>
<td>14.0197(4)</td>
<td></td>
</tr>
<tr>
<td>α (deg)</td>
<td>71.162(2)</td>
<td>90</td>
<td>82.8370(10)</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>β (deg)</td>
<td>67.620(2)</td>
<td>90</td>
<td>113.244(2)</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>γ (deg)</td>
<td>84.036(2)</td>
<td>90</td>
<td>87.4860(10)</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>V (Å³)</td>
<td>500.64(2)</td>
<td>2361.1(2)</td>
<td>1433.14(11)</td>
<td>4040.8(6)</td>
<td>4236.34(17)</td>
<td>3991.61(10)</td>
<td>3919.48(11)</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>d.calcd. (g cm⁻³)</td>
<td>1.321</td>
<td>1.278</td>
<td>1.606</td>
<td>1.531</td>
<td>1.373</td>
<td>1.546</td>
<td>1.484</td>
<td></td>
</tr>
<tr>
<td>μ (mm⁻¹)</td>
<td>0.247</td>
<td>0.218</td>
<td>0.928</td>
<td>0.691</td>
<td>0.549</td>
<td>0.700</td>
<td>0.593</td>
<td></td>
</tr>
<tr>
<td>Reflections collected</td>
<td>4320</td>
<td>96.493(2)</td>
<td>71.0060(10)</td>
<td>90</td>
<td>97.822(2)</td>
<td>118.1600(10)</td>
<td>117.4320(10)</td>
<td></td>
</tr>
<tr>
<td>Independent reflections</td>
<td>2254</td>
<td>96.493(2)</td>
<td>71.0060(10)</td>
<td>90</td>
<td>97.822(2)</td>
<td>118.1600(10)</td>
<td>117.4320(10)</td>
<td></td>
</tr>
<tr>
<td>Observed data</td>
<td>2254/0/118</td>
<td>2361.1(2)</td>
<td>1433.14(11)</td>
<td>4040.8(6)</td>
<td>4236.34(17)</td>
<td>3991.61(10)</td>
<td>3919.48(11)</td>
<td></td>
</tr>
<tr>
<td>GOF on F²</td>
<td>1.042</td>
<td>1.000</td>
<td>1.035</td>
<td>1.008</td>
<td>1.019</td>
<td>1.049</td>
<td>1.062</td>
<td></td>
</tr>
<tr>
<td>R₁, wR₂</td>
<td>0.0518, 0.1208</td>
<td>0.0578, 0.1142</td>
<td>0.0272, 0.0709</td>
<td>0.0533, 0.1245</td>
<td>0.0670, 0.1660</td>
<td>0.0376, 0.1003</td>
<td>0.0532, 0.1408</td>
<td></td>
</tr>
<tr>
<td>R₁, wR₂</td>
<td>0.0854, 0.1383</td>
<td>0.1295, 0.1422</td>
<td>0.0326, 0.0747</td>
<td>0.0813, 0.1369</td>
<td>0.1234, 0.1972</td>
<td>0.0497, 0.1051</td>
<td>0.0738, 0.1500</td>
<td></td>
</tr>
</tbody>
</table>

a R₁ = Σ||Fo|| - |Fc||/Σ|Fo|. b wR₂ = (Σw(Fo)² - (Σw(Fo))²/Σw(Fo))²/Σw(Fo)².²
by three Co(II) ions and three TIB ligands (ESI† Fig. S5). As a result, the Co–BPDP chains are grafted onto the Co–TIB layer by N–Co–O connectors, resulting in a layer that is not only slightly thicker, but also more “solid” (Fig. S5c).

The interlayer distance in the c-axis direction is about 10 Å. From a topological perspective, the BPDP ligand can be viewed as a metal linker, while the Co(II) center and the TIB ligand can be defined as 5- and 3-connected nodes, respectively, and the interconnection of the two kinds of nodes in a 1 : 1 ratio gives a two-dimensional (3,5)-connected net (Fig. 6b).

