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Abstract: A simple, general framework is proposed to construct arbitrary order glob-

ally divergence-free discontinuous Galerkin (DG) scheme for ideal magnetohydrodynamic

(MHD) equations on unstructured meshes. Similar to the approaches in [3, 41], our

framework defines normal magnetic components on edges, updates them over time, and

then uses these to reconstruct the globally divergence-free magnetic field. In particular,

we design the 1D updating scheme for the normal magnetic component on each edge,

and enhance the numerical flux selection to improve stability. Additionally, we achieve

a significant improvement by utilizing mesh geometry and introducing variable substitu-

tion, resulting in a cell-independent reconstruction formulation that is both efficient and

easy to implement. Numerical experiments confirm both the efficiency and effectiveness

of our proposed method.

Key Words: discontinuous Galerkin method, high-order accuracy, magnetohydrody-

namics, globally divergence-free, unstructured meshes.

1 Introduction

In this study, we investigate the compressible ideal magnetohydrodynamic (MHD)

equations, which describe the motion of charged fluids or charged particles such as plas-

mas, electrolytes, and liquid metals. MHD equations are widely applied in space weather

forecasting, astrophysics, plasma physics, and engineering. Recent advances in high-

order methods have enabled researchers to achieve high-resolution solutions with reduced

computational cost, such as finite difference methods [10, 31], finite volume methods [3],

spectral methods [30], finite element methods [21], and discontinuous Galerkin (DG)

methods [24, 29, 5]. This study specifically focuses on the DG method.

The DG method was first proposed by Reed and Hill in 1973 [34] for solving neutron

transport equations. Cockburn and Shu made significant improvements to it, proposing
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the Runge-Kutta DG (RKDG) framework [14, 13, 11, 15, 16] for hyperbolic conservation

laws. This framework uses DG discretization in space, strong stability-preserving Runge-

Kutta (SSP-RK) methods in time, and applies nonlinear limiters at each RK stage

to suppress numerical oscillations near discontinuities. The DG method offers several

advantages, including flexibility, conservation properties, support for hanging nodes, and

high parallel efficiency.

Mathematically, the MHD equation is a set of nonlinear conservation laws governing

mass, momentum, energy, and magnetic field. Additionally, the magnetic field must

satisfy a crucial divergence-free constraint. That is, if the initial magnetic field has

zero divergence, then the exact solution maintains zero magnetic field divergence at any

time. A major challenge in numerical simulation of MHD equations is preserving the

divergence-free property in the discrete sense. In fact, most of the standard numerical

methods can not directly satisfy this condition, leading to computational instability [4].

To overcome this challenge, researchers have developed four primary approaches in the

literature: 8-wave formulation [33], projection methods [37], divergence cleaning methods

[17, 8], and constrained transport methods [18, 1, 10, 43].

In particular, the DG methods are primarily incorporated within the constrained

transport framework. In [12], Cockburn, Li, and Shu first proposed the locally divergence-

free method for Maxwell equations, then Li and Shu extended it to MHD equations

[24]. This method employs a specialized finite element space for the magnetic field, en-

suring the divergence of magnetic field is exactly zero inside each cell. However, the

magnetic field remains discontinuous across cell interfaces, resulting in the failure of

divergence-free condition globally. To address this, inspired by the finite volume method

in [2], Li et al. proposed the globally divergence-free central DG framework in [26, 25].

These methods define normal magnetic components as univariate polynomials on cell

interfaces, update them using the magnetic induction equation, and subsequently recon-

struct a globally divergence-free interior magnetic field at each RK stage using these

components. This approach has been extensively developed and applied within the DG

framework [19, 7, 5, 27, 28].

