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Abstract

In this paper, we analyze the dispersion and dissipation properties
of two fully discrete discontinuous Galerkin (DG) methods, namely
the Runge-Kutta DG (RKDG) method and the Lax-Wendroff DG
(LWDG) method, when solving the linear convection equation by em-
ploying the global spectral analysis (GSA). Under the condition that
the convection velocity of the numerical solution is non-constant, we
derive the GSA type numerical phase velocity and numerical group ve-
locity through the analysis of the all Fourier waves. Considering that
the boundary may be unfitted, we develop an inverse Lax-Wendroff
(ILW) boundary treatment for LWDG scheme based on the previous
work for RKDG scheme (Yang L, et al. Inverse Lax-Wendroff bound-
ary treatment of discontinuous Galerkin method for 1D conservation
laws. Commun. Appl. Math. Comput., 7, 796–826 (2025)) and make
conservation corrections. Finally, we analyze the dispersion properties
of the two DG schemes employing the ILW boundary treatment near
the boundary, comparing the impact of the boundary treatment. A
series of numerical examples verify our theoretical results.

Keywords Global spectral analysis, fully discrete discontinuous Galerkin
methods, inverse Lax-Wendroff method, boundary analysis

1 Introduction

The error dynamics and dispersion/dissipation properties of numerical solu-
tions have always been an important research topic [23, 42, 49, 50]. In this
paper, we will analyze the global dispersion and dissipation errors of fully
discrete high order discontinuous Galerkin (DG) methods when solving the
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linear convection equation, coupling with the so-called inverse Lax-Wendroff
(ILW) boundary treatment on unfitted meshes.

So far, most previous works on the dispersion/dissipation analysis are
based on von Neumann analysis, which brought some limitations. Firstly,
von Neumann analysis is only applicable to periodic problems, not boundary
value problems. Secondly, von Neumann analysis considers the dispersion
properties of a single Fourier mode, without considering the interaction be-
tween the various Fourier modes. The convection velocity is usually consid-
ered to be constant in von Neumann analysis. However, this assumption does
not match the exact situation of numerical solutions [35]. Recently, a new an-
alytical method called global spectral analysis (GSA) was proposed [35] and
has been applied to a variety of equations and numerical schemes, including
convection equations [35, 33, 36, 37], diffusion equations [33], convection-
diffusion equations [30, 31], etc. Compared with the Fourier analysis, GSA
analyzes discrete equations with general initial conditions on the spectral
plane in the non-periodic region instead of a single Fourier wave, and derives
non-constant convection velocities in the numerical solution. Thus, it can be
used on initial-boundary value problems. For a review of GSA, please refer
to [28].

In particular, for the linear convection equation ut + cux = 0, the nu-
merical dispersion relation is given as ω = c · kN where kN is the numer-
ical wavenumber in von Neumann analysis. The numerical group velocity
is given as vgN = cdkN/dk. But these dispersion relations has been proven
to be wrong[37, 36, 35, 28]. Under the assumption of GSA, the numerical
convection velocity cN is not a constant. Through the numerical dispersion
relation ωN = k · cN , we can obtain the expression for the numerical group
velocity as

vgN =
dωN

dk
= cN + k

dcN
dk

.

This expression differs from that obtained through von Neumann analysis.
In this paper, we concern on the dispersion/dissipation analysis of DG

method. DG method was first used by Reed and Hill [27] in 1973 to solve
the neutron transport equation. Later, Cockburn, Shu, and others [10, 9,
8, 11, 12] combined spatial DG discretization with explicit Runge-Kutta
time discretization to develop the more practical Runge-Kutta DG (RKDG)
method, which was applied to solve nonlinear hyperbolic conservation laws.
The DG method is based on piecewise polynomial discontinuous approxima-
tions, where inschemeion is exchanged only through numerical fluxes between
neighboring cells. Due to the local nature of the DG scheme, it is highly com-
pact, easily handles various boundary conditions. An alternative approach
could be using a Lax-Wendroff type time discretization procedure, which re-
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lies on a Taylor expansion in time and converting all the time derivatives into
spatial derivatives by repeatedly using the PDE and its differentiated ver-
sions. The Lax-Wendroff DG (LWDG) scheme was proposed by Qiu, Dumb-
ser, and Shu [26, 25]. As one-step one-stage high-order numerical methods,
LWDG methods demonstrate cost efficiency in some applications, such as
the two-dimensional Euler equations in gas dynamics, when compared with
one-step multi-stage RKDG methods. There has been a lot of work ana-
lyzing the dispersion and dissipative properties of semi-discrete DG scheme
[38, 19, 1, 48, 16, 7] and fully-discrete DG scheme [46, 2, 3, 4]. However,
all these works were concerned on the linear problems with periodic bound-
ary condition, employing the Fourier analysis. The global spectral analysis
for the DG scheme and the dispersion properties at the boundaries are still
not given. In this paper, we will utilize the GSA to analyze the dissipation-
dispersion errors of the RKDG scheme and the LWDG scheme. In particular,
the boundary influence will be taken into account as well.

Although DG methods can use unstructured meshes for complex geome-
tries, the small cell sizes can result in very small time steps due to stability
restrictions. Moreover, in many cases (such as moving boundaries), generat-
ing a high-quality mesh can be expensive, making the use of a regular mesh a
viable alternative. Since the mesh boundary and the computational domain
boundary may not coincide, the so-called ”cut-cells” may appear, imposing
additional limitations on the allowable time steps. To address this issue,
several efficient strategies have been developed for handling the ”cut-cell”
problem, including implicit time-stepping [5], cell merging or agglomeration
[22, 24, 29], stabilization with ghost penalties [6, 13, 17, 18, 40, 41], state
redistribution [15], and the shifted boundary method [39]. In this paper,
we focus on the Inverse Lax-Wendroff (ILW) method, developed by Tan and
Shu [43, 44], which was originally designed to match the finite difference
method on Cartesian grids for solving hyperbolic conservation law equa-
tions. This method leverages the equations to convert normal derivatives
into time derivatives and tangential derivatives, thereby constructing ghost
points near inflow boundaries. The algorithm achieves arbitrary-order accu-
racy. To simplify the algebraic operations involved in the ILW process, Tan
et al. [45] proposed a simplified ILW (SILW) method, which uses extrap-
olation to construct high-order normal derivatives. More recently, Yang et
al. [47] incorporated ILW boundary treatment into RKDG methods, which
proves beneficial for DG methods on unfitted meshes and complex boundary
problems. This approach completely mitigates the issue of small time steps,
allowing the method to maintain the same explicit time step as the standard
DG method. However, they also found that the boundary treatment dis-
rupts the local conservative property in ghost cells, leading to a significant
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impact on error magnitudes. To address this, an additional post-processing
technique is proposed to restore local conservation. In this paper, we extend
the ILW boundary treatment to the LWDG method and provide a stability
analysis to ensure the effectiveness of the scheme. Additionally, the bound-
ary influences for RKDG methods and LWDG methods will be compared via
GSA.

The remaining of this paper is organized as follows. In Sec. 2, the general
forms of the RKDG method and LWDG method are introduced. In Sec. 3,
the dispersion-dissipation properties of the two fully-discrete DG schemes
for the one-dimensional linear advection equation under periodic boundary
conditions are analyzed, and the dispersion-dissipation errors of the RKDG
scheme and LWDG scheme are compared across different wavenumber ranges.
Sec. 4 presents the ILW boundary treatment method for the matching LWDG
scheme, and linear stability is analyzed through the visualizing the eigen-
spectrum method. In Sec. 5, the impact of the ILW boundary treatment
method on the dispersion properties of the RKDG scheme and LWDG scheme
are analyzed. Several numerical examples are provided to validate our theo-
retical analysis and findings will be given in Sec. 6. Finally, Sec. 7 concludes
the paper and discusses future directions.

2 Fully Discrete DG Methods

In this section, we give a review on the DG methods to solve 1D scalar
hyperbolic conservation law,

ut + f(u)x = 0, x ∈ [a, b], t > 0. (1)

Following the standard DG methods procedure [10], we first divide the
spatial domain and define the corresponding DG solution space. Here, we
will use a uniform grid. The computational domain is divided into N equally
spaced cells,

a = x 1
2
< x 3

2
< · · · < xN+ 1

2
= b,

and each cell is denoted as Ij = [xj− 1
2
, xj+ 1

2
] with mesh size h = xj+ 1

2
− xj− 1

2

and the midpoint xj =
1
2
(xj− 1

2
+ xj+ 1

2
).