Table 2 Selected bond lengths (Å) for compounds 1–6a

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cd(1)–O(1)</td>
<td>Cd(1)–O(1W)</td>
<td>Co(1)–O(2)</td>
<td>Cd(1)–O(1)</td>
<td>Co(1)–O(2)</td>
<td>Cu(1)–O(1)</td>
</tr>
<tr>
<td>1</td>
<td>2.323(2)</td>
<td>2.368(2)</td>
<td>2.065(3)</td>
<td>2.248(2)</td>
<td>2.248(2)</td>
<td>1.999(3)</td>
</tr>
<tr>
<td></td>
<td>Cd(1)–N(1)</td>
<td>Cd(1)–N(3)</td>
<td>Co(1)–N(4)#2</td>
<td>Cd(1)–N(2)</td>
<td>Co(1)–N(2)</td>
<td>Cu(1)–N(2)</td>
</tr>
<tr>
<td>2</td>
<td>2.306(4)</td>
<td>2.320(4)</td>
<td>2.110(4)</td>
<td>2.130(4)</td>
<td>2.105(3)</td>
<td>1.999(3)</td>
</tr>
<tr>
<td></td>
<td>Co(1)–O(2)</td>
<td>Co(1)–O(1)</td>
<td>Co(1)–O(4)#1</td>
<td>Co(1)–O(2W)</td>
<td>Co(1)–O(2W)</td>
<td>Cu(1)–O(1)</td>
</tr>
<tr>
<td>3</td>
<td>2.065(3)</td>
<td>2.334(2)</td>
<td>2.079(3)</td>
<td>2.138(2)</td>
<td>2.105(3)</td>
<td>2.050(3)</td>
</tr>
<tr>
<td></td>
<td>Co(1)–N(4)#2</td>
<td>Co(1)–N(6)#3</td>
<td>Co(1)–N(2)</td>
<td>Co(1)–O(1)</td>
<td>Co(1)–O(1)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.110(4)</td>
<td>2.262(2)</td>
<td>2.130(4)</td>
<td>2.138(2)</td>
<td>2.105(3)</td>
<td>2.050(3)</td>
</tr>
<tr>
<td></td>
<td>Co(1)–O(2W)</td>
<td>Co(1)–O(2W)</td>
<td>Co(1)–O(2W)</td>
<td>Co(1)–O(2W)</td>
<td>Co(1)–O(2W)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.362(2)</td>
<td>2.362(2)</td>
<td>2.079(3)</td>
<td>2.177(2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Symmetry codes: #1, −x, y − 1/2, −z + 3/2; #2, −x + 1, y + 1/2, −z + 3/2; #3, x − 1, y, z.

Fig. 1 Coordination environments of the cadmium(II) center and the binding fashion of the BPDP and BIM ligands in compound 1. Symmetry codes: A −x, 2 − y, 1 − z; B 2 − x, 1 − y, 1 − z.

Fig. 2 (a) View of the 1D double-chain structure of 1. (b) View of the overall structure of 1 down the a-axis. The CdO2N4 and PCO3 polyhedra are shown in green and purple, respectively.

Fig. 3 Coordination environment of the cadmium(II) center and the binding fashion of the BPDP and BIM ligands in compound 2. Symmetry code: A −x, y, 2 − z.

Fig. 4 View along the b-axis of the thick 2D double layer in the structure of compound 2. The CdO2N4 and PCO3 polyhedra are shown in green and purple, respectively.

Fig. 5 View of the overall structure of 2 down the b-axis. The CdO2N4 and PCO3 polyhedra are shown in green and purple, respectively.

Fig. 6 (a) View of the 1D double-chain structure of 2. (b) View of the overall structure of 2 down the a-axis. The CdO2N4 and PCO3 polyhedra are shown in green and purple, respectively.

Fig. 7 View of the overall structure of 3 down the a-axis. The CdO2N4 and PCO3 polyhedra are shown in green and purple, respectively.

