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Abstract: In this paper, we construct a new type of simplified inverse Lax-Wendroff

procedure (SILW) of high order central finite difference schemes for the diffusion equation

with initial-boundary value conditions by improving the method in [15]. Comparing with

the work in [15], an extra auxiliary parameter is added, providing a more general and

flexible method. Stability analysis is also performed for the new type of SILW method.

The third order total variation diminishing (TVD) Runge-Kutta method is taken as our

time-stepping method in the fully-discrete case. The Godunov-Ryabenkii theory and the

eigenvalue spectrum visualization method are adopted to investigate stability for both

semi-discrete and fully-discrete cases, a detailed analysis reveals that this two techniques

yield similar results. Theoretically, the new proposed SILW method has an improvement

in stability, especially for higher order schemes. Numerical tests are provided to validate

the stability analysis results.
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1 Introduction

There exists many methods in the field of numerical solutions of partial differential

equations (PDEs), such as, finite difference method, finite element method, spectral

method, collocation method, etc. Of the many difference approaches to solving PDEs

numerically, the finite difference method has the advantages of simplicity, directness and

high computational efficiency, which is widely used in engineering applications. The high

order central difference scheme can achieve high order accuracy with smaller stencil, but

it still cannot be utilized near the boundary points directly for initial-boundary value

problems (IBVPs), thus we need to construct proper numerical boundary conditions. As

stated in [28], there are two issues should be addressed appropriately in the construction
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of numerical boundary conditions for finite difference methods. Firstly, the evaluation

of the ghost point values located outside the computational domain which are used by

the interior schemes. Secondly, if the grid points do not coincide with the physical

boundary exactly, especially when a Cartesian mesh is used to solve problems on a

complex geometry or moving boundary problems, then the so-called “cut-cell” problem

arises, which leads to a restricted time step for the sake of stability [2]. The body-fitted

meshes [1, 8] method could accurately satisfy boundary conditions at the boundary, but

in the case of moving boundary domain, it will result in heavy calculations to get the

meshes on each time step. With a non-boundary fitted mesh which is simple and has

low complexity, there are many carefully designed methods for the numerical boundary

treatments for IBVPs, such as the embedded boundary method [10, 23], the inverse Lax-

Wendroff method (ILW) [28] and the simplified inverse Lax-Wendroff method (SILW)

[4, 11, 12, 13, 14, 17, 18, 29, 30, 32] and so on. The SILW method uses Taylor expansion

at the boundary point to get the approximation values on the ghost points. Derivatives at

the boundary points are obtained by the ILW procedure or the interpolation polynomial

based on the interior point values, see [12, 13, 14] for details. Thus, the boundary

treatment is appropriate for finite difference methods on Cartesian meshes. Moreover,

the SILW method has the following advantages: one is the numerical boundary conditions

can achieve arbitrary high order accuracy to further maintain the high accuracy globally,

and the other one is, it can avoid the cut-cell problem and keep stability under the

maximum CFL condition of the scheme for the corresponding Cauchy problem, i.e.,

the boundary treatment does not effect the stability of the interior schemes. However,

for higher order schemes, more terms with the ILW procedure are required, leading to

complicated calculation. In [16], the author developed a new type of SILW method

for hyperbolic equations, the new type of SILW method substitutes “interpolation” and

“extrapolation” for Taylor expansion to get the values of ghost points, and theoretical

analysis indicates that comparing with the original SILW method, especially for higher

order accuracy, the new proposed one would require fewer terms using the relatively

complicated ILW procedure and thus improve computational efficiency on the premise

of maintaining accuracy and stability. In [15], the new type of SILW method is extended

to solve parabolic and convection-diffusion equations with fourth order central difference

method. In this paper, we will propose a new type of SILW method by improving the

method in [15] and focus on the stability for high order central finite difference schemes

when solving diffusion problems.

General stability analysis for IBVPs on a bounded domain can be performed by the

normal mode analysis, which is based on the Laplace transform. This method was firstly

2



presented by Godunov and Ryabenkii [5] and then developed by Kreiss [9] and Osher

[19]. The original Godunov-Ryabenkii theory only provided a necessary condition for

stability. In [7], Gustafsson, Kreiss and Sundström proposed the GKS theory, which is

a necessary and sufficient condition for stability for linear, first order hyperbolic sys-

tems in one space dimension. Some other related work can be found in [21, 24, 25].

Stability analysis for parabolic problems was formulated in [20, 26, 31]. And stability

analysis for semi-discrete case was studied in [27]. Theoretically, the Godunov-Ryabenkii

method leads to necessary conditions for stability, but in a vast number of cases they

also appear to be sufficient conditions [26]. The drawback of the Godunov-Ryabenkii

method is that it will lead to high algebraic complexity for high order schemes. In

[32], the eigenvalue spectrum visualization method was proposed to analyze stability by

visualizing the eigenvalues spectrum of the discretization operators and they obtained

consistent stability conclusions with the Godunov-Ryabenkii analysis. In our previous

work [11, 12, 13, 14], both the the Godunov-Ryabenkii method and eigenvalue analy-

sis were used to analyze stability for hyperbolic and parabolic equations and the two

methods produced consistent stability conclusions.

In this paper, we are interested in constructing high order difference schemes for

parabolic equations with Dirichlet or Neumann boundary conditions. The high order

central difference is taken as our interior scheme, and a new type of SILW method is

performed near the boundaries. Following the idea in [15], the new one also utilizes “in-

terpolation” and “extrapolation” to get the values of ghost points, that we impose values

of some artificial auxiliary points through a polynomial interpolating the interior points

near the boundary, and then construct a Hermite extrapolation based on those auxiliary

point values and the spatial derivatives at boundary obtained via the ILW procedure.

This polynomial will give us the approximation to the ghost point value. However, dif-

ferent form the method in [15], a more general and flexible method is designed to get the

artificial auxiliary points and the method in [15] is a special issue of our method in this

paper. Both Godunov-Ryabenkii analysis and eigenvalue spectrum visualization method

are used to perform stability analysis, revealing that the new type of SILW method has

better performance, which will be shown in detail later.

This paper is organized as follows. In Sect. 2, we review the high order central

difference schemes as the interior schemes and the third order total variation diminishing

(TVD) Runge-Kutta time discretization method used to get the fully-discrete schemes.

The new type SILW method is introduced in detail in this section as well. In Sect. 3,

stability analysis is performed both for the semi-discrete and fully-discrete cases by the

Godunov-Ryabenkii method and the eigenvalue spectrum visualization method. In Sect.
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4, numerical examples are given to demonstrate and validate the results of the analysis.

Concluding remarks are given in Sect. 5.

2 Scheme formulation

In this section, firstly, we will introduce the high order central difference schemes

which are used as the interior schemes in this paper. Secondly, the third order explicit

total variation diminishing (TVD) Runge-Kutta time discretization method [22] are in-

troduced as the time discretization method. Lastly, we will give a detailed description

of the new type of SILW method for the boundary treatments.

2.1 High order central difference schemes

Consider the one-dimensional linear scalar heat equation{
ut = c uxx, x ∈ (a, b), t > 0,

u(x, 0) = u0(x), x ∈ (a, b),
(2.1)

with appropriate boundary conditions. For instance, we can take Dirichlet boundary

conditions as {
u(a, t) = g1(t),

u(b, t) = g2(t),
t ≥ 0, (2.2)

or Neumann boundary conditions as{
ux(a, t) = g3(t),

ux(b, t) = g4(t),
t ≥ 0. (2.3)

Here c > 0 is restricted by the well-posedness of the IBVP (2.1).

The interval (a, b) is discretized by a uniform mesh as

a+ Ca∆x = x0 < x1 < x2 < · · · < xN = b− Cb∆x (2.4)

with the uniform mesh size ∆x = (b−a)/(Ca+Cb+N), and the parameters Ca, Cb ∈ [0, 1).

{xj = a + (Ca + j) ∆x, j = 0, 1, 2, · · ·N} are the inner grid points. Note that the first

and last points x0 and xN are not necessarily aligned with the boundaries, and we choose

this kind of discretization on purpose.

In this paper, we consider the second, fourth, sixth, eighth and tenth order central

difference schemes. The corresponding semi-discrete schemes are listed below.

• Second order scheme

duj
dt

=
c

∆x2
(uj+1 − 2uj + uj−1).
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• Fourth order scheme

duj
dt

=
c

∆x2
(− 1

12
uj−2 +

4

3
uj−1 −

5

2
uj +

4

3
uj+1 −

1

12
uj+2).