Let q be a non-negative integer, and P q(Ij) be the space of polynomials
of degree at most q on Ij. We define the piecewise polynomials space

V q
h = {v : v|Ij ∈ P q(Ij), j = 1, 2, · · · , N}. (2)

In this paper, we will consistently use the basis functions {φj
l (x) = φl(

x−xj

h/2
),

l = 0, · · · , q, j = 1, · · · , N}, where φl is the Legendre polynomial of degree
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l defined on the reference interval [−1, 1]. For any v ∈ V q
h , we denote v−

j+ 1
2

(resp. v+
j+ 1

2

) as the left (resp. right) limit of the discontinuous function v at

the cell interface xj+ 1
2
.

Next we will introduce RKDG method and LWDG method, and both of
them can be of arbitrary order of accuracy.

2.1 RKDG Schemes

The RKDG schemes is constructed in the method of lines framework, mean-
ing that the spatial variable is first discretized, then the numerical solution
is updated in time by coupling a suitable Runge-Kutta time discretization.

The semi-discrete DG method for (1) is: find the unique approximate
solution uh(·, t) ∈ V q

h , such that for any v ∈ V q
h and all 1 ≤ j ≤ N the

following holds,∫
Ij

(uh)tv dx =

∫
Ij

f(uh)vx dx− f̂j+ 1
2
v−
j+ 1

2

+ f̂j− 1
2
v+
j− 1

2

, (3)

where f̂j+ 1
2
= f̂((uh)

−
j+ 1

2

, (uh)
+
j+ 1

2

) is a numerical flux at xj+ 1
2
. One of the

most commonly used monotone fluxes is Lax-Friedrichs flux,

f̂LF (u−, u+) =
1

2

(
f(u−) + f(u+)− α(u+ − u−)

)
, α = max

u
|f ′(u)|.

What needs special attention is that the values of f̂ 1
2
and f̂N+ 1

2
depend on

the specific boundary conditions settings.
Let uh(x, t)|Ij =

∑q
l=0 u

j
l (t)φ

j
l (x), then the semi-discrete DG scheme (3)

can be rewritten as the first-order ODE system

ut = L(u),

where u(t) = (u1
0(t), · · · , u1

q(t), · · · , uN
0 (t), · · · , uN

q (t))
T is the coefficient vec-

tor to be determined, and the operator L(u) is arised from the spatial dis-
cretization.

The third-order TVD Runge-Kutta method [11] is usually used for the
time discretization. Let ∆t be the time step, then we can update the coeffi-
cient vector from time tn to tn+1 = tn +∆t as

u(1) = un +∆tL(un),

u(2) =
3

4
un +

1

4
(u(1) +∆tL(u(1))),

un+1 =
1

3
un +

2

3
(u(2) +∆tL(u(2))).

(4)
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The scheme can give (q + 1)-th order in space and third order in time. In
particular, [10] has proved that the fully discrete scheme is stable under the
CFL condition α∆t

h
≤ 1

2q+1
.

2.2 LWDG Schemes

The LWDG method in [26] starts with a Taylor expansion of order q + 1 of
the solution u in time,

u(x, t+∆t) ≈ u(x, t) +

q+1∑
s=1

∆ts

s!
∂
(s)
t u(x, t).

From ut+f(u)x = 0, it follows that ∂
(s)
t u = −∂x∂

(s−1)
t f(u), s = 1, 2, · · · , q+1.

So we get
u(x, t+∆t) ≈ u(x, t)−∆tFx

with

F (u) =

q∑
s=0

∆ts

(s+ 1)!
∂
(s)
t f(u). (5)

Furthermore, we can calculate the time derivatives in (5) with the space
derivatives based on the original PDE (1). For example, for q = 2 we have

ut =− f(u)x = −f ′ux,

f(u)t =f ′ut = −(f ′)2ux,

utt =− (f(u)t)x =
(
(f ′)2ux

)
x
,

f(u)tt =f ′′u2
t + f ′utt = 3f ′′(f ′)2(ux)

2 + (f ′)3uxx.

Then we can obtain

F (u) = f(u)− ∆t

2
(f ′)2ux +

∆t2

6

(
3f ′′(f ′)2(ux)

2 + (f ′)3uxx

)
.

The LWDG method for (1) is: find the unique approximate solution
uh(·, t) ∈ V q

h , such that ∀v ∈ V q
h and 1 ≤ j ≤ N the following equation

holds,∫
Ij

uh(x, t+∆t)− uh(x, t)

∆t
v dx =

∫
Ij

F (uh)vx dx− F̂j+ 1
2
v−
j+ 1

2

+ F̂j− 1
2
v+
j− 1

2

,

(6)
where F̂j+ 1

2
(uh) = F̂ ((uh)

−
j+ 1

2

, (uh)
+
j+ 1

2

) is a numerical flux at xj+ 1
2
. The

numerical flux given in [25] is based on the decompositions F = f +(F − f),
that

F̂ (u−, u+) = f̂(u−, u+) +
1

2

(
f ∗(u−) + f ∗(u+)

)
, f ∗ = F − f, (7)
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where f̂ can be any commonly used numerical flux. The scheme can achive
(q+1)-th order in space and time at the same time. In addition, for the case
of f(u) = cu (c > 0), another form of numerical flux in convex combination
is given in [46], where

F̂ (u−, u+) = βf(u−) + (1− β)f(u+) + γf ∗(u−) + (1− γ)f ∗(u+) (8)

with β, γ ∈ [0, 1]. For the linear convection equation, (8) is a more general
numerical flux, and (7) is a special case of (8) when β = 1 and γ = 1

2
.

3 Dispersion Analysis by GSA

We start our discussion with the 1D linear advection equation:{
ut + cux = 0, c > 0, x ∈ R,
u(x, 0) = u0(x).

(9)

The solution of the fully discrete DG method to solve (9) is given by

un
h(x)|Ij =

q∑
l=0

uj,n
l φj

l (x). (10)

The initial values for the DG scheme are obtained from the L2 projection,
which is represented by the operator Ph, into the approximation space of the
initial function. That is to say, uh(x, 0) = Ph(u0(x)), satisfying∫

Ij

uh(x, 0)v(x)dx =

∫
Ij

u0(x)v(x)dx, ∀v ∈ V q
h .

Assume that the initial function u0(x) can be expressed in the form of a
Fourier transform u0(x) =

∫
R û0(k)e

ikx dk, then we can obtain

uj,0
l =

2l + 1

h

∫
Ij

u0(x)φ
j
l (x) dx =

∫
R
U0
l û0(k)e

ikxj dk, (11)

where U0
l = 2l+1

2

∫ 1

−1
e

ikhξ
2 φl(ξ) dξ. Furthermore, we have

u0
h(x)|Ij =

∫
R
U 0 ·φj(x) û0(k)e

ikxj dk. (12)

The operation (·) refers to the inner product of vector U 0 = [U0
0 , · · · , U0

q ]
T

and φj(x) = [φj
0(x), · · · , φj

q(x)]
T .
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We can assume that the numerical solution (10) at any time has a form
similar to (12), that is

un
h(x)|Ij =

∫
R
Un ·φj(x) û0(k)e

ikxj dk (13)

with Un = [Un
0 , · · · , Un

q ]
T , n = 0, 1, · · · . Or equivalently, we assume that

uj,n
l =

∫
R
Un
l û0(k)e

ikxj dk (14)

Next, we will solve Un by recursive relation Un+1 = GUn, and use
numerical amplification factor G to analyze the phase velocity and group
velocity of the scheme by GSA method.

3.1 Numerical Amplification Factor

For the DG methods to solve equation (9), we can use f̂j+ 1
2
= f((uh)

−
j+ 1

2

)

for RKDG method in (3). As for the LWDG method (6), we use the more
general numerical flux (8) for linear scalar problems.

3.1.1 RKDG Schemes

Utilizing the forward Euler time discretization and substituting un
h(x)|Ij =∑q

l=0 u
j,n
l φj

l (x) into (3), the scheme can be simplified to

uj,n+1
l = uj,n

l +
c∆t

h
·(2l+1)

q∑
m=0

(∫ 1

−1

(φmφ
′
l dξ − 1)uj,n

m + (−1)luj−1,n
m

)
. (15)

Set Nc =
c∆t
h
, taking (14) into (15) gives us

Un+1
l = Un

l +Nc · (2l + 1)

q∑
m=0

(∫ 1

−1

φmφ
′
l dξ − 1 + (−1)le−ikh

)
Un
m. (16)

Let

Alm = (2l + 1)

(∫ 1

−1

φmφ
′
l dξ + (−1)le−ikh − 1

)
and take it to form a matrix A. I is the identity matrix of size q+1, we can
express (16) in matrix form,

Un+1 = (I +NcA)Un.
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Furthermore, when the third-order TVD Runge-Kutta method (4) is used
for the time discretization, we have

Un+1 =

(
I +NcA+

N2
c

2
A2 +

N3
c

6
A3

)
Un. (17)

In order to match the accuracy of time and space, when q = 1,we use the
second-order TVD Runge-Kutta method [11], so there is

Un+1 =

(
I +NcA+

N2
c

2
A2

)
Un. (18)

3.1.2 LWDG Schemes

Since f(u) = cu, the F in (5) can be easily obtained,

F (u) = c

q∑
s=0

(−c∆t)s

(s+ 1)!