However, the aforementioned work has all been conducted on structured meshes. For

unstructured meshes, the situation becomes more complex. When defining the normal

magnetic components, the geometric information of the mesh must also be considered,

and the updating scheme for the normal magnetic components needs to be carefully re-

designed. Moreover, reconstructing the magnetic field on unstructured meshes becomes

more difficult. In [41], a finite volume weighted essentially non-oscillatory (WENO)

method was proposed, which first designs the updating scheme for induction equations

on unstructured meshes. This work only realized third-order accuracy since the com-

plexity of their reconstruction. Moreover, the numerical flux design in this work employs

a simplistic approach, failing to simultaneously account for contributions from both hor-

izontal and vertical directions. This work has been extended to central DG methods and

central finite volume methods in [42]. The reconstruction is also complex, and they only

realized second-order accuracy. To simplify the reconstruction, Balsara et al. proposed
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the least-squares reconstruction in finite volume framework [3], which provides a unified

framework for arbitrary order accuracy and successfully achieved reconstructions up to

fifth order. However, this reconstruction depends on the geometry of cell. Therefore,

either it requires solving a linear system on each cell, or it demands substantial memory

to store pre-computed inverse matrices for every cell.

In this work, we are aiming to construct a globally divergence-free DG scheme for

unstructured meshes under this framework, which addresses the aforementioned chal-

lenges. Based on the foregoing discussions, there are two key points in the design of the

scheme. The first is the updating scheme of induction equation for the normal magnetic

components on edges. In this regard, we carefully redesign the 1D and 2D numerical

fluxes to construct the updating scheme, which is an improvement of the selection in [41].

The second is the reconstruction in cells. In this regard, we follow the idea of Balsara in

[3], but by utilizing the geometry of mesh, we introduce a cell-independent least-squares

reconstruction with a variable substitution, which can significantly enhance efficiency

while maintaining the accuracy. In principle, it is also applicable to moving meshes.

To the best of our knowledge, this is the first globally divergence-free DG method for

unstructured meshes. Moreover, similar to [3], our framework also provides a unified

approach for any order of finite element space, but offers simpler implementation.

The rest of this paper is organized as follows. Section 2 presents a detailed formulation

of the globally divergence-free DG scheme and its implementation. In Section 3, various

numerical examples are provided to demonstrate the efficiency and effectiveness of the

proposed scheme. Section 4 concludes with a discussion of the findings.

2 Numerical method

We consider the two-dimensional ideal MHD equations

∂q

∂t
+∇ · F(q) = 0, (2.1)

where q = (ρ, ux, uy, uz, E , Bx, By, Bz)
T ,

F (q) =



ρux ρuy

ρu2
x + p⋆ −B2

x ρuxuy −BxBy

ρuxuy −BxBy ρu2
y + p⋆ −B2

y

ρuxuz −BxBz ρuyuz −ByBz

ux (E + p⋆)−Bx (u ·B) uy (E + p⋆)−By (u ·B)

0 uyBx − uxBy

uxBy − uyBx 0

uxBz − uzBx uyBz − uzBy


,
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with

E =
p

γ − 1
+

1

2
ρ ∥u∥2 + 1

2
∥B∥2 . (2.2)

Here, ρ is the mass density, ρu is the momentum, E is the total energy, p is the hydrody-

namic pressure, B is the magnetic field, γ = 5/3 is the ideal gas constant, p⋆ = p+∥B∥2 /2
is the total pressure, and ∥ · ∥ denotes the Euclidean vector norm. Taking divergence of

the magnetic field equation yields

∂ (∇ ·B)

∂t
= 0.

Hence, if the divergence of the exact magnetic field is zero initially, then it will remain

zero for all time, i.e.

∇ ·B = 0. (2.3)

This is called the divergence-free property. A main challenge for numerical schemes is

to preserve this property in a discrete sense. Otherwise, the failure in preserving this

property may cause non-physical structure and numerical instabilities in the simulation.

In this work, we are aiming to design a high-order DG method for the MHD equation

(2.1) on unstructured meshes, which maintains the divergence-free property globally.

2.1 Runge-Kutta discontinuous Galerkin framework

Assume the computational domain Ω is covered by shape-regular non-overlapping

triangles K = {K} with edges E = {e : e ⊂ ∂K}. The maximum and minimum lengths

of the edges in the mesh are denoted by hmax and hmin. Without loss of generality, we

number the vertices P1, P2, P3 of a cell in anticlockwise order. In particular, we assume

ei is the opposite edge of Pi. And the unit outer normal vectors on ei is denoted by ni.