• Sixth order scheme

duj
dt

=
c

∆x2
(

1

90
uj−3 −

3

20
uj−2 +

3

2
uj−1 −

49

18
uj +

3

2
uj+1 −

3

20
uj+2 +

1

90
uj+3).

• Eighth order scheme

duj
dt

=
c

∆x2
(− 1

560
uj−4 +

8

315
uj−3 −

1

5
uj−2 +

8

5
uj−1 −

205

72
uj

+
8

5
uj+1 −

1

5
uj+2 +

8

315
uj+3 −

1

560
uj+4).

• Tenth order scheme

duj
dt

=
c

∆x2
(

1

3150
uj−5 −

5

1008
uj−4 +

5

126
uj−3 −

5

21
uj−2 +

5

3
uj−1 −

5269

1800
uj

+
5

3
uj+1 −

5

21
uj+2 +

5

126
uj+3 −

5

1008
uj+4 +

1

3150
uj+5).

In these formulas, uj is the numerical approximation of the exact solution u at the

grid point xj. Then the semi-discrete interior scheme can be written as

Ut = L(U) , (2.5)

where L is spatial discrete operator.

2.2 Time discretization

We take the third order explicit total variation diminishing (TVD) Runge-Kutta

(RK) method [22] as our time-stepping method to solve the semi-discrete scheme (2.5)

which is a system of ordinary differential equations. We briefly introduce it below for

clarity.

From the time level tn to tn+1 = tn + ∆t, the third order TVD-RK method is given

by
u(1) = un + ∆tL(un),

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1)),

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2)).

(2.6)

Other types of time discretizations can also be analyzed along the same line.
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To avoid order reduction, special attention must be paid when we impose time-

dependent boundary conditions in the two intermediate stages of the Runge-Kutta

method [3]. With the given Dirichlet boundary condition g(t), the corresponding bound-

ary conditions are given as follows,

un ∼ g(tn),

u(1) ∼ g(tn) + ∆tg′(tn),

u(2) ∼ g(tn) +
1

2
∆tg′(tn) +

1

4
∆t2g′′(tn) .

Similar modification can by obtained directly for Neumann boundary condition.

2.3 The new SILW method

In this section, we will follow the idea in [15] to get our SILW method for the dif-

fusion equation (2.1). The new type of SILW in [15] decomposes the construction of

the ghost point value into “interpolation” and “extrapolation”. The interpolation poly-

nomial is obtained based on the interior points near boundary, and then used to value

some artificial auxiliary points. A Hermite extrapolation is then constructed based on

those auxiliary points values and spatial derivatives at the boundary obtained through

the ILW procedure. Finally, ghost point values are approximated by the extrapolation

polynomial.

In this paper, we also use “interpolation” and “extrapolation” to get the values of

ghost points, but the choice of auxiliary points has a higher degree of freedom and

stability analysis indicates that our method yields better results. As the left and right

boundaries are completely symmetric for parabolic equations with Dirichlet or Neumann

boundary conditions, we will take the left boundary x = a as an example to introduce

our SILW method for (2.1) briefly.

2.3.1 The new SILW method for Dirichlet boundary conditions

In this subsection, we discuss the IBVP (2.1) with the Dirichlet boundary condition

(2.2). Assume the inner approximation is a d-th order scheme. The new SILW method

is:

Algorithm 1. The new SILW method for Dirichlet boundary condition (2.2).

Step 1. Obtain the interpolating polynomial p(x) of degree at most d − 1 based on the

points {(x0, u0), (x1, u1), · · · , (xd−1, ud−1)}. Let

xk∗ = a+ (β + k)α∆x, k = 0, 1, 2, · · · , d− kd − 1,

uk∗ = p(xk∗), k = 0, 1, 2, · · · , d− kd − 1.
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Note that we choose a+αβ∆x as the first artificial auxiliary point and the distance

between any two adjacent artificial auxiliary points is α∆x.

Step 2. Construct the extrapolation polynomial q(x) of degree at most d− 1 to satisfy the

following conditions:

q(2k)(a) = ∂(2k)x u|x=a = g
(k)
1 (t)/ck, k = 0, 1, 2, · · · , kd − 1,

q(xk∗) = uk∗, k = 0, 1, 2, · · · , d− kd − 1.

The second equality in the first row in derived based on the PDE and boundary

condition, which is called the ILW procedure.

Step 3. The approximation value at the ghost point x−p is taken as u−p = q(x−p).

Here, α, β, kd are parameters will be determined by stability analysis. In the Dirichlet

boundary condition case, only even order derivatives at the boundary x = a can be

obtained by the PDE itself through ILW procedure. Note that the SILW method in [15]

is a special case of Algorithm 1 with β = 1.

2.3.2 The new SILW method for Neumann boundary conditions

Same as the procedure in Sect. 2.3.1, we discuss the IBVP (2.1) with the Neumann

boundary condition (2.3). Assume the inner approximation is a d-th order scheme. The

new SILW method is:

Algorithm 2. The new SILW method for Neumann boundary condition (2.3).

Step 1. Obtain the interpolating polynomial p(x) of degree at most d based on the points

{(x0, u0), (x1, u1), · · · , (xd, ud)}. Let

xk∗ = a+ (β + k)α∆x, k = 0, 1, 2, · · · , d− kd,

uk∗ = p(xk∗), k = 0, 1, 2, · · · , d− kd.

Step 2. Construct the extrapolation polynomial q(x) of degree at most d to satisfy the

following conditions:

q(2k+1)(a) = ∂(2k+1)
x u|x=a = g

(k)
3 (t)/ck, k = 0, 1, 2, · · · , kd − 1,

q(xk∗) = uk∗, k = 0, 1, 2, · · · , d− kd.

The second equality of the first row in also obtained via the ILW procedure.

Step 3. The approximation value of the ghost point x−p is taken as u−p = q(x−p).
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Here, α, β, kd are parameters will be determined by stability analysis. In the Neu-

mann boundary condition case, only odd order derivatives at the boundary x = a can

be obtained by the PDE itself through the ILW procedure. Note that the SILW method

in [15] is a special case of Algorithm 2 with β = 0.5.

Clearly, a proper choice of α, β and kd is the key point to ensure stability for numerical

approximations of both Dirichlet and Neumann boundary conditions. We want to find

the appropriate value of β ∈ (0, 5] and the corresponding α ∈ (0, 5] and minimum value

of kd that can ensure stability for all Ca ∈ [0, 1). Notice that, the smaller the value of

kd, the simpler and less expensive the algorithm becomes. That is, we would like to find

(kd)min which can ensure stability.

3 Stability analysis

In this section, we will apply the Godunov-Ryabenkii method and the eigenvalue

spectrum visualization method to analyze stability for both the semi-discrete and fully-

discrete schemes. In fact, these two methods yield similar results. The problem con-

sidered in this paper consists of two physical boundaries and each boundary can be

analyzed separately, that is, stability can be discussed for two quarter-plane problems

and a Cauchy problem. As mentioned before, we only perform the stability analysis

on the left boundary x = a and the conclusions can be obtained symmetrically for the

right boundary. We will give the details of the analysis for the second order scheme at

first. The analytical methods can be extended to higher order scheme directly, and the

conclusions will be given at the end of this section.

3.1 Semi-discrete schemes

In this subsection, we discuss stability for the semi-discrete schemes. Stability is

performed on the quarter-plane problem{
ut = c uxx, x ∈ [a,+∞), t ≥ 0,

u(x, 0) = u0(x), x ∈ [a,+∞),
(3.7)

with the Dirichlet boundary u(a, t) = g1(t), or Neumann boundary condition ux(a, t) =

g3(t), t ≥ 0. For convenience, we set g1(t) = g3(t) = 0. Now let us take the second order

scheme (3.8) as an illustration example.

duj
dt

=
c

∆x2
(uj+1 − 2uj + uj−1). (3.8)
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3.1.1 Godunov-Ryabenkii stability analysis

The key point of the Godunov-Ryabenkii method is to determine whether there

exists any eigenvalue with positive real part. A complete description of the method can

be found in [6, 27].

Let uj = estφj, scheme (3.8) can be transformed into

s̃φj = φj+1 − 2φj + φj−1, (3.9)

where s̃ = s∆x2/c. In fact, s̃ can also be regarded as eigenvalue and {φj(s̃)}∞j=0 is the

corresponding eigensolution.