∂su

∂xs
. (19)

Similarly, for the LWDG scheme (6), we have

uj,n+1
l =uj,n

l +Nc · (2l + 1)

q∑
m=0

(
(blm + (−1)lb̃m − bm)u

j,n
m − b̃mu

j+1,n
m

+ (−1)lbmu
j−1,n
m

)
.

where

blm =

q∑
s=0

(−2Nc)
s

(s+ 1)!

∫ 1

−1

dsφm

dξs
dφl

dξ
dξ,

b̃m =(1− γ)

q∑
s=0

(−2Nc)
s

(s+ 1)!

dsφm

dξs
|ξ=−1 + (γ − β)(−1)m,

bm =γ

q∑
s=0

(−2Nc)
s

(s+ 1)!

dsφm

dξs
|ξ=1 − (γ − β).

Define Blm = (2l + 1)
(
blm + ((−1)l − eikh)(b̃m + e−ikhbm)

)
, we can get

Un+1 = (I +NcB)Un. (20)

9



3.1.3 Physical Mode

At this point, for the fully discrete DG schemes, we have obtained Un+1 =
GUn, and

G =


I +NcA+ N2

c

2
A2, for RKDG scheme with q = 1,

I +NcA+ N2
c

2
A2 + N3

c

6
A3, for RKDG scheme with q ≥ 2,

I +NcB, for LWDG scheme.

(21)
Based on these results, firstly we can discuss the linear stability of the

schemes. We seek the maximum value of Nc (CFL number) such that the
spectral radius ρ(G) ≤ 1 holds for all kh ∈ [0, π]. The results of the second-
order and third-order DG schemes are listed in Tab. 1. Here, β = γ = 1 are
chosen in the LWDG scheme, due to the fact this combination provides the
maximum CFL number. And in the following, we always use β = γ = 1

Tab. 1: CFL condition of fully discrete DG schemes

Scheme
q = 1 q = 2

RKDG2 LWDG2 RKDG3 LWDG3
CFL number 0.333 0.333 0.209 0.170

Apart from that, let the eigenvalues and corresponding eigenvectors of
G be {(λl, rl), l = 0, 1, · · · , q}, we can obtain the l-th eigen-solution of Un

(n ≥ 1) as
Un

l = λn
l rl. (22)

Set R = [r0, · · · , rq], and define µ = R−1U 0 = [µ0, · · · , µq]
T . By combining

(22), we get

Un = GnU 0 =

q∑
l=0

µlU
n
l . (23)

Substituting (23) into (13) gives us

un
h(x)|Ij =

q∑
l=0

∫
R
µl U

n
l ·φjû0(k)e

ikxj dk. (24)

That is, the fully discrete DG solution can be written as a combination of
q + 1 the eigen-solutions, with the coefficients µ.

In general, µ is a function with respect to kh and Nc. But for RKDG
scheme, from the definitions of A, G and µ, it can be seen that µ is only a
function of kh. This feature allows us to easily visualize the relative size of
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the magnitude of each component of µ for RKDG scheme. At this time, for
LWDG scheme, we are forced to fix Nc as the CFL number.

Consider the magnitude of all components of µ. One of the values is
close to 1, while the others are close to 0 (see Fig. 1). In most references,
this dominant eigen-solution is referred to as the physical mode, while the
others are called spurious modes. The former is what we are more concerned
about.

(a) RKDG2 (b) LWDG2, Nc = 0.333

(c) RKDG3 (d) LWDG3, Nc = 0.170

Fig. 1: The magnitude of each component of µ
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3.2 Phase Velocity and Group Velocity of Physical mode

The exact solution of (9) can be written as

u(x, t) = u0(x− ct) =

∫
R
û0(k)e

i(kx−ωt) dk (25)

with ω = kc. Similar to (12), the L2 projection of the exact solution (25)
into the approximation space is

Ph(u(x, t))|Ij =
∫
R
e−iωtU 0 ·φj û0(k)e

ikxj dk. (26)

We already know that when h → 0, uh approximates Phu, and both approx-
imate u.

Without loss of generality, let the 0-th eigen-solution be the physical
mode. From Un

0 = λn
0r0 ∼ e−iωtnU 0 as kh → 0, we obtain λ0 ∼ e−iω∆t (this

means λ0−e−iω∆t → 0 as kh → 0). Let λ0 = e−iωN∆t and ωN = ωNr+iωNi, we
have ωNr ∼ ω and ωNi ∼ 0 as kh → 0. In [46], the asymptotic formulations
are derived analytically for the discrete dispersion relation in the limit of
kh → 0 as a function of Nc.

If we define λ0 = |λ0|e−iϕ again, then combining λ0 = e−iωN∆t, we have{
|λ0| = eωNi∆t,

ϕ = ωNr∆t,

Following the idea of [35, 28], we define the numerical dispersion relation as
ωNr = kcN . Thus, the phase velocity is cN = ωNr

k
, and group velocity is

vgN =
dωNr

dk
= cN + k

dcN
dk

. (27)

Substituting ωNr =
ϕ
∆t

(ϕ = ϕ(Nc, kh)) gives

cN
c

=
ϕ

Nc · kh
,

vgN
c

=
1

Nc

dϕ

dkh
, (28)

then low dissipation means |λ0| ∼ 1 and low dispersion means cN/c ∼ 1 and
vgN/c ∼ 1.

Next, we will formally derive the error propagation equation, which is
closely related to the dispersion and dissipation properties. The solution
(24) can be written as

uh(x, t
n)|Ij =

∫
R
µ0 |λ0|t

n/∆tr0 ·φjû0(k)e
ik(xj−cN tn) dk

+

q∑
l=1

∫
R
µl |λl|t

n/∆trl ·φjû0(k)e
ik(xj−clN tn) dk,
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where we have also defined a non-existent phase velocity clN (l ≥ 1) for the
solutions of non-physical modes. Note that φj takes the same value at the
cell midpoint xj, and this constant vector is denoted as φ0. We get

uh(xj, t
n)|Ij =

∫
R
µ0 |λ0|t

n/∆tr0 ·φ0û0(k)e
ik(xj−cN tn) dk

+

q∑
l=1

∫
R
µl |λl|t

n/∆trl ·φ0û0(k)e
ik(xj−clN tn) dk.

Map these discrete point values to a continuous function globally,

ũ(x, t) =

∫
R
µ0 |λ0|t/∆tr0 ·φ0û0(k)e

ik(x−cN t) dk

+

q∑
l=1

∫
R
µl |λl|t/∆trl ·φ0û0(k)e

ik(x−clN t) dk
(29)

then define the error as e = ũ− u, which is closely related to the dispersion
error and dissipation errors. Combining the governing equation ut + cux = 0
and (27), we can obtain the error propagation equation about specific wave
number k′, that is

et + cex

=ũt + cN(k
′)ũx + (c− cN(k

′))ũx

=c(1− cN(k
′)

c
)ũx

+

∫
R

(
ln |λ0|
∆t

+ ik
∫ k′

k

vgN (k̃)−cN (k̃)

k̃
dk̃
)
µ0 |λ0|t/∆tr0 ·φ0û0(k)e

ik(x−cN (k)t) dk

+

q∑
l=1

∫
R

(
ln |λl|
∆t

+ ik(cN(k
′)− clN(k))

)
µl |λl|t/∆trl ·φ0û0(k)e

ik(x−clN (k)t) dk.

(30)
Eq. (30) is called as the midpoint error propagation equation. Noting the

error to dramatically increase when the numerical solution displays sharp
spatial variation. This can now be explained as the effect of the first term on
the right-hand side of (30) [35]. In addition, we can see from Eq. (30) that
the group velocity and phase velocity have a decisive influence on dispersion
error propagation.

To more clearly describe the effect of the right-hand side of (30), we plot
the contours of |λ0|, cN/c and vgN/c with respect to Nc and kh. See Fig. 2,
3, and 4. In the region where kh approaches 0, we can obtain the following
conclusions:
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• Higher-order schemes have smaller dispersion and dissipation errors.