A schematic diagram is shown in Fig. 2.1.

K

e2

e1
e3

P1

P2

P3

n1

n3

n2

Figure 2.1. The notations of a cell K.
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Define the finite element space

V k
h =

{
w(x, y) : w(x, y)|K ∈ Pk(K), ∀K ∈ K

}
. (2.4)

Then, the vector finite element space is defined as Vk
h = [V k

h ]
8. The semi-discrete DG

scheme reads: Find qh ∈ Vk
h, such that for any K ∈ K and w ∈ Vk

h,∫
K

∂qh

∂t
·wdK −

∫
K

F (qh) : ∇wdK +
∑
e⊂∂K

∫
e

h
(
qint,qext,n

)
·wds = 0. (2.5)

Here, qint, qext are one-sided limiters from inside and outside of the cell K respectively,

n is the unit outer normal vector of edge e, and h is the numerical flux consistent with

F(q) · n. In this paper, the Lax-Friedrichs (LF) flux is considered

h(q−,q+,n) =
1

2

(
F(q−) + F(q+)

)
· n− 1

2
α(q+ − q−), (2.6)

where α is the local maximal absolute wave speed along direction n. It is computed in

the same way as in [10].

The semi-discrete DG discretization (2.5) can be treated as an ODE system

dqh

dt
= Lh(qh).

In this work, it is evolved by the 10-stage, fourth-order Runge-Kutta method by Ketch-

eson [22]. Since it is a combination of Euler forward, we will take Euler forward as

an example in the following discussion. All algorithms and theoretical analysis can be

extended to Runge-Kutta directly.

2.2 The globally divergence-free method

It is known that the scheme (2.5) does not necessarily satisfy the divergence-free

condition. In this subsection, following the framework in [25, 19, 5], we will construct

the globally divergence-free (GDF) DG method on unstructured meshes.

First, we recall the definition of a GDF vector field:

Definition 2.1 (Globally divergence-free). A piecewise smooth vector field Bh on mesh

K is called globally divergence-free, if

1. The interior divergence ∇ ·Bh = 0 in each cell K ∈ K,

2. The normal component Bh · n is continuous at each edge e ∈ E .

In [12, 24], a special locally divergence-free (LDF) finite element space is defined for

the magnetic field B, which satisfies the first condition. However, in their schemes, the

normal magnetic component still has jumps across the edges, hence fails in preserving
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the GDF property. To satisfy the second condition, we can define the normal magnetic

component on each edge e as a univariate polynomial, update it in time, and then use

them to reconstruct a GDF interior magnetic field.

In particular, consider an edge e. Denote its unit normal direction as n = (n1, n2)
T ,

and its unit direction as m = (m1,m2)
T , satisfying (m1,m2) = (−n2, n1). The starting

point and ending point of e along m-direction are denoted by Pstart = (xstart, ystart) and

Pend = (xend, yend) respectively. Note that the normal component B·n is a scalar function

along this edge, we can define a univariate polynomial on reference element I = [−1, 1]

as Be(ξ) ∈ Pk(I) such that Be(ξ) is an approximation of B(P e(ξ)) · n, where

P e(ξ) = (xe(ξ), ye(ξ)) =
1

2
(1 + ξ)Pend +

1

2
(1− ξ)Pstart

is the linear mapping from I to e. Denote the collection B = {Be}e∈E .

Then, introducing the notation Ez(q) = uyBx − uxBy, we can rewrite the governing

equation of Bx and By as

∂Bx

∂t
+

∂Ez

∂y
= 0,

∂By

∂t
− ∂Ez

∂x
= 0. (2.7)

Therefore, we have

∂ (B · n)
∂t

+
∂Ez

∂m
= n1

∂Bx

∂t
+ n2

∂By

∂t
+ (−n2)

∂Ez

∂x
+ n1

∂Ez

∂y
= 0. (2.8)

Notice that (2.8) can be treated as a 1D problem along m-direction, hence we can use

it to update the 1D polynomial Be(ξ). We want to remark that the edge e may belong

to two cells, but we only compute B · n on e once via (2.8). And then we use it to

reconstruct the magnetic field on these two cells such that the normal component is

continuous across e.