Take φj = κj and plug it into equation (3.9), we can get the characteristic equation

as follows,

s̃κ = κ2 − 2κ+ 1. (3.10)

And define

f(κ) = κ2 − (s̃+ 2)κ+ 1. (3.11)

In particular, if we take κ = eıξ, ξ ∈ [0, 2π], (3.10) yields

s̃ = 2(cos ξ − 1), (3.12)

which tells us s̃ is real and s̃ ≤ 0 if |κ| = 1.

Since x ∈ [a,+∞), we are only interested in the roots of the characteristic equation

satisfying |κ| < 1. Same as in [11], if Re(s̃) > 0, equation (3.12) implies the number of

roots for (3.10) with |κ| < 1 independent of s̃. We can take any value of s̃ with Re(s̃) > 0

to get the number of roots for (3.10) with |κ| < 1. For instance, taking s̃ = 1, the roots

of (3.10) are

κ1 ≈ 0.381966, κ2 ≈ 2.618034.

Thus, there is only one root with |κ| < 1 when Re(s̃) > 0. Then the general expression

of φj in (3.9) is

φj = σκj. (3.13)

• Analysis on the Dirichlet boundary condition

For the second order scheme (3.8), we need the ghost point value u−1. The interpo-

lation polynomial is obtained by {(x0, u0), (x1, u1)}. In this case, d = 2, we need two

conditions in Step 2 of Algorithm 1 to get the extrapolation polynomial q(x) and then

the possible minimum value of kd is 1. Then, the approximate value at the ghost point

x−1 is

u−1 =
(Ca − 1) ((Ca − αβ + 1)u0 + (αβ − Ca)u1)

αβ
. (3.14)
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Plugging (3.13) and (3.14) into (3.8) at j = 0 gives us(
Ca(Ca − αβ − 1)

αβ
κ+

αβ(Ca + s̃+ 1)− C2
a + 1

αβ

)
σ = 0. (3.15)

In order to get a nontrivial φj, we need σ is nonzero and
Ca(Ca − αβ − 1)

αβ
κ+

αβ(Ca + s̃+ 1)− C2
a + 1

αβ
= 0,

f(κ) = 0,

|κ| < 1.

(3.16)

Here, we take β = 1.37, α = 0.24 as an example. Solving equation (3.16) and taking

the maximum value of Re(s̃) for any Ca ∈ [0, 1), we plot the results in Fig. 3.1, in which

the shaded region is bounded by the maximum value of Re(s̃) and the horizontal axis for

different Ca ∈ [0, 1). Since the region in Fig. 3.1 is below Re(s̃) = 0, this indicates there

has no eigenvalue with Re(s̃) > 0. Thus we can get the conclusion that the semi-discrete

second order scheme and the new SILW method with kd = 1, β = 1.37 and α = 0.24 is

stable for all Ca ∈ [0, 1). Notice that in this section β = 1.37 and α = 0.24 is taken as

an example to demonstrate the results, for other choices of β and α , we can perform

the same procedure and get the corresponding results.

Fig. 3.1: Godunov-Ryabenkii analysis on the right-plane problem with Dirichlet bound-
ary conditions: Second order semi-discrete scheme and the new SILW method with
kd = 1, β = 1.37 and α = 0.24.

Furthermore, taking β = 1, we can get that there has no eigenvalue with positive

real part or the maximum value of Re(s̃) is 0 for any value of α ∈ (0, 5] and Ca ∈ [0, 1).

That means for β = 1, we can take any value of α ∈ (0, 5], the second order semi-discrete

scheme with the new SILW method with kd = 1 is stable for all Ca ∈ [0, 1).
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• Analysis on the Neumann boundary condition

In this case, the interpolation polynomial p(x) is obtained by {(x0, u0), (x1, u1),

(x2, u2)}. Without loss of generality, we set g3(t) = 0. And the possible minimum value

of kd is kd = 1.

As before, the characteristic equation is (3.10), the eigenvalue problem is (3.9) and

the general expression of φj is (3.13). When kd = 1, the approximate values at the ghost

point x−1 is

u−1 = −α
2β(β + 1)(2Ca + 3) + (Ca − 1)2(2Ca + 3)− α(2β + 1)(2C2

a + Ca + 3)

2(α + 2αβ)
u0

+
2α2β(β + 1)(Ca + 1) + 2(Ca − 1)2(Ca + 1)− α(2β + 1)(2C2

a + 1)

α + 2αβ
u1

− α2β(β + 1)(2Ca + 1) + (Ca − 1)2(2Ca + 1)− α(2β + 1)(2C2
a − Ca + 1)

2(α + 2αβ)
u2.

(3.17)

Plug (3.17) and (3.13) into (3.8) at j = 0 and we then have

(b2κ
2 + b1κ+ b0)σ = 0, (3.18)

where

b0 =
α2β(β + 1)(2Ca + 3) + (Ca − 1)2(2Ca + 3)− α(2β + 1)(2C2

a + Ca − 1− 2s̃)

2(α + 2αβ)
,

b1 = −2(−α(2β + 1)C2
a + α2β(β + 1)(Ca + 1) + (Ca − 1)2(Ca + 1))

α + 2αβ
,

b2 =
α2β(β + 1)(2Ca + 1) + (Ca − 1)2(2Ca + 1)− α(2β + 1)(2C2

a − Ca + 1)

2(α + 2αβ)
.

In order to get a nontrivial φj, we need σ is nonzero and
b2κ

2 + b1κ+ b0 = 0,

f(κ) = 0,

|κ| < 1.

(3.19)

As before, we take α = 0.24, β = 1.37 as one example. Solving equation (3.19) and

taking the maximum value of Re(s̃), the results are shown in Fig. 3.2, indicating the

semi-discrete second order scheme for the Neumann boundary problem with the new

SILW method with kd = 1 , β = 1.37 and α = 0.24 is stable for all Ca ∈ [0, 1).

As an special case in [15], we take β = 0.5. For any fixed α ∈ (0, 5], we look at the

maximum value of Re(s̃) for Ca ∈ [0, 1), and the results are shown in Fig. 3.3, indicating

the semi-discrete second order scheme for the Neumann boundary problem with the new

SILW method with kd = 1 and β = 0.5 is stable for all α ∈ (0, 5], Ca ∈ [0, 1).
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Fig. 3.2: Godunov-Ryabenkii analysis on the right-plane problem with Neumann bound-
ary conditions: Second order semi-discrete scheme and the new SILW method with
kd = 1, β = 1.37 and α = 0.24.
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Fig. 3.3: Godunov-Ryabenkii analysis on the right-plane problem with Neumann bound-
ary conditions: Second order semi-discrete scheme and the new SILW method with
kd = 1, β = 0.5 and α ∈ (0, 5].

3.1.2 Eigenvalue spectrum visualization

For the higher order schemes, the Godunov-Ryabenkii method leads to heavy calcu-

lations. So we use an alternative eigenvalue spectrum visualization method [32] which

is easier to carry out to analyze stability. And our analysis results can be validated by

numerical experiments in the next section.

As demonstrate in [32], the eigenvalue spectrum visualization method needs to con-

sider stability with the two boundaries together. For simplicity, we set g1(t) = g2(t) =

g3(t) = g4(t) = 0. The semi-discrete schemes can be transformed into a matrix-vector

form as
d~U

dt
=

c

∆x2
Q~U, (3.20)
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where ~U = (u0, u1, · · · , uN)T and Q is a matrix. This system contains the chosen interior

scheme and numerical boundary conditions.

Taking u(x, t) = estv(x), (3.20) turns to

s̃~U = Q~U. (3.21)

In this case, we needs to focus on the “fixed” eigenvalues, namely those eigenvalues which

are equal (subject to a negligible difference due to round-off errors and eigenvalue solver

accuracy) for different values of grid number N . Similar to the Godunov-Ryabenkii

method, there may exist more than one “fixed” eigenvalue of the matrix Q, and we

concentrate on the maximum value of the real part of those “fixed” eigenvalues. Here,

we also take the second order scheme (3.8) as an example to explain this method in

detail.

Similar to the analysis in Sect. 3.1.1, we only analyze the stability of the right-plane

problem. For the second order scheme (3.8), the ghost point u−1 is obtained by the new

SILW method and we set uN+1 = 0 to eliminate the influence to stability from the right

boundary. Then we can get the the matrix-vector form (3.20).

• Analysis on Dirichlet boundary condition

As before, we choose kd = 1, β = 1.37 and α = 0.24 and use different values of N

to find the largest real part of all the “fixed” eigenvalues. The results are shown in Fig.

3.4. Comparing Fig. 3.1 and Fig. 3.4, we can see they are almost the same. So the

eigenvalue spectrum visualization could be an alternative approach to analyze stability.