• For RKDG2 scheme and LWDG2 scheme, the dispersive error domi-
nates, while for RKDG3 scheme and LWDG3 scheme, the dissipative
error dominates.

• The RKDG2 scheme has larger dissipative errors than the LWDG2
scheme, but its dispersive errors are smaller.

• The RKDG3 scheme has smaller dispersive and dissipative errors com-
pared to the LWDG3 scheme.

Some of the them are consistent with those in [46]. Besides, in the region
where kh approaches π, we observe some different results, which are also
supported by subsequent numerical experiments in Sec. 6.

(a) RKDG2 (b) LWDG2

(c) RKDG3 (d) LWDG3

Fig. 2: The contour map of |λ0| with respect to Nc and kh.

In order to compare the properties of the two DG schemes more accu-
rately, we fix a certain Nc and make the relevant one-dimensional graphs,
see Figures 5, 6, and 7. It is observed in Fig. 5 (a) that, when kh > 2.71,
the dissipation error of LWDG3 scheme will be smaller than that of RKDG3
scheme. This is contrary to the previous conclusion obtained from [46]. We
have provided numerical experiments in Example 6.2 to support this, al-
though we have specified a particular value of kh. From Fig. 7 (b), we can
see that when kh > 2.53, the group velocity error of the RKDG2 scheme
decreases, and when kh > 2.94, it becomes smaller than the group velocity

14



(a) RKDG2 (b) LWDG2

(c) RKDG3 (d) LWDG3

Fig. 3: The contour map of cN/c with respect to Nc and kh.

(a) RKDG2 (b) LWDG2

(c) RKDG3 (d) LWDG3

Fig. 4: The contour map of vgN/c with respect to Nc and kh.

error of the LWDG3 scheme. This phenomenon can be observed in Exam-
ple 6.3. It is worth noting that although these conclusions are drawn from
specific Nc, they are valid for the entire stability domain.
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(a) Nc = 0.16 (b) Nc = 0.1

Fig. 5: A comparison of dissipation error with respect to kh within the
stability region.

(a) Nc = 0.16 (b) Nc = 0.1

Fig. 6: A comparison of phase velocity error with respect to kh within the
stability region.

(a) Nc = 0.16 (b) Nc = 0.1

Fig. 7: A comparison of group velocity error with respect to kh within the
stability region.
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3.3 q wave

(a) RKDG2 (b) RKDG3

(c) LWDG2 (d) LWDG3

Fig. 8: q wave: vgN/c

4 ILW Methods for LWDG Schemes

In this section, we introduce the ILW method for LWDG, and the ILW
method for RKDG has been studied in the previous work [47]. Here, we
consider the following one-dimensional scalar conservation law:

ut + f(u)x = 0, x ∈ [a, b], t > 0,

u(x, 0) = u0(x), x ∈ [a, b],

u(a, t) = g(t), t > 0,

(31)

where f ′(u(a, t)) ≥ σ > 0 and f ′(u(b, t)) > 0 for all t > 0.
To introduce our methods, we assume that the physical boundary is al-

lowed to not coincide with grid points, that there are two cut cells, Ĩ0 =
[a, a+ δ1] and ĨN+1 = [b− δ2, b], between the physical domain and the com-
putational domain. Thus, our uniform grid subdivision is given as

a+ δ1 = x 1
2
< x 3

2
< · · · < xN+ 1

2
= b− δ2.

Here h = (b− a)/(N + δ1/h+ δ2/h) and δ1,2/h ∈ [0, 1) are predetermined.
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Fig. 9: Schematic diagram of unfitted mesh discretization.

When solving the problem (31), the DG method in applied on Ij, j =
1, · · · , N . In particular, when using the LWDG method (6), the numerical
fluxes F̂ 1

2
and F̂N+ 1

2
require special handling. Notice that the right boundary

x = b is an outflow boundary where no boundary condition is needed, thus
we can take F̂N+ 1

2
= F ((uh)

−
N+ 1

2

) straightforwardly.

The left boundary x = a is an inflow boundary. We will construct F̂ 1
2

using the ILW methods to ensure that the scheme is high-order, stable, and
consist with the given boundary condition. Moreover, we want the scheme
can employ the time step as the standard DG method with periodic boundary
conditions, that is, the ∆t is independent of δ1,2.

As we related in the introduction section. In [47], the ILW boundary
treatment method and its simplified version were developed for the RKDG
methods. Here, we will follow their ideas and develop the corresponding
boundary treatment for the fully discrete LWDG schemes. The slight diffi-
culty is that the RKDG methods have a semi-discrete scheme to use, and we
have to work directly on the fully discrete scheme.

4.1 (S)ILW Methods

In the original ILW boundary treatment method, we will construct a poly-
nomial p(x, t) of degree q on Ĩ0, such that it satisfies

∂(m)
x p(a, t) = ∂(m)

x u(a, t), m = 0, · · · , q, (32)

and then take F̂ 1
2
= F̂ (p(x 1

2
, t), (uh)

+
1
2

). In particular, we can obtain the

spatial derivatives of u at the boundary x = a via the ILW procedure, by
repeatedly using the PDE and boundary conditions to convert spatial deriva-
tives into temporal derivatives. For example, for q = 2, we have

u|x=a =g(t),

ux|x=a =− g′(t)

f ′(g(t))
,

uxx|x=a =
f ′(g(t))g′′(t)− 2f ′′(g(t))g′(t)2

f ′(g(t))3
.

(33)
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Denote the first q + 1 terms of the Taylor expansion of u at x = a as

Πq
a[u](x, t) =

q∑
m=0

(x− a)m

m!
∂(m)
x u(a, t).

Thus, we can take
p(x, t) = Πq

a[u](x, t). (34)

It is observed that the algebraic calculations of the higher-order spatial
derivatives in (33) are quite tedious. To simplify the algorithm, we can
replace restriction on the the high-order derivatives at boundary in (32) by
the integral average of lower-order derivatives of uh over neighbor cell I1.
Denote

ū1(t) =
1

h

∫
I1

uh(x, t) dx, (ūx)1(t) =
1

h

∫
I1

(uh)x(x, t) dx.

If only ū1(t) is used, we refer to it as the SILW1 method (q ≥ 1). That
is, p(x, t) satisfies{

∂
(m)
x p(a, t) = ∂

(m)
x u(a, t), m = 0, · · · , q − 1,

1
h

∫
I1
p(x, t) dx = ū1(t).

Then, we can get

p(x, t) = Πq−1
a [u(x, t)](x) +R(t)(x− a)q, (35)

where

R(t) =
hū1(t)−

∫
I1
Πq−1

a [u(x, t)](x) dx

((δ1 + h)q+1 − δq+1
1 )/(q + 1)

.

If ū1(t) and (ūx)1(t) are both used, we refer to it as the SILW2 method
(q ≥ 2). At this point, p(x, t) will satisfy

∂
(m)
x p(a, t) = ∂

(m)
x u(a, t), m = 0, · · · , q − 2,

1
h

∫
I1
p(x, t) dx = ū1(t),

1
h

∫
I1
px(x, t) dx = (ūx)1(t).

In this case, we have

p(x, t) = Πq−2
a [u(x, t)](x) +R(t)(x− a)q−1 + S(t)(x− a)q, (36)
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where C(q) =
(δ1+h)q−δq1

q
and[

R(t)
S(t)

]
=

1

qC(q)2 − (q − 1)C(q − 1)C(q + 1)[
qC(q) −C(q + 1)

−(q − 1)C(q − 1) C(q)

] [
hū1(t)−

∫
I1
Πq−2

a [u(x, t)](x) dx

h(ūx)1(t)− Πq−2
a [u(x, t)](x)|I1

]
.

By analogy, methods utilizing more integral averages can be developed.
However, it should be noted that excessive use of integral averages may lead
to instability. In such cases, the use of boundary information should be
increased.

Numerical experiments show that the schemes can always achieve the (q+
1)-th order accuracy. However, the error heavily depends on the parameter
δ1/h. To describe the dependency of δ1/h on the error more intuitively, we
have plotted in Fig. 10 with the suffix “no cv”. Here, we set N = 80 with
other settings consistent with Example 6.4. To overcome this disadvantage,
we propose a post-processing based on the local conservation in the following
subsection. From Tab. 2, Tab. 3 and Fig. 10, we can see that this post-
processing is highly effective.