Fig. 8 (a) View of the 1D double-chain structure of 3. (b) View of the overall structure of 3 down the a-axis. The CdO2N4 and PCO3 polyhedra are shown in green and purple, respectively.

Fig. 9 View of the overall structure of 4 down the a-axis. The CdO2N4 and PCO3 polyhedra are shown in green and purple, respectively.

Fig. 10 (a) View of the 1D double-chain structure of 4. (b) View of the overall structure of 4 down the a-axis. The CdO2N4 and PCO3 polyhedra are shown in green and purple, respectively.

Fig. 11 View of the overall structure of 5 down the a-axis. The CdO2N4 and PCO3 polyhedra are shown in green and purple, respectively.

Fig. 12 (a) View of the 1D double-chain structure of 5. (b) View of the overall structure of 5 down the a-axis. The CdO2N4 and PCO3 polyhedra are shown in green and purple, respectively.
while keeping the other reaction parameters the same as those used for compound 3, compounds 4 and 5 with 3D networks were obtained. Similarly, by employing Cu(NO₃)₂·3H₂O as the metal source and slightly changing the reaction conditions, compound 6 with a 3D structure was prepared. The unit-cell dimensions, volumes, related bond distances, and angles of compounds 4–6 are only slightly different. They are isomorphous and exhibit similar structures. Therefore, compound 4 will be discussed in detail as a representative. As shown in Fig. 7, there is one crystallographically unique Cd(II) ion with half-occupancy located at an inversion center, half a BPDP ligand located at another inversion center, and half a TIB ligand lying about a two-fold axis, as well as one aqua ligand, in the asymmetric unit. Almost the same as in compound 1, the Cd(II) ion is pseudo-octahedrally coordinated by four oxygen atoms and two nitrogen atoms from two TIB ligands, in which two oxygen atoms are from two BPDP ligands and the other two oxygen atoms are from aqua ligands. The phosphonate and aqua O–Cd bond distances are similar, at 2.363(2) and 2.352(3) Å, respectively; the Cd–N bond distance is 2.246(3) Å, and all of the bond distances fall within normal ranges. As described previously, the BPDP ligand acts as a bridge to connect two Cd(II) ions to give a wave-like chain. Strikingly, the TIB ligand is not three coordinated, as commonly observed, but only bridges two Cd(II) ions with two nitrogen atoms, while the third nitrogen atom remains uncoordinated and exhibits substitutonal disorder with the neighbouring C18 atom. Such a connection results in a wave-like Cd–TIB chain with a deeper “wave” than that of Cd–BPDP (ESI,† Fig. S6). The cross interconnection of these two kinds of wave-like chains leads to a 3D framework with 1D nano-channels of dimensions 9.7 × 13.0 Å² along the b-axis (Fig. 8a). The ester groups of the BPDP ligand point toward the channels. The effective free volume is about 18.2%, as calculated by PLATON. As described above, the Cd(II) ion can be regarded as a four-connected node, while both the BPDP and TIB ligands can be simplified as lines, thus the whole network can be extended to a 4-connected CdSO₄ net with the Schläfli symbol (6⁵·8) (Fig. 8b).²¹

Structure differences in all compounds caused by N-donor ligands

The phosphonate monoester ligand in this work only bridges M(II) cations to form M–BPDP chains because coordination between M(II) and the oxygen atoms from the P=O bonds does not occur. The auxiliary N-donor ligands play a crucial role in both the structural diversity and the dimensionality...
variation of the resultant MOFs. In compound 1, BIM ligands act as bridges to connect Cd\(\text{II}\) ions to form chains, and the Cd–BPDP and Cd–BIM chains interlock in parallel to afford 1D double-chains, which are further assembled into a compact three-dimensional structure via van der Waals forces. For compound 2, the BIM ligands connect Cd\(\text{II}\) ions to give 1D nanoribbons, which are interconnected with Cd–BPDP chains from different directions to construct a thick 2D double-layered structure. In compound 3, the TIB ligands behave as 3-connected nodes and connect Co\(\text{II}\) ions to result in a graphene-like 2D layer, in which two Co\(\text{II}\) cations in the same “6-membered ring” are further reinforced by a BPDP bridge, giving rise to a (3,5)-connected layer structure. The TIB ligands in the isomorphous compounds 4–6 only bridge two M\(\text{II}\) ions to form a wave-like chain, because one of the three N donors in TIB remains uncoordinated. The cross interconnection of M–BPDP and M–TIB chains leads to a 4-connected 3D network with CdSO\(_{4}\) topology and 1D nanochannels along the \(b\)-axis.