Furthermore, take β = 1. We can get the similar results as in Sect. 3.1.1 that the

maximum value of Re(s̃) is not larger than 0 for all α ∈ (0, 5] and Ca ∈ [0, 1).

Fig. 3.4: Eigenvalue spectrum visualization on the right-plane problem with Dirichlet
boundary conditions: Second order semi-discrete scheme and the new SILW method with
kd = 1, β = 1.37 and α = 0.24.

• Analysis on the Neumann boundary condition
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For the Neumann boundary condition, the results of kd = 1, β = 1.37 and α = 0.24

are displayed in Fig. 3.5 and the results of β = 0.5 are displayed in Fig. 3.6. It is

observed that Fig. 3.2 and Fig. 3.5, Fig. 3.3 and Fig. 3.6 are almost the same. So

we can rely on the eigenvalue spectrum visualization to analyze stability and the results

demonstrate that for the Neumann boundary condition, the second order semi-discrete

scheme and the new SILW method with kd = 1, β ∈ (0, 5] and α ∈ (0, 5] is stable for

all Ca ∈ [0, 1). Note that as the eigenvalue spectrum visualization is not as accurate as

the Godunov-Ryabenkii analysis since Fig. 3.3 and Fig. 3.6 have slight difference, but

under the same circumstances, these two methods show the same stability results.

Fig. 3.5: Eigenvalue spectrum visualization on the right-plane problem with Neumann
boundary conditions: Second order semi-discrete scheme and the new SILW method with
β = 1.37, α = 0.24 and kd = 1.
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Fig. 3.6: Eigenvalue spectrum visualization on the right-plane problem with Neumann
boundary conditions: Second order semi-discrete scheme and the new SILW method with
β = 0.5, kd = 1 and α ∈ (0, 5].
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3.2 Fully-discrete Schemes

For the semi-discrete scheme (2.5), we use the third order TVD Runge-Kutta method

(2.6) as the time discretization to get the fully-discrete scheme. The detailed procedure

can be found in [13, 14].

For the fully-discrete scheme, an eigensolution is defined in the form of un+1
j = z(µ)unj

with µ = s∆t = s̃λcfl, λcfl =
c∆t

∆x2
and |z(µ)| > 1, where

z(µ) = 1 + µ+
µ2

2
+
µ3

6
. (3.22)

Here, s̃ is an eigenvalue of the semi-discrete scheme and z(µ) is the eigenvalue of the

fully-discrete scheme. In the fully-discrete cases, the scheme is unstable if such candidate

eigensolution exists.

Denote (λcfl)max as the largest CFL number of the fully-discrete scheme for the

Cauchy problems. As in [11, 12, 13, 14, 16], we use (λcfl)max as our CFL number when

verifying the stability of the fully-discrete numerical schemes for the initial-boundary

value problem. This means we do not want the boundary treatment to affect the CFL

number of interior schemes for the corresponding Cauchy problem. The detailed proce-

dure to find (λcfl)max can be found in [14] and we just list the values for the schemes in

Sect. 2.1 in Tab. 3.1.

Tab. 3.1: (λcfl)max for different schemes.

Scheme 2nd order 4th order 6th order 8th order 10th order

(λcfl)max 0.628 0.471 0.415 0.386 0.368

3.2.1 Godunov-Ryabenkii stability analysis

For the Godunov-Ryabenkii stability analysis, s̃ is the eigenvalue obtained in the

semi-discrete case and

µ = s∆t = (λcfl)maxs̃.

Here, we only consider the second order scheme.

• Analysis on Dirichlet boundary condition

As in Sect. 3.1.1, there may exist more than one eigenvalue s̃. We focus on the maxi-

mum value of |z(µ)| defined in equation (3.22). The results of β = 1.37 and α = 0.24 are

shown in Fig. 3.7, and those of β = 1 and α ∈ (0, 5] are shown in Fig. 3.8. The shaded

regions are bounded by the the maximum value of |z(µ)| and the horizontal axis. The
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region above |z(µ)| = 1 indicates instability. It is observed from Fig. 3.7 that for the

Dirichlet boundary problem, the second order fully-discrete scheme and the new SILW

method with kd = 1, β = 1.37 and α = 0.24 is stable for Ca ∈ [0.83, 1). Thus, this choice

of parameters can not been utilized in our numerical simulation. And Fig. 3.8 shows

that for β = 1.0 and α ∈ [0.5, 5], the scheme is stable for all Ca ∈ [0, 1), indicating that

this is a reasonable parameter selection area.
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Fig. 3.7: Godunov-Ryabenkii analysis on the right-plane problem with Dirichlet bound-
ary conditions: Second order fully-discrete scheme and the new SILW method with
kd = 1, β = 1.37 and α = 0.24.

1
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

50 

100

150

200

m
a
x
(a

b
s
(z

))

0.48 0.49 0.5 0.51
1    

1.002
1.004
1.006 0.492

Fig. 3.8: Godunov-Ryabenkii analysis on the right-plane problem with Dirichlet bound-
ary conditions: Second order fully-discrete scheme and the new SILW method with
kd = 1, β = 1.0 and α ∈ (0, 5].

• Analysis on Neumann boundary condition

The results for the Neumann boundary condition are shown in Fig. 3.9 and Fig.

3.10. Fig. 3.9 indicates that for the second order fully-discrete scheme and the new

SILW method with kd = 1, if we take β = 1.37 and α = 0.24, the scheme is only

16



stable for Ca ∈ [0.23, 1.0). And Fig. 3.10 indicates that if set β = 0.5, we can take

α ∈ [0.65, 1.9] to get a stable scheme for all Ca ∈ [0, 1).

Fig. 3.9: Godunov-Ryabenkii analysis on the right-plane problem with Neumann bound-
ary conditions: Second order fully-discrete scheme and the new SILW method with
kd = 1, α = 0.24 and β = 1.37.
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Fig. 3.10: Godunov-Ryabenkii analysis on the right-plane problem with Neumann
boundary conditions: Second order fully-discrete scheme and the new SILW method
with kd = 1, β = 0.5 and α ∈ (0, 5].

3.2.2 Eigenvalue spectrum visualization

In this subsection, the eigenvalue spectrum visualization method is used to get the

stability results for the second order fully-discrete scheme. By using the third order

TVD Runge-Kutta method, the matrix formulation (3.20) can be transformed to the

fully-discrete scheme

~Un+1 = G~Un, G = I +
c∆t

∆x2
Q+

1

2

( c∆t
∆x2

Q
)2

+
1

6

( c∆t
∆x2

Q
)3
, (3.23)
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where I is the identity matrix. Same as in [13], we need all the eigenvalues of G to lie

inside the unit circle. i.e. |z(µ)| ≤ 1, to ensure stability of the fully-discrete approxima-

tion.

• Analysis on Dirichlet boundary condition

The maximum values of |z(µ)| as defined in equation (3.22) are shown in Fig. 3.11

and Fig. 3.12. It can be seen that Fig. 3.7 is similar to Fig. 3.11, and Fig. 3.8 is similar

to Fig. 3.12. Thus, we can rely on the eigenvalue spectrum visualization to get stability

results.
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Fig. 3.11: Eigenvalue spectrum visualization on the right-plane problem with Dirichlet
boundary conditions: Second order fully-discrete scheme and the new SILW method with
kd = 1, β = 1.37 and α = 0.24.
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Fig. 3.12: Eigenvalue spectrum visualization on the right-plane problem with Dirichlet
boundary conditions: Second order fully-discrete scheme and the new SILW method with
kd = 1, β = 1 and and α ∈ (0, 5].

• Analysis on Neumann boundary condition

The results of the Neumann boundary problem are provided in Fig. 3.13 and Fig.

3.14. Comparing Fig. 3.9 with Fig. 3.13 and Fig. 3.10 with Fig. 3.14 , we can see that
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they are almost the same. By carefully observing, we can find that Fig. 3.9 and Fig.

3.13 have minor difference, this is due to the fact that eigenvalue spectrum visualization

method is not exactly as Godunov-Ryabenkii analysis, but they have the same stability

results. Thus we can use the eigenvalue spectrum visualization to get stability results

for the remaining high order schemes in Sect. 2.1.

Fig. 3.13: Eigenvalue spectrum visualization on the right-plane problem with Neumann
boundary conditions: Second order fully-discrete scheme and the new SILW method with
kd = 1, β = 1.37 and α = 0.24.
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Fig. 3.14: Eigenvalue spectrum visualization on the right-plane problem with Neumann
boundary conditions: Second order fully-discrete scheme and the new SILW method with
kd = 1, β = 0.5 and α ∈ (0, 5].