4.2 Conservation Correction

In this subsection, we present the specific details for post-processing based
on the local conservation property. The LWDG scheme is a conservative
scheme, meaning for all 1 ≤ j ≤ N , it satisfies∫

Ij

uh(x, t+∆t)− uh(x, t)

∆t
dx = F̂j− 1

2
− F̂j+ 1

2
. (37)

This can be obtained by setting v = 1 in Eq. (6). However, for the pre-
constructed polynomial p(x, t) in Sec. 4.1, it generally does not satisfy local
conservation on Ĩ0. That is,∫

Ĩ0

p(x, t+∆t)− p(x, t)

∆t
dx ̸= F |x=a − F̂ 1

2
(38)

where F̂ 1
2
= F̂ (p(x 1

2
, t), (uh)

+
1
2

) and F |x=a =
∑q

s=0
∆ts

(s+1)!
ds

dts
f(g(t)).

In order to ensure p(x, t) satisfying the local conservation property, we
modify F̂ 1

2
to make the equality in (38) hold, specifically setting

F̂ c
1
2
= F |x=a −

∫
Ĩ0

p(x, t+∆t)− p(x, t)

∆t
dx. (39)
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For the ILW method, directly substituting (34) into (39) yields

F̂ c
1
2
= F |x=a −

q∑
m=0

δm+1
1

(m+ 1)!

∂
(m)
x u(a, t+∆t)− ∂

(m)
x u(a, t)

∆t
. (40)

For the SILW1 method and SILW2 method, the situation is slightly more
complex. The computational details are provided in the appendix A. Here,

we only list the final results. For the SILW1 method, let C̃(q) =
δq+1
1

(δ1+h)q+1−δq+1
1

,

then

F̂ c
1
2

=
1

1 + C̃(q)

(
F |x=a + C̃(q)F̂ 3

2

+

q−1∑
m=0

C̃(q)((δ1 + h)m+1 − δm+1
1 )− δm+1

1

(m+ 1)!

∂
(m)
x u(a, t+∆t)− ∂

(m)
x u(a, t)

∆t

)
.

(41)

For the SILW2 method, let[
C1(q) C2(q)

]
=

1

qC(q)2 − (q − 1)C(q − 1)C(q + 1)[
δq1
q

δq+1
1

q+1

] [ qC(q) −C(q + 1)
−(q − 1)C(q − 1) C(q)

]
.

Then for q = 2,

F̂ c
1
2

=
1

1 + C1(2)− 6C2(2)
h

(
F |x=a + (C1(2) +

6C2(2)

h
)F̂ 3

2
− 6C2(2)

h

∫ 1

−1
F (uh)φ

′
1(ξ) dξ

+(C1(2)h− δ1)
u(a, t+∆t)− u(a, t)

∆t

)
, (42)

and for q = 3, 4,

F̂ c
1
2

=
1

1 + C1(q)− 20C2(q)
h

(
F |x=a + (C1(q) +

20C2(q)

h
)F̂ 3

2

−C2(q)

h

(
6

∫ 1

−1
F (uh)φ

′
1(ξ) dξ + 14

∫ 1

−1
F (uh)φ

′
3(ξ) dξ

)
+

q−2∑
m=0

C1(q)((δ1 + h)m+1 − δm+1
1 ) + C2(q)((δ1 + h)m − δm1 )(m+ 1)− δm+1

1

(m+ 1)!

∂
(m)
x u(a, t+∆t)− ∂

(m)
x u(a, t)

∆t

)
. (43)
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(a) LWDG2, Nc = 0.333 (b) LWDG3, Nc = 0.170

Fig. 10: L2 error for δ1/h ∈ [0, 1)

4.3 Stability Analysis

We use the eigenvalue spectrum visualization to study the linear stability of
the schemes. As before, we take f(u) = cu (with c > 0) and g(t) = 0 in (31),
and use the upwind flux. Therefore, we can continue using the notations
from Sec. 3.1.2.

For j ≥ 2, we have

uj,n+1
l = uj,n

l +Nc · (2l + 1)

q∑
m=0

(
(blm − bm)u

j,n
m + (−1)lbmu

j−1,n
m

)
. (44)

On the cell I1, the flux F̂ 1
2
is related to the boundary treatment method.

Therefore, for j = 1, we obtain

uj,n+1
l = uj,n

l +Nc · (2l + 1)

q∑
m=0

(
(blm − bm + (−1)lb̂m)u

j,n
m

)
, (45)

where,

b̂m =


0, for ILW,

bm(1− 1

1+
δ1
h

)q+1, for SILW1,

1

1+C1(2)− 6C2(2)
h

(
C1(2)− 6C2(2)

h
(b1m − bm)

)
, for SILW2.

(46)
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Let uj,n = [uj,n
0 , · · · , uj,n

q ]T , and un = [u1,n, · · · ,uN,n]T . Denote

(D1)lm = (2l + 1)(blm − bm), (D2)lm = (2l + 1)(−1)lbm

(D̂2)lm = (2l + 1)(−1)lb̂m.

Then, (44) and (45) can be rewritten in matrix-vector form,

uj,n+1 = (I +NcD1)u
j,n +NcD2u

j−1,n, j ≥ 2

u1,n+1 = (I +Nc(D1 + D̂2))u
1,n.

(47)

Thus, we can obtain un+1 = Ĝun, where

Ĝ =


I +Nc(D1 + D̂2)

NcD2 I +NcD1

. . .
. . .
. . .

. . .

NcD2 I +NcD1

 .

The eigenvalues of Ĝ are composed of the eigenvalues of I+Nc(D1+D̂2)
and I + NcD1, and the latter are independent of δ1/h. Therefore, we only
concern on the spectral radius ρ(I +Nc(D1 + D̂2)) ≤ 1 for all δ1/h ∈ [0, 1),
see Fig. 11. For all δ1/h ∈ [0, 1), the spectral radius ρ(Ĝ) does not exceed 1,
so the scheme is stable.

(a) LWDG2, Nc = 0.333 (b) LWDG3, Nc = 0.170

Fig. 11: Linear stability of the LWDG schemes combined with the ILW
boundary treatment method.
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5 Boundary Analysis by GSA

In this section, we analyze the impact of the boundary treatment methods
presented in Sec. 4 on the dispersion-dissipation properties of the scheme,
using the methods introduced in Sec. 3. To simplify the analysis, let the
boundary value g(t) = 0. This requires the initial value u0(x) to have a
compact support on the interval [a, b]. In summary, we will analyze the
following IBVP, 

ut + cux = 0, c > 0, x ∈ [a, b], t > 0,

u(x, 0) = u0(x), x ∈ [a, b],

u(a, t) = 0, t > 0.

(48)

We use the RKDG3 method and the LWDG3 method to solve this prob-
lem, with the boundary treatment methods SILW1 and SILW2. We still
assume that the solution in the form of (13), but due to the influence of the
boundary treatment, the value of Un on each cell will be different. Thus, we
assume

un
h(x)|Ij =

∫
R
U j,n ·φjû0(k)e

ikxj dk. (49)

5.1 LWDG Schemes

We first discuss the LWDG3 method. Let (B1)lm = (2l + 1)(blm − bm) and
(B2)lm = (2l + 1)(−1)lbme

−ikh (blm and bm are given in Sec. 3.1). For any
j ≥ 2, we have

U j,n+1 = G1U
j,n +G2U

j−1,n (50)

where G1 = I +NcB1 and G2 = NcB2.
For the homogenous boundary condition u(a, t) = 0, the numerical flux

F̂ 1
2
obtained by the SILW1 method with conservative correction is

F̂ c
1
2
= (1− 1

1 + δ1
h

)3F̂ 3
2
,

while that obtained by the SILW2 method is

F̂ c
1
2

=
1

1 + C̃1 + C̃2

(
(C̃1 − C̃2)F̂ 3

2
+ C̃2

∫ 1

−1
F (uh)φ

′
1(ξ) dξ

)
,

where [
C̃1 C̃2

]
=

( δ1
h
)2

( δ1
h
)2 + δ1

h
+ 1

6

[
2
3
δ1
h
+ 1

2
( δ1
h
+ 1)2

]
.
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Let Ĝ2 = NcB̂2 and G̃ = G1 + Ĝ2, with

(B̂2)lm =

(2l + 1)(−1)lbm(1− 1

1+
δ1
h

)3, for SILW1,

(2l+1)(−1)l

1+C̃1+C̃2

(
C̃1 + C̃2(b1m − bm)

)
, for SILW2.

Then we get
U 1,n+1 = G̃U 1,n. (51)

Since U j,0 = U 0, ∀j ≥ 1, the recurrence relations (50) and (51) lead to

U1,n =G̃nU0,

U j,n =

j−2∑
l=0

(
n
l

)
Gn−l

1 Gl
2 +Gj−1

2

n−(j−1)∑
l=0

(
l + j − 2
j − 2

)
Gl

1G̃
n−(j−1)−l

U0, ∀j ≥ 2,

(52)

where

(
n
l

)
is the binomial coefficient.