Denote the numerical solution at time tn as qn
h = (ρn, (ρu)n, En,Bn) and Bn. In

general, the GDF framework in each Euler step from tn to tn+1 can be summarized as

the following steps:

Algorithm: Globally divergence-free method

Step 1 Compute q̃h = (ρn+1, (ρu)n+1, En+1, B̃) ∈ Vk
h from tn to tn+1 by (2.5) in

each cell.

Step 2 Update Be on each edge by (2.8) from tn to tn+1 to obtain Bn+1 ∈ Pk(e).

Step 3 Use the information of Bn+1 and B̃ to reconstruct a interior GDF magnetic

field Bn+1. Employ it to cover B̃, then obtain qn+1
h = (ρn+1, (ρu)n+1, En+1,Bn+1) ∈ Vk

h.

Moreover, it is worth noting that B must satisfy an additional constraint [5]. In a
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cell K, integrating the divergence-free condition of the exact solution yields

0 =

∫
K

∇ ·B dK =

∫
∂K

(B · n) ds, (2.9)

which is a necessary condition of (2.3). Hence, the quantity B must satisfy the condition

∑
e⊂∂K

|e|
2

∫ 1

−1

Be(ξ) dξ = 0, (2.10)

for all K ∈ K. This is called the cell-average constraint in the following. The constraint

(2.10) is naturally satisfied at initial, and should be preserved at each time step.

Next, we will discuss the evolution of Be on each edge, and the GDF reconstruction

in each cell in detail.

2.2.1 Constraint-preserving scheme for Be

In this subsection, we will discuss the updating scheme on each edge for the normal

magnetic component Be. Since the Bz component is independent of the divergence

condition in 2D cases, we will omit it, and use the notation B = (Bx, By)
T in this and

next subsection for simplicity.

Again, consider an edge e with direction m and normal direction n. Then, the semi-

discrete scheme of (2.8) for normal component is given by: Find Be(ξ) ∈ Pk(I), such

that for all w(ξ) ∈ Pk(I),

|e|
2

∫ 1

−1

∂Be

∂t
wdξ =

∫ 1

−1

Êz
dw

dξ
dξ − Ẽz|Pend

w (1) + Ẽz|Pstart w (−1) . (2.11)

Here, Êz is the 1D numerical flux on the edge e, which is a single value obtained by two

limiters to edge e. Moreover, Ẽz is the 2D numerical flux at vertices Pstart and Pend,

which are obtained based on several limited states at the vertices. In Fig. 2.2, we provide

a schematic diagram of the notations at a vertex Λ. The cells in the anticlockwise and

clockwise directions of an edge e are denoted by acw and cw, respectively. And for the

DG scheme, a key point is the design of Êz and Ẽz.

In the finite volume method [41], the authors suggest to compute the 2D numerical

flux Ẽz by

Ẽz =
1

NΛ

∑
Λ∈e

{
1

2
(Ez (q

cw) + Ez (q
acw))− αn2 (B

acw
x −Bcw

x )

}
, (2.12)

which simply uses information of the 6th component in F and q. NΛ is the number of

e satisfying Λ ∈ e. qcw,acw are the limiting point values at Λ in the corresponding side
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Λ

cw(clockwise)

acw(anticlockwise)

qcw

qacw

e

Figure 2.2. The notations around a vertex Λ.

cell of e. We remark here that in (2.12), the dissipation coefficient of LF flux is doubled

from α/2 to α to ensure stability [41, 19]. However, if we consider a situation where four

cartesian zones come together at a vertex, this formulation only considers the vertical

contribution, but misses the horizontal contribution. On the other hand, the FV scheme

[41] only needs the 2D numerical flux at vertices, but for the DG scheme, we also need

the 1D numerical flux Êz on edges. If we extend the way of (2.12) to compute Êz, i.e.

Êz =
1

2
(Ez(q

cw) + Ez(q
acw))− α

2
n2(B

acw
x −Bcw

x ), (2.13)

the scheme may become unstable in some situations. This will be shown in the numerical

experiments.