3.3 High order schemes

The method in [15] is a special case of the new SILW method in this paper, which

corresponding to β = 1.0 for the Dirichlet boundary problem and β = 0.5 for the

Neumann boundary problem. Stability analysis results of this special case are displayed
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in Tab. 3.2 for the fully-discrete schemes, showing the minimum value of kd (denoted by

(kd)min) with appropriate range of α that can guarantee stability for all Ca ∈ [0, 1).

Tab. 3.2: (kd)min and range of α for different schemes.

Scheme

Dirichlet boundary

condition with β = 1.0

Neumann boundary

condition with β = 0.5

(kd)min α (kd)min α

2nd order 1 [0.5,5.0] 1 [0.65,1.90]

4th order 1 [0.74,2.48] 1 [0.99,1.33]

6th order 1 [0.89,1.17] 2 [1.97,3.75]

8th order 2 [0.82,1.22] 2 [2.14,2.15]

10th order 2 [0.89,0.99] – –

Compared with the method in [15], the new SILW method in this paper has extended

and improved the selection method of artificial auxiliary points. For β ∈ (0, 5], we would

like to search if there have appropriate range of α ∈ (0, 5] and (kd)min that can ensure

stability for all Ca ∈ [0, 1), the results can be found in Tab. 3.3 for the fully-discrete

schemes.

Comparing Tab. 3.2 with Tab. 3.3, it is clearly observed that our method reveals

better results than the method in [15]. For example, for the Neumann boundary condition

problem with the sixth order scheme, the method in [15] needs (kd)min = 2 to get a stable

scheme, but our method can get a stable scheme for all Ca ∈ [0, 1) with (kd)min = 1. The

method in [15] fails to get a stable scheme in the case of Neumann boundary condition

with tenth order scheme, while our the method can get a stable scheme with (kd)min = 4

with proper choice of α, β.

For some different values of β, the corresponding range of α that can ensure stability

for all Ca ∈ [0, 1) can be found in Tab. A.18 - A.22 in Appendix A.

4 Numerical examples

In this section, we present some numerical examples to demonstrate that our method

is stable and high accuracy with the results in Tab. 3.3. These numerical tests also indi-

cate the obtained stability results are sufficient for stability of the boundary treatments.
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Tab. 3.3: (kd)min and range of β for different schemes.

Scheme

Dirichlet boundary condition Neumann boundary condition

(kd)min β (kd)min β

2nd order 1 [0.10,5.0] 1 [0.01,5.0]

4th order 1 [0.10,5.0] 1 [0.02,0.60]

6th order 1 [0.39,5.0] 1 [0.03,0.40]

8th order 2 [0.38,5.0] 2 [0.48,0.70]

10th order 2 [0.46,5.0] 4 [1.07,1.94]

Consider the following problem{
ut = uxx, x ∈ (1.5, 3.5), t ≥ 0,

u(x, 0) = sin(x), x ∈ (1.5, 3.5).
(4.24)

The corresponding Dirichlet boundary conditions are{
u(1.5, t) = e−t sin(1.5),

u(3.5, t) = e−t sin(3.5).
(4.25)

While the corresponding Neumann boundary conditions are{
ux(1.5, t) = e−t cos(1.5),

ux(3.5, t) = e−t cos(3.5).
(4.26)

For both boundary conditions, the exact solution is

u(x, t) = e−t sin(x).

Without special declaration, the time step size ∆t is chosen as

∆t = (λcfl)max∆x
2, (4.27)

and (λcfl)max is the maximum CFL number shown in Tab. 3.1.

4.1 Results for Dirichlet boundary condition

Numerical results of boundary treatments for equation (4.24) with the Dirichlet

boundary condition (4.25) are shown in this subsection.
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• The second order scheme

Firstly, take β = 1.0 and (kd)min = 1. In this case, α should between [0.5, 5.0] to

guarantee a stable scheme for all Ca ∈ [0, 1), Cb ∈ [0, 1). Fig. 4.15 shows the scheme

is unstable with α = 0.49 and is stable with α = 0.5 for Ca = Cb = 0.46. Tab. 4.4

demonstrates that the scheme is stable and shows the designed second order accuracy

with different Ca and Cb for α = 3.3 and β = 2.82, which lie in the range in Tab. A.18.
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Fig. 4.15: The second order scheme and the new SILW method with β = 1.0, kd = 1,
Ca = Cb = 0.46, tend = 1.0 and CFL condition (4.27). Left: α = 0.49 and N = 640;
Right: α = 0.50 and N = 1280.

Tab. 4.4: The second order scheme with β = 2.82, α = 3.3, kd = 1, tend = 1.0 and CFL
condition (4.27) for the heat equation with Dirichlet boundary conditions.

N Ca = 10−8, Cb = 10−8 Ca = 1− 10−8, Cb = 1− 10−8

L2 error order L∞ error order L2 error order L∞ error order

40 7.184E-04 – 8.303E-04 – 2.552E-05 – 2.567E-05 –

80 1.777E-04 2.016 2.072E-04 2.002 6.695E-06 1.931 6.737E-06 1.930

160 4.419E-05 2.007 5.178E-05 2.001 1.715E-06 1.965 1.726E-06 1.965

320 1.102E-05 2.004 1.294E-05 2.000 4.342E-07 1.982 4.369E-07 1.982

640 2.751E-06 2.002 3.234E-06 2.000 1.092E-07 1.991 1.099E-07 1.991

1280 6.874E-07 2.001 8.090E-07 2.000 2.739E-08 1.996 2.756E-08 1.996

• The fourth order scheme

Consider β = 1.0 and (kd)min = 1, then α can be chosen as α ∈ [0.74, 2.48] to get

a stable scheme for all Ca ∈ [0, 1), Cb ∈ [0, 1). Figure 4.16 and Figure 4.17 give the
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stability and instability results. Table 4.5 shows the fourth order with small and large

Ca and Cb if the scheme is stable.
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Fig. 4.16: The fourth order scheme and the new SILW method with β = 1.0, kd = 1,
Ca = Cb = 0.65, tend = 1.0 and the CFL condition (4.27). Left: α = 0.73 and N = 320;
Right: α = 0.74 and N = 640.
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Fig. 4.17: The fourth order scheme and the new SILW method with β = 1.0, kd = 1,
Ca = Cb = 1−10−8, tend = 1.0 with CFL condition (4.27). Left: α = 2.49 and N = 1280;
Right: α = 2.48 and N = 2560.

• The sixth order scheme

Take β = 1.0 and (kd)min = 1. To get a stable scheme for all Ca ∈ [0, 1), Cb ∈ [0, 1),

the corresponding range of α is α ∈ [0.89, 1.17]. Fig. 4.18 and 4.19 show the stability
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Tab. 4.5: The fourth order scheme with β = 3.91, α = 0.4, kd = 1, tend = 1.0 and CFL
condition (4.27) for the heat equation with Dirichlet boundary conditions. .

N Ca = 10−8, Cb = 10−8 Ca = 1− 10−8, Cb = 1− 10−8

L2 error order L∞ error order L2 error order L∞ error order

40 4.302E-07 – 5.439E-07 – 2.215E-07 – 2.572E-07 –

80 2.626E-08 4.034 3.397E-08 4.001 1.522E-08 3.864 1.782E-08 3.851

160 1.621E-09 4.018 2.122E-09 4.001 9.982E-10 3.930 1.175E-09 3.923

320 1.007E-10 4.001 1.326E-10 4.001 6.392E-11 3.965 7.540E-11 3.962

640 6.274E-12 4.005 8.284E-12 4.000 4.045E-12 3.982 4.775E-12 3.981

1280 3.915E-13 4.002 5.177E-13 4.000 2.544E-13 3.991 3.005E-13 3.990

and instability results. The numerical results in Tab. 4.6 shows that the scheme is stable

and can reach the designed high order.
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Fig. 4.18: The sixth order scheme and the new SILW method with β = 1.0, kd = 1,
Ca = Cb = 0.15, tend = 1.0 and CFL condition (4.27). Left: α = 0.88 and N = 320;
Right: α = 0.89 and N = 640.