5.2 RKDG Schemes

A similar discussion can be applied to the RKDG3 scheme as well. Specifi-

cally, let (A1)lm = (2l+1)
(∫ 1

−1
φmφ

′
l dξ − 1

)
and (A2)lm = (2l+1)(−1)le−ikh.

Furthermore, define G1 = I +NcA1 and G2 = NcA2. Then, for any j ≥ 2,
we can obtain that

U j,(1) = G1U
j,n +G2U

j−1,n,

U j,(2) =
3

4
U j,n +

1

4

(
G1U

j,(1) +G2U
j−1,(1)

)
,

U j,n+1 =
1

3
U j,n +

2

3

(
G1U

j,(2) +G2U
j−1,(2)

)
.

(53)

Especially, it can be obtained that, for all j ≥ 4,

U j,n+1 =(
1

3
I +

1

2
G1 +

1

6
G3

1)U
j,n + (

1

2
G2

1G2 +
1

2
G2)U

j−1,n

+
1

2
G1G

2
2U

j−2,n +
1

6
G3

2U
j−3,n. (54)

We also can derive U 2,n and U 3,n from (53), but U 1,n needs to be computed
first.

For the RKDG scheme, the numerical flux f̂ c
1
2

obtained by the SILW1

method is

f̂ c
1
2
= (1− 1

1 + δ1
h

)3f̂ 3
2
,

25



while that obtained by the SILW2 method is

f̂ c
1
2

=
1

1 + C̃1 + C̃2

(
(C̃1 − C̃2)f̂ 3

2
+ C̃2

∫ 1

−1
f(uh)φ

′
1(ξ) dξ

)
.

Hence, let Ĝ2 = NcÂ2, we can get

U 1,n+1 = (
1

3
I +

1

2
(G1 + Ĝ2) +

1

6
(G1 + Ĝ2)

3)U 1,n. (55)

where

(Â2)lm =

(2l + 1)(−1)l(1− 1

1+
δ1
h

)3, for SILW1

(2l+1)(−1)l

1+C̃1+C̃2

(
C̃1 + C̃2(

∫ 1

−1
φmφ

′
1 dξ − 1)

)
, for SILW2.

To continue our discussion, we introduce the following notations,

G00 =
1
3
I + 1

2
G1 +

1
6
G3

1

G10 =
1
2
(I +G2

1)G2 G01 =
1
2
(I +G2

1)Ĝ2

G20 =
1
2
G1G

2
2 G11 =

1
2
G1G2Ĝ2 G02 =

1
2
G1Ĝ

2
2

G30 =
1
6
G3

2 G21 =
1
6
G2

2Ĝ2 G12 =
1
6
G2Ĝ

2
2 G03 =

1
6
Ĝ3

2

and

G̃1 = G00 +G01 +G02 +G03, G̃2 = G10 +G11 +G12, G̃3 = G20 +G21

then we have

U j,n+1 =G00U
j,n +G10U

j−1,n +G20U
j−2,n +G30U

j−3,n, j ≥ 4,

U 3,n+1 =G00U
3,n +G10U

2,n + G̃3U
1,n,

U 2,n+1 =G00U
2,n + G̃2U

1,n,

U 1,n+1 =G̃1U
1,n.

(56)

Since U j,0 = U 0, ∀j ≥ 1, the recurrence relations (56) lead to

U1,n =G̃n
1U

0,

U2,n =

(
Gn

00 + G̃2

n−1∑
l=0

Gl
00G̃

n−1−l
1

)
U0, (57)

U3,n =

(
Gn

00 +Gn−1
00 (nG10 + G̃3) +

n−2∑
l=0

(
(l + 1)G10G̃2 + G̃1G̃3

)
Gl

00G̃
n−2−l
1

)
U0.

Through mathematical induction, the general formula for U j,n for any j ≥ 1
can be obtained.
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5.3 GSA Analysis

At this point, for both the LWDG3 scheme and the RKDG3 scheme, we have
obtained U j,n = Gj,nU 0, with Gj,n given by (52) and (57) respectively .

Let the eigenvalues and corresponding eigenvectors of Gj,n (j ≥ 2) be
{(λ̃l, r̃l), l = 0, 1, · · · , q}. Again define Λ̃ = diag(λ̃0, · · · , λ̃q) and R̃ =
[r̃0, · · · , r̃q], then Gj,n = R̃Λ̃R̃−1. With reference to the derivation pro-
cess of the eigen-solution in Sec. 3.1, setting µ̃ = R̃−1U 0 = [µ̃0, · · · , µ̃q]

T

and U j,n
l = λ̃lr̃l, we can get

U j,n = Gj,nU 0 =

q∑
l=0

µ̃lU
j,n
l . (58)

It should be noted that, since we have not solved the eigenvalue problem in
the strict sense, the eigen-solution defined here is only analogical.

As before, let the 0-th eigen-solution be the physical mode, which should
satisfy |λ̃0| ∼ 1 as kh → 0. By{

λ̃0 = |λ̃0|e−iϕ̃

λ̃0 = e−iω̃N tn = en·ω̃Ni∆te−in·ω̃Nr∆t

we can obtain
ϕ̃ = n · ω̃Nr∆t. (59)

Define ω̃Nr = kc̃N . Thus, the phase velocity is c̃N = ω̃Nr

k
, and group velocity

is ṽgN = dω̃Nr

dk
. So we have

c̃N
c

=
ϕ̃

nNc · kh
,

ṽgN
c

=
1

nNc

dϕ̃

dkh

Next, we will compare the phase velocity and group velocity within the
internal cells applying different boundary treatments, which involves different
cells and different time instances.

We first present here the results for the second element (j = 2 and n =
5), wherein for the RKDG3 scheme, Nc is taken as 0.075, and for LWDG3
scheme, Nc = 0.085. From Fig .12 and Fig .13, it can be seen that the RKDG3
scheme is less affected by δ1/h, especially in the region where kh > 1.55. On
the other hand, the LWDG3 scheme is consistently more affected by δ1/h,
and in the case where the SILW1 boundary treatment method is used, the
effect significantly decreases in the region where kh > 1.85. Using SILW2
method is always more influenced by δ1/h than using SILW1 method.
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(a) RKDG3-SILW1 (b) LWDG3-SILW1

(c) RKDG3-SILW2 (d) LWDG3-SILW2

Fig. 12: The contour map of cN/c in the second element with respect to
δ1/h and kh.

(a) RKDG3-SILW1 (b) LWDG3-SILW1

(c) RKDG3-SILW2 (d) LWDG3-SILW2

Fig. 13: The contour map of vgN/c in the second element with respect to
δ1/h and kh.

To more clearly compare the impact of boundary treatment methods on
dispersion error, we have plotted the trends of phase velocity error in Fig. 14
and group velocity error in Fig. 15 with respect to kh for several cells near
the boundary, and compared these with the results under periodic boundary
conditions. Here we set δ1/h = 0.5, for RKDG3 we take Nc = 0.02, and for
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LWDG3 we take Nc = 0.016. In Fig. 14, we can observe that the LWDG3
scheme approaches the phase velocity under periodic boundary conditions
faster than the RKDG3 scheme. The same applies to Fig. 15. We speculate
that this is determined by the width of the stencil. The LWDG3 scheme has
a narrower computational stencil.

(a) RKDG3-SILW1 (b) LWDG3-SILW1

(c) RKDG3-SILW2 (d) LWDG3-SILW2

Fig. 14: Compare the phase velocity errors of the elements near the bound-
ary with those under periodic boundary conditions.
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(a) RKDG3-SILW1 (b) LWDG3-SILW1

(c) RKDG3-SILW2 (d) LWDG3-SILW2

Fig. 15: Compare the group velocity errors of the elements near the bound-
ary with those under periodic boundary conditions.

Next, we fix j = 2, that is, select the second element, to investigate the
variation of dispersion error over time layers. Here we set δ1/h = 0.5, for
RKDG3 we take Nc = 0.02, and for LWDG3 we take Nc = 0.015. As can
be seen from Fig. 16, initially, the dispersion error of the RKDG3 scheme
is greater than that of the LWDG3 scheme. However, as time evolves, the
dispersion error of the RKDG3 scheme becomes significantly smaller than
that of the LWDG3 scheme, and this phenomenon will recur.
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(a) cN/c− 1 (b) vgN/c− 1

Fig. 16: The trend of dispersion error (here represented by L2 error) over
time.