In this work, we redesign the formulation of Êz and Ẽz for DG scheme. Let us begin

from Êz(q
cw,qacw,n). In order to utilize both the horizontal and vertical contribution,

we suggest the following three “consistent” principles:

1. When n = (±1, 0), the flux function satisfies

Êz(q
cw,qacw,n) =

1

2
(Ez(q

cw) + Ez(q
acw))± α

2
(Bacw

y −Bcw
y ). (2.14)

2. When n = (0,±1), the flux function satisfies

Êz(q
cw,qacw,n) =

1

2
(Ez(q

cw) + Ez(q
acw))∓ α

2
(Bacw

x −Bcw
x ). (2.15)

3. When qcw = qacw = q, the flux function satisfies

Êz(q,q,n) = Ez(q). (2.16)

The first and second conditions lead to consistency with the formulation on rectangu-

lar meshes [19], and the third condition results in consistency with the function Ez. We
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note here that the formulation (2.13) in [41] fails in the first two conditions. To satisfy

these three conditions, we propose the following formulation for Êz:

Êz(q
cw,qqcw,n) = n2h6(q

cw,qacw,n)− n1h7(q
cw,qacw,n), (2.17)

where h6 and h7, respectively, correspond to the 6th and 7th components of h in (2.6).

Specifically,

Êz =n2h6 (q
cw,qacw,n)− n1h7 (q

cw,qacw,n)

=n2

[
1

2
(Ez (q

cw) + Ez (q
acw))n2 −

1

2
α (Bacw

x −Bcw
x )

]
− n1

[
1

2
(−Ez (q

cw)− Ez (q
acw))n1 −

1

2
α
(
Bacw

y −Bcw
y

)]
=

1

2

(
n2
1 + n2

2

)
(Ez (q

cw) + Ez (q
acw)) +

α

2

[
−n2 (B

acw
x −Bcw

x ) + n1

(
Bacw

y −Bcw
y

)]
=

1

2
(Ez(q

cw) + Ez(q
acw)) +

α

2
m · (Bacw −Bcw) .

(2.18)

It is easy to verify that (2.18) satisfies (2.14) to (2.16). Based on this, we compute the

2D flux Ẽz by

Ẽz =
1

NΛ

∑
Λ∈e

{
1

2
(Ez (q

cw) + Ez (q
acw)) + αm · (Bacw −Bcw)

}
. (2.19)

The design of scheme (2.11) with numerical fluxes (2.18) and (2.19) is one of the main

contributions in this paper. In the numerical experiments, we will show that this modi-

fication can improve the stability of the scheme.

Moreover, for scheme (2.11), we can prove that Be around a cell K satisfies the

cell-average constraint.

Theorem 2.1. For a cell K shown in Fig 2.1, the scheme (2.11) satisfies the cell-average

constraint in the sense of

d

dt

(
3∑

i=1

|ei|
2

∫ 1

−1

Bei(ξ) dξ

)
= 0. (2.20)

Proof. Taking w = 1 in (2.11) for each edge e1, e2, e3, we can get

|e1|
2

∫ 1

−1

∂Be1

∂t
dξ = Ẽz|P3 − Ẽz|P2 ,

|e2|
2

∫ 1

−1

∂Be2

∂t
dξ = Ẽz|P1 − Ẽz|P3 ,
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|e3|
2

∫ 1

−1

∂Be3

∂t
dξ = Ẽz|P2 − Ẽz|P1 .

Summing all these together yields (2.20).

2.2.2 The least-squares reconstruction

Utilizing the magnetic field computed by (2.5) and the normal magnetic components

by (2.11), we are aiming to determine an interior GDF magnetic field Bh ∈ [V k
h ]

2.

Mathematically, the reconstruction problem on a cell K is given by: Find an interior

magnetic field Brec ∈ [Pk(K)]2, such that

∇ ·Brec = 0 in K, (2.21)

Brec(xei(ξ), yei(ξ)) · ni = Bei(ξ) on I, i = 1, 2, 3. (2.22)

For the approximation[Pk]2 , it can be verified that the DOFs Nd and number of condi-

tions Nc of the above reconstruction problem respectively are

Nd = (k + 1)(k + 2), Nc = 3(k + 1) +
k(k + 1)

2
− 1.