Moisture stability

In previous reports, MOFs have shown powerful abilities to tune their composition, structure, pore size/environment, and structure-related properties. However, stability, especially moisture/chemical stability, has been recognized as a very challenging issue for the practical applications of MOFs as functional materials. So far, most MOFs are sensitive to moisture, which could be one of the key limitations to meeting the requirements of various applications. The classical Zn\(_4\)-O-based carboxylate MOFs (such as MOF-5, MOF-177, the IRMOF series or the UMCM series)\(^6,22\) and many Cd-based carboxylate MOFs\(^{4b,18}\) are generally moisture- or even air-sensitive, because the bonds between the Zn\(\text{II}/\text{Cd}\text{II}\) ions and the carboxylic acid oxygen atoms are not robust enough to tolerate attack by water molecules. The carboxylate groups can be replaced by phosphonate monoester ligands, [RPO\(_2\)(OCH\(_2\)CH\(_3\))]\(^-\), which can provide two oxygen donor atoms and a monoanionic charge, similar to carboxylates. The additional ethyl groups in the phosphonate monoester might act as a steric shield to protect the M–O bonds and thus improve the moisture stability of the resultant MOFs. As expected, the obtained compounds exhibit enhanced moisture stability. As shown in Fig. 9, the powder X-ray diffraction (XRD) patterns indicate that the MOFs have very good stability, and that their frameworks are retained well upon exposure to moisture with 30–50% humidity for a couple of days. These results elegantly demonstrate that MOFs based on phosphonate monosteres have superior moisture stabilities.

Thermogravimetric analysis

Almost all of the compounds exhibit two main stages of weight loss, in which the first stage corresponds to removal of isolated or/and coordinated water molecules, and the second weight loss corresponds to framework collapse, as shown in Fig. 10. Decomposition of the compounds during thermogravimetric (TG) analysis is not completed until 700 °C, which has been previously reported for metal phosphonate compounds.\(^{23}\) The TG curve of compound 1 shows that the first stage starts at 100 °C and is completed at 165 °C, which corresponds to the release of two coordinated water molecules. The observed weight loss is exactly the same as the calculated value (5.2%). After a short plateau, combustion of the organic ligands starts at 184 °C. The TG curve of compound 3 indicates that it starts to lose weight very slowly from room temperature to ~100 °C, then rapidly loses weight until 168 °C, releasing its isolated and coordinated water molecules. The observed weight loss of 10.5% is lower than the calculated value (16.4%). It should be mentioned that such deviation is common for MOFs and is usually caused by the spontaneous evaporation of uncoordinated solvent during the sample handling process prior to the TG experiment, especially when the compound contains a large number of lattice solvent molecules. After a long plateau, the organic ligands start to combust at 275 °C, and the weight loss does not end until 700 °C. Given the structure similarity, the weight loss curves of compounds 4 and 6 are comparable. Compound 4 slowly loses weight from room temperature, and then rapidly loses weight between 50 and 120 °C, corresponding to the release of isolated solvent molecules. Similarly, the weight loss of compound 6 between
room temperature and 100 °C should be caused by the removal of uncoordinated water molecules. In this step, the observed weight losses are 9.1% and 3.7% for compounds 4 and 6, respectively. Both values are lower than the calculated ones, possibly caused by the spontaneous loss in air of partially isolated H₂O molecules for both compounds before the TG experiment. Compounds 4 and 6 both exhibit plateaus before the second weight loss starts at 170 °C, which should be initiated by removal of coordinated water molecules, and further triggers combustion of the organic ligands and framework collapse.