6 Numerical Experiments

In the following numerical experiments, we will use different initial conditions
and boundary conditions for the equation ut + ux = 0 to verify the results of
our previous analysis.

6.1 Periodic boundary conditions

Example 6.1 In this example, we use the test case from [36] to compare the
numerical dissipation and numerical dispersion between the LWDG scheme
and the RKDG scheme. we have{

ut + ux = 0, −75 < x < 75, t > 0,

u(x, 0) = (2 + cos 1.7x)e− ln 2 (x/10)2 ,
(60)

with periodic boundary condition. We divided the computational domain
into 300 equal cells, and setNc = 0.15. To better demonstrate the differences,
we extended the computation time: the second-order scheme’s results show
the solution after one period, while the third-order scheme was computed for
five periods. The results are shown in the Fig. 17. It is observed that the
numerical results are in complete agreement with the analytical results from
Fig. 2 – 7,

• Higher-order schemes have smaller dispersion and dissipation errors.
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• The RKDG2 scheme has larger dissipative errors than the LWDG2
scheme, but its dispersive errors are smaller.

• The RKDG3 scheme has smaller dispersive and dissipative errors com-
pared to the LWDG3 scheme.

(a) q = 1, t = 150

(b) q = 2, t = 750 (c) Zoomed-in section of (b)

Fig. 17: Example 6.1: A comparison between the RKDG scheme and the
LWDG scheme under periodic boundary conditions.

Example 6.2 In Fig. 5(a), we have obtained that when kh > 2.71, the
dissipation error of LWDG3 scheme will be smaller than that of RKDG3
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scheme. The following example serves to verify this point. We consider a
high-frequency wave test,{

ut + ux = 0, −π < x < π, t > 0,

u(x, 0) = cos 20x,
(61)

with periodic boundary condition. In the numerical tests, we take Nc = 0.16.
In Fig. 18, we show the results of two grids with different sizes. Fig. 18(a)

corresponds to kh ≈ 1.26. We can see that the dissipation error of LWDG3
scheme is larger than that of RKDG3 scheme. In fact, from Fig. 2, we have
|λ0| = 0.9999 for RKDG3 scheme and |λ0| = 0.9995 for LWDG3 scheme, so
this result is natural.

We use a coarser grid in Fig. 18(b), which makes kh ≈ 2.99. Because
the grid is particularly sparse, it is not always possible to get the extreme
point, we can see that the amplitude of the numerical solution is changing.
Moreover, when kh ≈ 2.99, from Fig. 7 (a), we observe that the LWDG3
scheme yields vgN/c = 1.1478, while the RKDG3 scheme gives vgN/c = 1.068.
This indicates that the LWDG3 scheme exhibits larger dispersion errors,
which is also clearly visible in the figure. Moreover, the amplitude magnitude
indicates that the LWDG3 scheme exhibits smaller dissipation errors at this
stage. This observation is consistent with the results shown in Fig. 2, where
|λ0| = 0.9898 for the LWDG3 scheme and |λ0| = 0.9878 for the RKDG3
scheme.

Example 6.3 We have shown that the group velocity error of the RKDG2
scheme is a little smaller than that of the LWDG3 scheme when kh > 2.94
in Fig. 7(b), although its dissipation error is considerably worse. This phe-
nomenon can be observed in the following meticulously designed example,{

ut + ux = 0, −60 < x < 60, t > 0,

u(x, 0) = e−0.01x2
cos 20x,

(62)

with periodic boundary condition. In our computations, we set Nc = 0.1 and
N = 800. The end time is set at t = 5.

As can be seen from Fig. 19, the group velocity error of RKDG2 scheme
is comparable to that of the LWDG3 scheme starting with the wave packet
on the left. Furthermore, the relative size of the group velocity error at
kh ≈ 3.00 can be judged according to the wave packets in the blue boxes:
RKDG2 < LWDG3 < LWDG2, which is consistent with the conclusion in
Fig. 7(b).
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(a) N = 100, t = 5. (b) N = 42, t = 1.

Fig. 18: Example 6.2: Compare the dissipative errors between LWDG3
scheme and RKDG3 scheme for different kh. The grid used for the exact
solution satisfies N = 1000.

Fig. 19: Example 6.3: Compare the group velocities of RKDG2, LWDG2
and LWDG3 at kh ≈ 3.00. The relative group velocities of RKDG2, LWDG3
and LWDG2 are 1.1031, 1.1220, 1.3293 in Fig. 7(b), respectively.
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6.2 Non-periodic boundary conditions

Example 6.4 Similar to [47], it is necessary to conduct an accuracy test
on the boundary treatment method corresponding to the LWDG scheme
developed in Sec. 4. Specifically, we employ the following example,

ut + ux = 0, 0 < x < 2π, t > 0,

u(x, 0) = − sinx,

u(0, t) = sin t.

(63)

This example has the exact solution u(x, t) = sin(t − x). To test the effec-
tiveness of the algorithm, we intentionally misalign the computational grid
with the physical boundary in our calculations. For the LWDG2 scheme, we
take Nc = 0.333, and for the LWDG3 scheme, we take Nc = 0.170. Tab. 2
- 3 show that the schemes can always achieve the (q + 1)-th order accuracy.
Moreover, the errors of the scheme satisfying local conservation do not vary
with δ1/h significantly, as show in Fig. 10.

Tab. 2: Example 6.4: L2 errors and orders of accuracy for advection equation
with LWDG2 at t = 3.

ILW SILW1
δ1/h N error order error order

0.01

20 9.06E-03 — 9.06E-03 —
40 2.45E-03 1.88 2.45E-03 1.88
80 6.35E-04 1.95 6.35E-04 1.95
160 1.62E-04 1.97 1.62E-04 1.97
320 4.09E-05 1.99 4.09E-05 1.99
640 1.03E-05 1.99 1.03E-05 1.99

0.99

20 8.67E-03 — 1.35E-02 —
40 2.34E-03 1.89 2.97E-03 2.18
80 6.16E-04 1.92 6.93E-04 2.10
160 1.59E-04 1.95 1.69E-04 2.04
320 4.05E-05 1.98 4.17E-05 2.02
640 1.02E-05 1.99 1.04E-05 2.01

Example 6.5 In this example, we will employ the LWDG3 scheme to solve
the Burgers’ equation,

ut + (u
2

2
)x = 0, −π < x < π, t > 0,

u(x, 0) = 1 + 2 sinx,

u(−π, t) = g(t)

(64)
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Tab. 3: Example 6.4: L2 errors and orders of accuracy for advection equation
with LWDG3 at t = 3.

ILW SILW1 SILW2
δ1/h N error order error order error order

0.01

20 1.65E-04 — 1.65E-04 — 1.65E-04 —
40 2.22E-05 2.90 2.22E-05 2.90 2.22E-05 2.90
80 2.89E-06 2.94 2.89E-06 2.94 2.89E-06 2.94
160 3.68E-07 2.97 3.68E-07 2.97 3.68E-07 2.97
320 4.65E-08 2.98 4.65E-08 2.98 4.65E-08 2.98
640 5.84E-09 2.99 5.84E-09 2.99 5.84E-09 2.99

0.99

20 4.88E-04 — 4.24E-04 — 6.48E-04 —
40 4.12E-05 3.57 3.16E-05 3.75 5.23E-05 3.63
80 3.91E-06 3.40 2.91E-06 3.44 4.55E-06 3.52
160 4.22E-07 3.21 3.45E-07 3.07 4.56E-07 3.32
320 4.95E-08 3.09 4.43E-08 2.96 5.12E-08 3.15
640 6.01E-09 3.04 5.68E-09 2.96 6.11E-09 3.07

Here, g(t) is given as the exact solution with periodic boundary conditions
at x = −π. For all time, the left boundary x = −π is an inflow boundary
and the right boundary x = π is an outflow boundary. In the computation,
we take the CFL number Nc = 0.12.

Tab. 4: Example 6.5: L2 errors and orders of accuracy for the Burgers’
equation with LWDG3 at t = 0.3.