Here we note that the cell-average constraint can reduce one condition [5, 28]. It can be

verified that Nd ≥ Nc holds for any k ∈ N. Hence, the reconstruction problem is solvable

for arbitrary approximation [Pk]2, but only uniquely determined for k = 0, 1. It is worth

noting that there is a point differ from rectangular meshes: For rectangular meshes, the

number of conditions Nc is larger than the DOFs of [Pk]2, thus we need to utilize [Pk+1]2

as the interior magnetic field to match the number of conditions [5]. But for triangular

meshes, using the space [Pk]2 is sufficient.

For k ≥ 2, there are extra DOFs to be determined. A natural way is to determine

these extra DOFs in the least-squares sense, which was first introduced in the finite

volume method [3]. However, the linear system of the least-squares equation in [3]

depends on the geometry of a specific mesh, which may lead to issues of storage and

computational efficiency for non-uniform meshes or moving meshes. To address this,

we will construct a cell-independent least-squares reconstruction, which is unified for

arbitrary k, and does not rely on the specific form of the basis functions.

At first, we give a brief review of the geometric transformations between the physical

cell K in Fig. 2.1 and reference cell K0 defined as

K0 = {(X, Y ) : X ≥ 0, Y ≥ 0, X + Y ≤ 1},

with P 0
1 = (1, 0), P 0

2 = (0, 1), P 0
3 = (0, 0). The linear mapping N : (x, y) → (X,Y ) is
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given by

X =
1

ΣK

∣∣∣∣∣∣∣∣
1 x y

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣∣ , Y =
1

ΣK

∣∣∣∣∣∣∣∣
1 x1 y1

1 x y

1 x3 y3

∣∣∣∣∣∣∣∣ , ΣK =

∣∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣∣ ,
which satisfies N (Pi) = P 0

i , i = 1, 2, 3. It can be derived that the Jacobian of N is

D :=
∂N (x, y)

∂(x, y)
=

1

ΣK

[
y2 − y3 x3 − x2

y3 − y1 x1 − x3

]
=:

1

ΣK

[
A B

C D

]
.

Suppose the basis functions of Pk in K0 are {ϕl}dl=1, d = (k + 1)(k + 2)/2. Then, the

l-th basis function on a cell K can be represented by

ϕK
l (x, y) := ϕl(N (x, y)) = ϕl(X(x, y), Y (x, y)), l = 1, · · · , d.

Moreover, by the chain rule, we have

∂ϕK
l (x, y)

∂x
=

∂ϕl(X, Y )

∂X

∂X

∂x
+

∂ϕl(X, Y )

∂Y

∂Y

∂x
=

1

ΣK

[
A
∂ϕl

∂X
(X, Y ) + C

∂ϕl

∂Y
(X, Y )

]
,

∂ϕK
l (x, y)

∂y
=

∂ϕl(X, Y )

∂X

∂X

∂y
+

∂ϕl(X, Y )

∂Y

∂Y

∂y
=

1

ΣK

[
B
∂ϕl

∂X
(X, Y ) +D

∂ϕl

∂Y
(X, Y )

]
.

Now we introduce some matrices will be used later. Assume there are sufficient many

quadrature points {PG
m}NG

m=1 insideK0 with weight ωG
m, and 1D quadrature points on each

edge of K0 by {PG,i
m }nG,3

m=1,i=1. Then, the metric terms are defined by

Φ(m; l) = ϕl(P
G
m), ΦX(m; l) =

∂ϕl

∂X
(PG

m), ΦY (m; l) =
∂ϕl

∂Y
(PG

m).

Φi(m; l) = ϕl(P
G,i
m ), i = 1, 2, 3,

and further construct the matrices

Φ,ΦX ,ΦY ∈ RNG×d, Φi ∈ RnG×d, i = 1, 2, 3.

Moreover, the mass matrix is defined by

M = ΦTWΦ, W = diag{ωG
1 , · · · , ωG

NG
}, M2 = diag{M,M}.