• The eighth order scheme

Again, take β = 1.0 and (kd)min = 2. In order to get a stable scheme for all Ca ∈ [0, 1),

Cb ∈ [0, 1), α can be choose as α ∈ [0.82, 1.22]. Fig. 4.20 shows the scheme is unstable

with α = 0.81 but stable with α = 0.82 for β = 1.0, kd = 2, Ca = Cb = 0.78. Fig. 4.21

shows the scheme is unstable with α = 1.23 but stable with α = 1.22 for β = 1.0, kd = 2,

Ca = Cb = 0.01. Tab. 4.7 shows that we can get the sixth order with small and large Ca
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Fig. 4.19: The sixth order scheme and the new SILW method with β = 1.0, kd = 1,
Ca = Cb = 0.96, tend = 1.0 and CFL condition (4.27). Left: α = 1.18 and N = 320;
Right: α = 1.17 and N = 640.

Tab. 4.6: The sixth order scheme with β = 0.9, α = 1.1, kd = 1, tend = 1.0 and CFL
condition (4.27) for the heat equation with Dirichlet boundary conditions.

N Ca = 10−8, Cb = 10−8 Ca = 1− 10−8, Cb = 1− 10−8

L2 error order L∞ error order L2 error order L∞ error order

40 6.678E-10 – 7.589E-10 – 3.757E-10 – 4.664E-10 –

80 1.018E-11 6.036 1.196E-11 5.987 6.661E-12 5.817 8.447E-12 5.787

160 1.570E-13 6.019 1.876E-13 5.995 1.110E-13 5.907 1.422E-13 5.893

320 2.437E-15 6.009 2.939E-15 5.996 1.792E-15 5.953 2.306E-15 5.946

640 3.795E-17 6.005 4.599E-17 5.998 2.846E-17 5.976 3.671E-17 5.973

1280 5.920E-19 6.002 7.190E-19 5.999 4.483E-19 5.988 5.790E-19 5.987

and Cb for suitable α and β. Moreover, if take the time step as

∆t = (λcfl)max∆x
8/3, (4.28)

we can get Tab. 4.8, indicating the designed eighth order accuracy.

• The tenth order scheme

Take β = 1.0, (kd)min = 2 and α ∈ [0.89, 0.99], the scheme is stable for all Ca ∈ [0, 1),

Cb ∈ [0, 1). Fig. 4.22 and 4.23 show the stability and instability results. Tab. 4.9

indicates the corresponding sixth order with appropriate α and β. In additional, taking

step size ∆t as

∆t = (λcfl)max∆x
10/3 (4.29)
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Fig. 4.20: The eighth order scheme and the new SILW method with β = 1.0, kd = 2,
Ca = Cb = 0.78, tend = 1 and CFL condition (4.27). Left: α = 0.81 and N = 320; Right:
α = 0.82 and N = 640.
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Fig. 4.21: The eighth order scheme and the new SILW method with β = 1.0, kd = 2,
Ca = Cb = 0.01, tend = 1.0 and CFL condition (4.27). Left: α = 1.23 and N = 320;
Right: α = 1.22 and N = 640.

can provided tenth order accuracy, as shown in Tab. 4.10.

4.2 Results for Neumann boundary condition

Numerical results of boundary treatments for equation (4.24) with the boundary

condition (4.26) are shown in this subsection.

26



Tab. 4.7: The eighth order scheme with β = 1.92, α = 0.59, kd = 2, tend = 1.0 and CFL
condition (4.27) for the heat equation with Dirichlet boundary conditions.

N Ca = 10−8, Cb = 10−8 Ca = 1− 10−8, Cb = 1− 10−8

L2 error order L∞ error order L2 error order L∞ error order

40 5.020E-12 – 5.055E-12 – 3.839E-12 – 3.855E-12 –

80 7.889E-14 5.992 7.939E-14 5.993 6.842E-14 5.810 6.883E-14 5.808

160 1.234E-15 5.998 1.242E-15 5.998 1.147E-15 5.898 1.154E-15 5.898

320 1.929E-17 6.000 1.941E-17 6.000 1.859E-17 5.948 1.870E-17 5.947

640 3.014E-19 6.000 3.033E-19 6.000 2.958E-19 5.973 2.977E-19 5.973

1280 4.709E-21 6.000 4.739E-21 6.000 4.665E-21 5.987 4.695E-21 5.987

Tab. 4.8: The eighth order scheme with β = 1.92, α = 0.59, kd = 2, tend = 1.0 and CFL
condition (4.28) for the heat equation with Dirichlet boundary conditions.

N Ca = 10−8, Cb = 10−8 Ca = 1− 10−8, Cb = 1− 10−8

L2 error order L∞ error order L2 error order L∞ error order

20 1.373E-11 – 1.745E-11 – 1.606E-11 – 1.897E-11 –

40 5.099E-14 8.073 7.182E-14 7.925 8.494E-14 7.562 1.105E-13 7.424

80 1.942E-16 8.036 2.851E-16 7.977 3.854E-16 7.784 5.255E-16 7.716

160 7.499E-19 8.017 1.120E-18 7.992 1.622E-18 7.893 2.263E-18 7.859

320 2.913E-21 8.008 4.386E-21 7.997 6.575E-21 7.946 9.278E-21 7.930
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Fig. 4.22: The tenth order scheme and the new SILW method with β = 1.0, kd = 2,
Ca = Cb = 0.45, tend = 1.0 and CFL condition (4.27). Left: α = 0.88 and N = 80;
Right: α = 0.89 and N = 320.

• The second order scheme

At first, we explore β = 0.5 and (kd)min = 1. Take α ∈ [0.65, 1.90], then we can get a
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Fig. 4.23: The tenth order scheme and the new SILW method with β = 1.0, kd = 2,
Ca = Cb = 0.90, tend = 1.0 and CFL condition (4.27). Left: α = 1.0 and N = 160;
Right: α = 0.99 and N = 320.

Tab. 4.9: The tenth order scheme with β = 0.46, α = 1.69, kd = 2, tend = 1.0 and CFL
condition (4.27) for the heat equation with Dirichlet boundary conditions.

N Ca = 10−8, Cb = 10−8 Ca = 1− 10−8, Cb = 1− 10−8

L2 error order L∞ error order L2 error order L∞ error order

40 4.394E-12 – 4.419E-12 – 3.271E-12 – 3.290E-12 –

80 6.850E-14 6.003 6.893E-14 6.003 5.905E-14 5.792 5.942E-14 5.791

160 1.070E-15 6.001 1.077E-15 6.000 9.930E-16 5.894 9.992E-16 5.894

320 1.672E-17 6.000 1.682E-17 6.000 1.610E-17 5.946 1.620E-17 5.946

640 2.612E-19 6.000 2.628E-19 6.000 2.563E-19 5.973 2.579E-19 5.973

1280 4.081E-21 6.000 4.107E-21 6.000 4.043E-21 5.987 4.068E-21 5.987

stable scheme for all Ca ∈ [0, 1), Cb ∈ [0, 1). The left figures in Fig. 4.24 and Fig. 4.25

clearly show instability while the right ones show stability. A grid refinement verifies the

designed second order with suitable α and β, see Tab. 4.11.

• The fourth order scheme

Take β = 0.5 and (kd)min = 1. To get a stable scheme for all Ca ∈ [0, 1), Cb ∈ [0, 1),

the suitable choice of α is α ∈ [0.99, 1.33]. Fig. 4.26 and 4.27 show the stability and

instability results which is consistent with the analysis. Tab. 4.12 demonstrates that we

can get the fourth order with small and large Ca and Cb for proper α and β.

• The sixth order scheme
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Tab. 4.10: The tenth order scheme with β = 0.46, α = 1.69, kd = 2, tend = 1.0 and CFL
condition (4.29) for the heat equation with Dirichlet boundary conditions.

N Ca = 10−8, Cb = 10−8 Ca = 1− 10−8, Cb = 1− 10−8

L2 error order L∞ error order L2 error order L∞ error order

10 4.043E-10 – 3.633E-10 – 1.663E-10 – 1.478E-10 –

20 3.681E-13 10.101 4.324E-13 9.715 3.649E-13 8.832 4.124E-13 8.485

40 3.386E-16 10.086 4.428E-16 9.931 5.332E-16 9.419 6.741E-16 9.257

80 3.200E-19 10.047 4.377E-19 9.982 6.379E-19 9.707 8.482E-19 9.634

160 3.072E-22 10.023 4.289E-22 9.995 6.902E-22 9.852 9.389E-22 9.819
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Fig. 4.24: The second order scheme and the new SILW method with β = 0.5, kd = 1,
Ca = Cb = 10−8, tend = 1.0 and CFL condition (4.27). Left: α = 0.64 and N = 320;
Right: α = 0.65 and N = 2560.

Take β = 0.3 and (kd)min = 1. In this circumstance, We can take α ∈ [1.19, 1.46] to

get a stable scheme for all Ca ∈ [0, 1), Cb ∈ [0, 1). The numerical results are shown in

Fig. 4.28 and 4.29, which are consistent with the stability analysis. The results in Tab.