ILW SILW1 SILW2
δ1/h N error order error order error order

0.01

40 4.15E-04 — 4.15E-04 — 4.15E-04 —
80 7.42E-05 2.48 7.42E-05 2.48 7.42E-05 2.48
160 1.22E-05 2.60 1.22E-05 2.60 1.22E-05 2.60
320 1.87E-06 2.71 1.87E-06 2.71 1.87E-06 2.71
640 2.70E-07 2.79 2.70E-07 2.79 2.70E-07 2.79
1280 3.73E-08 2.86 3.73E-08 2.86 3.73E-08 2.86

0.99

40 1.97E-03 — 1.59E-03 — 1.37E-03 4.21
80 1.39E-04 3.83 1.35E-04 3.56 1.25E-04 3.45
160 1.42E-05 3.29 1.43E-05 3.24 1.50E-05 3.05
320 1.92E-06 2.88 1.93E-06 2.89 1.97E-06 2.93
640 2.71E-07 2.83 2.71E-07 2.83 2.73E-07 2.85
1280 3.73E-08 2.86 3.73E-08 2.86 3.74E-08 2.87
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It’s known that the exact solution will develop a discontinuity for t > 0.5,
while the solution remains smooth before that time. We utilized the solutions
at t = 0.3 to test the L2 errors and orders of the scheme. As can be seen
in Tab. 4, the scheme achieves the expected order accuracy, and the error is
not affected by δ1/h.

A shock enters the left boundary at t = 2π and moves to x = 0 at t = 3π.
Internally, we employ the TVB limiter [10] to prevent numerical oscillations,
while on the boundary element I1, we use the nonlinear limiter from [47] to
ensure the stability of the scheme. The Fig. 20 demonstrates the scheme’s
capability to capture shock.

(a) ILW (b) SILW1 (c) SILW2

(d) ILW (e) SILW1 (f) SILW2

Fig. 20: Example 6.5: Numerical solutions for Burgers’ equation with
LWDG3 at t = 3π. Top: δ1/h = 0.01; bottom: δ1/h = 0.99.

Example 6.6 Next, we consider the linearized one-dimensional Euler equa-
tions on a uniform mean flow:

ρt +Mρx + ux = 0,

ut +Mux + px = 0,

pt +Mpx + ux = 0.

(65)
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where M is constant mean flow Mach number. The exact solution of this
system of equations satisfies:

ρ(x, t) = ρ(x−Mt, 0) +
(
p(x, t)− p(x−Mt, 0)

)
,

u(x, t) = u(x− (M − 1)t, 0) +
(
p(x, t)− p(x− (M − 1)t, 0)

)
,

p(x, t) =
1

2

(
u(x− (M + 1)t, 0)− u(x− (M − 1)t, 0)

)
+

1

2

(
p(x− (M + 1)t, 0) + p(x− (M − 1)t, 0)

)
.

The eigenvalues of coefficient matrix of system (65) are M−1, M, M+1.
Here we take M = 1.5, in which case all characteristic components are inflow
at the left boundary and outflow at the right boundary. The proposed (S)ILW
boundary treatment for scalar problems will be applied on each component
directly. We take the following initial values for the accuracy test,

u(x, 0) = 0, ρ(x, 0) = p(x, 0) = e−x2

, x ∈ [0, 10].

In the computation, the three boundary conditions at x = 0 are provided
by the exact solution, and Nc = 0.170 is used. Tab. 5 presents the L2 error
of the density ρ at t = 3, and the results are consistent with expectations.

Tab. 5: Example 6.6: L2 errors and orders of accuracy for ρ in the linearized
Euler equations with LWDG3 at t = 3.

ILW SILW1 SILW2
δ1/h N error order error order error order

0.01

40 7.30E-04 — 7.30E-04 — 7.30E-04 —
80 9.35E-05 2.97 9.35E-05 2.97 9.35E-05 2.97
160 1.19E-05 2.98 1.19E-05 2.98 1.19E-05 2.98
320 1.50E-06 2.99 1.50E-06 2.99 1.50E-06 2.99
640 1.88E-07 2.99 1.88E-07 2.99 1.88E-07 2.99

0.99

40 1.31E-03 — 7.75E-04 — 1.74E-03 —
80 1.30E-04 3.33 7.58E-05 3.35 1.55E-04 3.49
160 1.40E-05 3.22 1.02E-05 2.89 1.52E-05 3.34
320 1.62E-06 3.11 1.38E-06 2.89 1.68E-06 3.18
640 1.95E-07 3.05 1.80E-07 2.94 1.99E-07 3.08

Example 6.7 Finally, we consider the following advection equation:
ut + ux = 0, 0 < x < 500, t > 0,

u(x, 0) = (2 + cos 2x)e−0.01x2
,

u(0, t) = (2 + cos 2t)e−0.01t2 .

(66)
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The computational interval is divided into 1000 equal parts, with the com-
putation terminated at time t = 100, and Nc is taken as 0.15. We can
observe from Fig. 21 that, using the same internal numerical scheme, differ-
ent boundary treatments have little impact on the dispersion properties of
the scheme when δ1/h = 0.01, but for δ1/h = 0.99, the effect is obvious. This
is consistent with the conclusions we obtained from Fig. 12 and Fig. 13.

(a) δ1/h = 0.01 (b) Zoomed-in section of (a)

(c) δ1/h = 0.99 (d) Zoomed-in section of (c)

Fig. 21: Example 6.7: Compare the performance of different boundary
treatment methods with varying δ1/h.
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7 Conclusion

In this paper, we analyze the dispersion and dissipation properties of two fully
discrete DG methods by employing the GSA method. Firstly, we derived the
midpoint error propagation equation for the general form of DG solution
(initial value is not a Fourier single wave), and found that the influencing
factors of DG error propagation include |λ0|, cN/c and vgN . For the second-
order and third-order RKDG and LWDG, we drew the graphs and discussed
those properties respectively. Next, when the calculation area is inconsistent
with the grid, we designed a simplified ILW method for the LWDG method
and improved the accuracy of the scheme through conservation correction.
Finally, we analyzed the dispersion error at the boundary via GSA method
as well. A number of numerical examples verify our theoretical results.

In the future, we can consider optimizing the algorithm based on the re-
search methods in this paper, such as using the DG method based on upwind-
biased fluxes [21], using the new SILW method with adjustable parameters
at the boundary [20], or using a higher resolution time discretization scheme.

A Construction of Numerical Flux F̂ c
1/2

For the SILW1 method, substituting (35) into (39) we have

F̂ c
1
2

= F |x=a − C̃(q)h
ū1(t+∆t)− ū1(t)

∆t

+

q−1∑
m=0

C̃(q)((δ1 + h)m+1 − δm+1
1 )− δm+1

1

(m+ 1)!

∂
(m)
x u(a, t+∆t)− ∂

(m)
x u(a, t)

∆t
. (67)

Here, ū1(t+∆t)−ū1(t)
∆t

is unknown, but we can immediately obtain it using
Eq. (37), we get

ū1(t+∆t)− ū1(t)

∆t
=

1

h
(F̂ c

1
2
− F̂ 3

2
). (68)

Solve the equations by combining (67) and (68), we can obtain (41).

For the SILW2 method, substituting (36) into (39) we have

F̂ c
1
2

=F |x=a − C1(q)h
ū1(t+∆t)− ū1(t)

∆t
− C2(q)h

(ūx)1(t+∆t)− (ūx)1(t)

∆t

+

q−2∑
m=0

C1(q)((δ1 + h)m+1 − δm+1
1 ) + C2(q)((δ1 + h)m − δm1 )(m+ 1)− δm+1

1

(m+ 1)!
·

∂
(m)
x u(a, t+∆t)− ∂

(m)
x u(a, t)

∆t
. (69)
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The ū1(t+∆t)−ū1(t)
∆t

can be given by (68), but the expression for the (ūx)1(t+∆t)−(ūx)1(t)
∆t

depends on the polynomial degree q (q ≥ 2). For example, for q = 4 and
uh(x, t)|I1 =

∑4
l=0 u

1
l (t)φ

1
l (x), we have

(ūx)1(t) =
2

h
(u1

1(t) + u1
3(t)).

By setting j = 1, v = φ1
1(x) and v = φ1

3(x) in (6), we can obtain

u1
1(t+∆t)− u1

1(t)

∆t
=
3

h

(∫ 1

−1

F (uh)φ
′
1(ξ) dξ − F̂ 3

2
− F̂ c

1
2

)
,

u1
3(t+∆t)− u1

3(t)

∆t
=
7

h

(∫ 1

−1

F (uh)φ
′
3(ξ) dξ − F̂ 3

2
− F̂ c

1
2

)
.

So we can get

(ūx)1(t+∆t)− (ūx)1(t)

∆t
=


6
h2

(∫ 1
−1 F (uh)φ

′
1(ξ) dξ − (F̂ c

1
2

+ F̂ 3
2
)
)
, q = 2

6
h2

∫ 1
−1 F (uh)φ

′
1(ξ) dξ +

14
h2

∫ 1
−1 F (uh)φ

′
3(ξ) dξ

− 20
h2 (F̂

c
1
2

+ F̂ 3
2
), q = 3, 4.

(70)

Substituting (68) and (70) into (69) to solve the equation, we can obtain
(42) and (43).
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