Gas adsorption properties

The gas sorption of MOFs based on phosphonate ligands is seldom studied because the common phosphonic acid provides three oxygen atoms that can coordinate to metal cations, and the resultant metal phosphonates are usually nonporous or have tiny pores. In previous reports, phosphonate monoster as carboxylate linkers gave MOFs with suitable pore sizes and certain gas sorption capabilities. In this work, the phosphonate monoster behaves as a bridge to connect metal ions to form porous 3D frameworks with moderate 1D nanochannels in compounds 4–6. Upon removal of solvent molecules by evacuation, CO₂ adsorption studies at 195 K revealed gas sorptions of approximately 30 cm³ g⁻¹ and 40 cm³ g⁻¹ for compounds 4 and 6, respectively. The results reveal the presence of permanent porosity, and correspond to Langmuir surface areas of 16 and 70 m² g⁻¹ for compounds 4 and 6, respectively.

Fluorescence properties

The solid-state luminescence properties of compounds 1, 4 and 6, as well as the BPDP, BIM and TIB ligands were investigated at room temperature (Fig. 11 and S10†). The BPDP and BIM ligands exhibit fluorescence emission bands at λmax = 340 and 347 nm, respectively, under excitation at 278 nm. Upon combination of the BPDP and BIM ligands with Cd(II) ions, compound 1 displays a strong fluorescence emission...
band at $\lambda_{\text{max}} = 346$ nm ($\lambda_{\text{ex}} = 278$ nm), which is very close to the ligand emission bands, and could thus originate from intraligand transitions. The TIB ligand displays weak and broad fluorescence emission ranging from 378 to 392 nm upon excitation at 330 nm. Under the same excitation, compound 4 shows strong solid-state fluorescence at $\lambda_{\text{max}} = 387$ nm, which could also be assigned to intraligand transitions. The very weak fluorescence intensity of compound 6 could be due to the quenching effect of the Cu(II) ions.

Conclusions

In conclusion, six MOFs based on a phosphonate monoester ligand with structure dimensionalities ranging from 1D to 3D have been synthesized. The auxiliary N-donor ligands, BIM and TIB, have shown subtle effects on the structural diversity and dimensionality variation of the resultant MOFs. More importantly, with the steric protection of the ethyl groups (in the BPDP ligands) as a shield for the hydrolytically vulnerable M-O bonds, the obtained MOFs have considerable stability and remain stable upon exposure to moisture with 30–50% humidity for 2–4 days, which would facilitate their functional applications. The MOFs with 3D porous networks have exhibited CO$_2$ gas sorption properties, which revealed their permanent porosity. The Cd-based MOFs have also shown strong fluorescence emission assigned to intraligand transitions. The successful preparation of these MOFs based on an elongated phosphonate bis(monoester) ligand provides a valuable approach for the construction of MOFs with tuneable structures and improved moisture stabilities. The exploration of phosphonate monoester moieties with other ligand skeletons for MOF synthesis is currently underway in our laboratory.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21361002, Z.Y.D.; 21371162 and 51301159, H.L.J.), and the Young Scientists Training Program of Jiangxi Province (20122BCB23020, Z.Y.D.). H.L.J. also thanks the Research Fund for the Doctoral Program of Higher Education of China (20133402120020), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the State Education Ministry and the Fundamental Research Funds for the Central Universities (WK2060190026).

Notes and references

16 (a) G. M. Sheldrick, SHELXS-97, Program for X-ray Crystal Structure Solution, University of Göttingen, Germany, 1997; (b) G. M. Sheldrick, SHELXL-97, Program for X-ray Crystal Structure Refinement, University of Göttingen, Germany, 1997.