4.13 shows that the scheme is stable and can reach the designed with suitable α and β.

• The eighth order scheme

Take β = 0.5 and in this case, (kd)min = 2 and α ∈ [2.14, 2.15]. Stability and in-

stability results are presented in Fig. 4.30 and 4.31, which are consistent with stability

analysis. The numerical results at the final time tend = 1.0 are shown in Tab. 4.14. We

can observe that our scheme is stable and high order accuracy for small and large Ca

and Cb with suitable choice of α and β. Moreover, if take the CFL condition as (4.28),

we can get the eighth order as Tab. 4.15.
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Fig. 4.25: The second order scheme and the new SILW method with β = 0.5, kd = 1,
Ca = Cb = 0.19, tend = 1.0 and CFL condition (4.27). Left: α = 1.91 and N = 2560;
Right: α = 1.90 and N = 2560.

Tab. 4.11: The second order scheme with β = 5.0, α = 0.18, kd = 1, tend = 1.0 and CFL
condition (4.27) for the heat equation with Neumann boundary conditions.

N Ca = 10−8, Cb = 10−8 Ca = 1− 10−8, Cb = 1− 10−8

L2 error order L∞ error order L2 error order L∞ error order

40 1.387E-04 – 2.028E-04 – 1.515E-04 – 2.256E-04 –

80 3.421E-05 2.020 5.071E-05 2.000 4.070E-05 1.896 6.009E-05 1.909

160 8.493E-06 2.010 1.268E-05 2.000 1.056E-05 1.947 1.548E-05 1.956

320 2.116E-06 2.005 3.169E-06 2.000 2.690E-06 1.973 3.931E-06 1.978

640 5.280E-07 2.003 7.923E-07 2.000 6.789E-07 1.986 9.900E-07 1.989

1280 1.319E-07 2.001 1.981E-07 2.000 1.705E-07 1.993 2.484E-07 1.995

• The tenth order scheme

Take β = 1.36 and (kd)min = 4. Here, we can take α ∈ [1.46, 1.66] to get a stable

scheme for all Ca ∈ [0, 1), Cb ∈ [0, 1). Fig. 4.32 and 4.33 give the stable and unstable

results. Tab. 4.16 shows that we can get the sixth order with small and large Ca and

Cb for suitable α and β. If we take the CFL condition as (4.29), Tab. 4.17 indicates the

optimal tenth order.
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Fig. 4.26: The fourth order scheme and the new SILW method with β = 0.5, kd = 1,
Ca = Cb = 0.21, tend = 1.0 and CFL condition (4.27). Left: α = 0.98 and N = 1280;
Right: α = 0.99 and N = 2560.
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Fig. 4.27: The fourth order scheme and the new SILW method with β = 0.5, kd = 1,
Ca = Cb = 0.35, tend = 1.0 and CFL condition (4.27). Left: α = 1.34 and N = 640;
Right: α = 1.33 and N = 1280.
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Tab. 4.12: The fourth order scheme with β = 0.28, α = 1.64, kd = 1, tend = 1.0 and CFL
condition (4.27) for the heat equation with Neumann boundary conditions.

N Ca = 10−8, Cb = 10−8 Ca = 1− 10−8, Cb = 1− 10−8

L2 error order L∞ error order L2 error order L∞ error order

40 4.021E-07 – 4.772E-07 – 2.651E-06 – 3.364E-06 –

80 2.529E-08 3.991 2.972E-08 4.005 1.899E-07 3.803 2.350E-07 3.840

160 1.586E-09 3.996 1.853E-09 4.004 1.271E-08 3.901 1.551E-08 3.921

320 9.923E-11 3.998 1.156E-10 4.002 8.223E-10 3.950 9.963E-10 3.961

640 6.206E-12 3.999 7.222E-12 4.001 5.229E-11 3.975 6.311E-11 3.981

1280 3.880E-13 4.000 4.512E-13 4.001 3.296E-12 3.988 3.971E-12 3.990
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Fig. 4.28: The sixth order scheme and the new SILW method with β = 0.3, kd = 1,
Ca = Cb = 1− 10−8, tend = 1.0 and CFL condition (4.27). Left: α = 1.18 and N = 320;
Right: α = 1.19 and N = 640.

Tab. 4.13: The sixth order scheme with β = 0.07, α = 3.68, kd = 1, tend = 1.0 and CFL
condition (4.27) for the heat equation with Neumann boundary conditions.

N Ca = 10−8, Cb = 10−8 Ca = 1− 10−8, Cb = 1− 10−8

L2 error order L∞ error order L2 error order L∞ error order

40 1.457E-09 – 1.815E-09 – 1.627E-08 – 2.106E-08 –

80 2.316E-11 5.975 2.839E-11 5.998 3.090E-10 5.719 3.872E-10 5.766

160 3.646E-13 5.989 4.432E-13 6.001 5.322E-12 5.859 6.551E-12 5.885

320 5.718E-15 5.995 6.919E-15 6.001 8.731E-14 5.930 1.065E-13 5.943

640 8.950E-17 5.997 1.081E-16 6.001 1.398E-15 5.965 1.696E-15 5.972

1280 1.400E-18 5.999 1.688E-18 6.000 2.211E-17 5.982 2.676E-17 5.986
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Fig. 4.29: The sixth order scheme and the new SILW method with β = 0.3, kd = 1,
Ca = Cb = 0.39, tend = 1.0 and CFL condition (4.27). Left: α = 1.47 and N = 320;
Right: α = 1.46 and N = 640.
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Fig. 4.30: The eighth order scheme and the new SILW method with β = 0.5, kd = 2,
Ca = Cb = 10−8, tend = 1.0 and CFL condition (4.27). Left: α = 2.13 and N = 320;
Right: α = 2.14 and N = 1280.

33



x

u

1.5 2 2.5 3 3.5
­3E+31

­2.5E+31

­2E+31

­1.5E+31

­1E+31

­5E+30

­9.0072E+15

5E+30

1E+31

1.5E+31

2E+31

2.5E+31

3E+31

x

u

1.5 2 2.5 3 3.5

­0.1

­0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fig. 4.31: The eighth order scheme and the new SILW method with β = 0.5, kd = 2,
Ca = Cb = 0.60, tend = 1.0 and CFL condition (4.27). Left: α = 2.16 and N = 320;
Right: α = 2.15 and N = 1280.

Tab. 4.14: The eighth order scheme with β = 0.65, α = 1.77, kd = 2, tend = 1.0 and CFL
condition (4.27) for the heat equation with Neumann boundary conditions.

N Ca = 10−8, Cb = 10−8 Ca = 1− 10−8, Cb = 1− 10−8

L2 error order L∞ error order L2 error order L∞ error order

40 1.754E-11 – 1.601E-11 – 9.962E-12 – 1.109E-11 –

80 2.731E-13 6.005 2.503E-13 5.999 2.156E-13 5.530 2.093E-13 5.728

160 4.258E-15 6.004 3.911E-15 6.000 3.848E-15 5.808 3.597E-15 5.863

320 6.643E-17 6.002 6.112E-17 6.000 6.346E-17 5.922 5.873E-17 5.937

640 1.037E-18 6.001 9.551E-19 6.000 1.015E-18 5.966 9.367E-19 5.970

1280 1.620E-20 6.001 1.492E-20 6.000 1.603E-20 5.984 1.478E-20 5.986

Tab. 4.15: The eighth order scheme with β = 0.65, α = 1.77, kd = 2, tend = 1.0 and CFL
condition (4.28) for the heat equation with Neumann boundary conditions.

N Ca = 10−8, Cb = 10−8 Ca = 1− 10−8, Cb = 1− 10−8

L2 error order L∞ error order L2 error order L∞ error order

10 5.293E-09 – 5.573E-09 – 7.144E-08 – 1.014E-07 –

20 1.737E-11 8.251 2.306E-11 7.917 7.102E-10 6.652 9.765E-10 6.699

40 6.627E-14 8.034 9.586E-14 7.910 4.520E-12 7.296 5.894E-12 7.372

80 2.588E-16 8.000 3.792E-16 7.982 2.259E-14 7.645 2.846E-14 7.694

160 1.013E-18 7.998 1.484E-18 7.997 9.983E-17 7.822 1.234E-16 7.850

320 3.960E-21 7.998 5.795E-21 8.000 4.148E-19 7.911 5.075E-19 7.926
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Fig. 4.32: The tenth order scheme and the new SILW method with β = 1.36, kd = 4,
Ca = Cb = 1 − 10−8, tend = 1.0. The CFL condition is in (4.27). Left: α = 1.45 and
N = 640; Right: α = 1.46 and N = 1280.
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Fig. 4.33: The tenth order scheme and the new SILW method with β = 1.36, kd = 4,
Ca = Cb = 0.05, tend = 1.0 and CFL condition (4.27). Left: α = 1.67 and N = 80;
Right: α = 1.66 and N = 1280.
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Tab. 4.16: The tenth order scheme with β = 1.94, α = 1.42, kd = 4, tend = 1.0 and CFL
condition (4.27) for the heat equation with Neumann boundary conditions.