It is worth noting that all above matrices rely only on the information of K0, but are
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independent of K. Assume that

Brec
x = a1ϕ

K
1 + · · ·+ adϕ

K
d , Brec

y = b1ϕ
K
1 + · · ·+ bdϕ

K
d ,

and denote a = (a1, · · · , ad)T , b = (b1, · · · , bd)T . Then, the divergence on the interior

quadrature points can be calculated by

∇ ·Brec(PG
m) =

1

ΣK

d∑
l=1

[AΦX(m; l) + CΦY (m; l)] al + [BΦX(m; l) +DΦY (m; l)] bl.

(2.23)

Since the quadrature is exact for Pk polynomials, (2.21) is equivalent to

(AΦX + CΦY )a+ (BΦX +DΦY )b = 0.

Besides, the values of normal component Bei on {PG,i
m }nG

m=1 are denoted by a column

vector Bi. Then similarly, (2.22) is equivalent to

[Φia Φib]ni = Bi, i = 1, 2, 3. (2.24)

Then, combining (2.23) and (2.24), we can obtain a linear system. However, it seems

the system relies on the geometry of K. In order to obtain a cell-independent form, the

key is to represent the normal vectors in the following form

n1 = − 1

|e1|
(A,B)T , n2 = − 1

|e2|
(C,D)T , n3 =

1

|e3|
(A+ C,B +D)T .

Therefore, the linear system combined by (2.23) and (2.24) can be written as
AΦX + CΦY BΦX +DΦY

AΦ1 BΦ1

CΦ2 DΦ2

(A+ C)Φ3 (B +D)Φ3


[

a

b

]
=


0

− |e1|B1

− |e2|B2

|e3|B3

 . (2.25)

Introduce the following variable substitution

α = Aa+Bb, β = Ca+Db,

12



then we have 
ΦX ΦY

Φ1 O

O Φ2

Φ3 Φ3


[
α

β

]
=


0

− |e1|B1

− |e2|B2

|e3|B3

 . (2.26)

Denote (2.26) as Hz = ζ. This system has a unique solution for k = 0, 1. For k ≥ 2, to

determine a unique solution of (2.26), we are aiming to solve the optimization problem

min
z

∥z− z̃∥2M2
, s.t. Hz = ζ, (2.27)

where ∥z∥2M2
= zTM2z,

z̃ =

[
α̃

β̃

]
, α̃ = Aã+Bb̃, β̃ = Cã+Db̃,

and B̃ =

(
d∑

l=1

ãlϕ
K
l ,

d∑
l=1

b̃lϕ
K
l

)
is magnetic field computed by (2.5).

Next, we provide a method to solve (2.27), which is also used in the nodal DG

framework [27]. Assume the singular value decomposition of H is H = USVT , where

U ∈ R(NG+3nG)×r, S ∈ Rr×r, V ∈ R2d×r, r = rank(H).

Then we can rewrite (2.26) as

SVTz = UTζ. (2.28)

Denote it by

H1z = ζ1. (2.29)

Then the solution of (2.27) can be obtained by solving the following linear system[
M2 HT

1

H1 O

][
z

λ

]
=

[
M2z̃

ζ1

]
, (2.30)

where λ is the Lagrange multiplier. Since H1 is of full row rank, (2.30) has a unique

solution. Denote the inverse of the above coefficient matrix by

G =

[
G1 G2

G3 G4

]
,

13



then the explicit solution of (2.30) is

z = G1M2z̃+G2ζ1. (2.31)

Notice that the elements ofG only depend on the values and derivatives of basis functions

at several quadrature points on the reference triangle K0, but not the information of K.

For any given basis functions and the quadrature rules, we can save the inverse matrix

G only once in numerical implementation before the computation, then the algorithm

can be realized by just a matrix multiply for every cell K ∈ K, instead of solving the

linear system (2.30). In particular, this will significantly reduce the computational cost

and storage requirements for non-uniform meshes and moving meshes [3].