N Ca = 10−8, Cb = 10−8 Ca = 1− 10−8, Cb = 1− 10−8

L2 error order L∞ error order L2 error order L∞ error order

40 1.527E-11 – 1.389E-11 – 1.113E-11 – 1.037E-11 –

80 2.370E-13 6.010 2.170E-13 6.001 2.018E-13 5.785 1.871E-13 5.792

160 3.690E-15 6.005 3.390E-15 6.000 3.404E-15 5.890 3.146E-15 5.894

320 5.757E-17 6.002 5.297E-17 6.000 5.528E-17 5.944 5.102E-17 5.946

640 8.988E-19 6.001 8.276E-19 6.000 8.807E-19 5.972 8.122E-19 5.973

1280 1.404E-20 6.001 1.293E-20 6.000 1.390E-20 5.986 1.281E-20 5.986

Tab. 4.17: The tenth order scheme with β = 1.94, α = 1.42, kd = 4, tend = 1.0 and CFL
condition (4.29) for the heat equation with Neumann boundary conditions.

N Ca = 10−8, Cb = 10−8 Ca = 1− 10−8, Cb = 1− 10−8

L2 error order L∞ error order L2 error order L∞ error order

10 9.045E-09 – 1.161E-08 – 3.609E-09 – 5.117E-09 –

20 1.026E-11 9.784 1.361E-11 9.737 1.061E-11 8.410 1.441E-11 8.472

40 1.077E-14 9.896 1.374E-14 9.952 1.840E-14 9.172 2.377E-14 9.244

80 1.085E-17 9.956 1.347E-17 9.995 2.405E-17 9.580 3.009E-17 9.626

160 1.074E-20 9.980 1.313E-20 10.002 2.719E-20 9.789 3.342E-20 9.814
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5 Concluding Remarks

In this paper, we study the construction of numerical boundary conditions and sta-

bility analysis issue for high order central difference schemes for parabolic equation with

both Dirichlet and Neumann boundary conditions on a finite domain. The new type

of SILW method utilizes “interpolation” and “extrapolation” to get the values of the

ghost points. First of all, we use the interior points to get a interpolation polynomial

p(x) and evaluate some artificial auxiliary point values by p(x). Next, employ the val-

ues of artificial auxiliary points and spatial derivatives at boundary point obtained via

the ILW procedure to get the extrapolation polynomial q(x). Finally, approximation

values of ghost points are got via q(x). Appropriate selection of the artificial auxiliary

points used in the new type of SILW method provides a powerful guarantee for the sta-

bility of the high order schemes for the diffusion equation with initial-boundary value

conditions. Stability analysis is performed by both the Godunov-Ryabenkii analysis

and the eigenvalue spectrum visualization method for semi-discrete and fully-discrete

schemes. Although the eigenvalue spectrum visualization method is not as accurate as

the Godunov-Ryabenkii analysis, but they can attain consistent results. Through sta-

bility analysis, we can get the range of β and (kd)min where there exists a corresponding

range of α to get a stable scheme for all Ca ∈ [0, 1) and Cb ∈ [0, 1) under the standard

CFL condition for the corresponding periodic problems in Tab. 3.1. Numerical results

not only validate the stability and instability results predicted by the analysis but also

show the high order accuracy and efficiency of our schemes.

A Parameter selections for different schemes

Here, we present stability results of some different values of β and (kd)min for both

Dirichlet and Neumann boundary conditions for fully-discrete schemes in Sect. 2.1.

Ranges of α which can ensure stability for all Ca ∈ [0, 1) and Cb ∈ [0, 1) under the

standard CFL condition in Tab. 3.1 can be found in Tab. A.18–A.22.
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Tab. A.18: range of α for different β for the 2nd scheme.

Dirichlet boundary condition

with kd = 1

Neumann boundary condition

with kd = 1

β α β α

0.1 [0.10,5.0] 0.01 [0.98,5.0]

0.64 [0.10,5.0] 0.56 [0.62,1.71]

1.19 [0.39,5.0] 1.12 [0.45,0.89]

1.73 [0.38,5.0] 1.67 [0.36,0.61]

2.28 [0.46,5.0] 2.23 [0.29,0.46]

2.82 [0.46,5.0] 2.78 [0.25,0.38]

3.37 [0.46,5.0] 3.34 [0.21,0.32]

3.91 [0.46,5.0] 3.89 [0.19,0.27]

4.46 [0.46,5.0] 4.45 [0.17,0.24]

5.0 [0.46,5.0] 5.0 [0.15,0.21]

Tab. A.19: range of α for different β for the 4th scheme.

Dirichlet boundary condition

with kd = 1

Neumann boundary condition

with kd = 1

β α β α

0.1 [4.88,5.0] 0.02 [4.27,5.0]

0.64 [1.03,3.4] 0.08 [1.75,5.0]

1.19 [0.65,2.19] 0.15 [1.24,3.72]

1.73 [0.49,1.66] 0.21 [1.12,2.80]

2.28 [0.40,1.34] 0.28 [1.07,2.20]

2.82 [0.33,1.13] 0.34 [1.04,1.87]

3.37 [0.29,0.98] 0.41 [1.01,1.59]

3.91 [0.26,0.86] 0.47 [0.99,1.41]

4.46 [0.23,0.77] 0.54 [0.98,1.23]

5.0 [0.21,0.70] 0.60 [1.0,1.08]
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Tab. A.20: range of α for different β for the 6th scheme.

Dirichlet boundary condition

with kd = 1

Neumann boundary condition

with kd = 1

β α β α

0.39 [1.61,1.71] 0.03 [4.73,5.0]

0.90 [0.95,1.24] 0.07 [2.68,4.68]

1.41 [0.73,0.95] 0.11 [2.04,3.21]

1.93 [0.60,0.78] 0.15 [1.72,2.50]

2.44 [0.51,0.67] 0.19 [1.51,2.08]

2.95 [0.45,0.59] 0.24 [1.33,1.74]

3.46 [0.40,0.52] 0.28 [1.23,1.54]

3.98 [0.36,0.47] 0.32 [1.15,1.38]

4.49 [0.33,0.43] 0.36 [1.08,1.25]

5.0 [0.31,0.40] 0.40 [1.07,1.1]

Tab. A.21: range of α for different β for the 8th scheme.

Dirichlet boundary condition

with kd = 2

Neumann boundary condition

with kd = 2

β α β α

0.38 [1.99,2.11] 0.48 [2.21,2.21]

0.89 [0.90,1.32] 0.50 [2.14,2.15]

1.41 [0.61,0.88] 0.53 [2.03,2.08]

1.92 [0.48,0.70] 0.55 [1.97,2.03]

2.43 [0.42,0.60] 0.58 [1.88,1.97]

2.95 [0.37,0.52] 0.60 [1.82,1.93]

3.46 [0.33,0.46] 0.63 [1.75,1.87]

3.97 [0.30,0.42] 0.65 [1.71,1.83]

4.49 [0.28,0.38] 0.68 [1.70,1.78]

5.0 [0.26,0.35] 0.70 [1.71,1.73]
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Tab. A.22: range of α for different β for the 10th scheme.

Dirichlet boundary condition

with kd = 2

Neumann boundary condition

with kd = 4

β α β α

0.46 [1.67,1.71] 1.07 [1.77,1.78]

0.96 [0.91,1.02] 1.17 [1.65,1.75]

1.47 [0.72,0.78] 1.26 [1.55,1.71]

1.97 [0.61,0.65] 1.36 [1.46,1.66]

2.48 [0.53,0.56] 1.46 [1.44,1.61]

2.98 [0.47,0.50] 1.55 [1.44,1.57]

3.49 [0.43,0.45] 1.65 [1.43,1.53]

3.99 [0.39,0.42] 1.75 [1.42,1.49]

4.50 [0.36,0.38] 1.84 [1.42,1.46]

5.0 [0.33,0.36] 1.94 [1.42,1.42]
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