Remark 2.1. Different from the original least-squares reconstruction in [3], we introduce

the auxiliary variable α,β,[
αl

βl

]
= ΣKD

[
al

bl

]
, l = 1, · · · , d,

and try to solve the system (2.26). In fact, our optimization problem (2.27) does not

minimize the standard L2 norm of Brec − B̃. Instead, it focuses on minimizing the L2

norm of D(Brec − B̃). Despite this modification, the approach successfully maintains

both accuracy and the GDF property.

2.3 The jump filter

For problems containing strong shocks, a limiter should be added to suppress spurious

oscillations. In this paper, we apply a simplified jump filter [39] to the solution. The

original version is designed for rectangular meshes, here we perform a straightforward

extension and apply it to triangular meshes.

For a cell K, the conservative variables are modified by

q
(mod)
h |K = qK + θK (qh|K − qK) . (2.32)

Here, qK is the cell average, and q
(mod)
h denotes the modified numerical solution. The

parameter θK = exp(−σK∆t) ∈ [0, 1] with σK = max
1≤m≤8

σm
K ,

σm
K = cf

∫
∂K

1

hK

|[q(m)]|+ 2
(
|[q(m)

x ]|+ |[q(m)
y

]|
)
ds, cf = c0

ρKαK

EK + p⋆K
,

and hK is the diameter of K. q(m) is the m-th component of qh. [w] is the jump of

a function w on the edge. αK is the local absolutely maximal wave speed in cell K.

Meanwhile, c0 is a free parameter, a suggested range is 0.01 ≤ c0 ≤ 1.
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For the GDF method, an additional limiting step should be applied to B on inter-

faces. Similar to [5, 27, 28], we first limit the interior solution qh in each K by (2.32),

simultaneously obtaining the limiting coefficient θK for each cell. Subsequently, the

normal magnetic component Be can be effectively limited by

Be,(mod) = B
e
+ θe(B

e − B
e
), with θe = min{θK : e ⊂ ∂K}. (2.33)

The limiting step (2.32) and (2.33) should be formulated before the reconstruction step

(2.27), i.e., added between Step 2 and Step 3 in Algorithm. Since (2.33) does not

change the cell-average of Be, the cell-average constraint (2.10) still holds [27]. Conse-

quently, this approach maintains the GDF property for the reconstructed interior mag-

netic field.

3 Numerical experiments

In this section, we simulate the ideal MHD equation to verify the accuracy, efficiency,

and stability of our scheme. We use the CFL condition

∆t = CFL · hmin

αΩ

, CFL =
1

2k + 1
,

for all tests, where αΩ is an estimate of global maximal wave speed. Without special

declaration, we only present the results of k = 2 of the proposed GDF DG method. The

jump filter introduced in Section 2.3 is applied for all tests.

For some problems, we will also compare the performance of the proposed GDF

method with the standard DG method (denoted by “Base”) and LDF method on the

same meshes and parameters.

Furthermore, we study the divergence in each cell K measured by [12]

∥divB∥K =

∫
K

|∇ ·B| dK +

∫
∂K

|[B · n]| ds,

and the total divergence norm on Ω defined by

∥divB∥ =
1

|Ω|
∑
K∈K

∥divB∥K .

It is clear that for GDF method, the quantity ∥divB∥ is expected to be at machine level.

And in [12], it is discussed that for Base scheme and LDF scheme, an expected result is

∥divB∥ = O(hk) for smooth solutions.

Example 3.1. (Smooth MHD vortex.)
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First, we consider the MHD vortex problem to test the accuracy of our scheme, which

is originally introduced by Shu [36] in the hydrodynamical system, and was extended to

MHD equations by Balsara [1]. The computational domain is set as Ω = [−10, 10] ×
[−10, 10] with periodic boundary conditions in each direction. The initial data is a steady

flow with a perturbation:

(ρ, ux, uy, uz, Bx, By, Bz, p) = (1, 1 + δux, 1 + δuy, 0, δBx, δBy, 0, 1 + δp).

The perturbation satisfies

(δux, δuy) =
η

2π
∇̂ × exp

{
0.5
(
1− r2

)}
,

(δBx, δBy) =
ξ

2π
∇̂ × exp

{
0.5
(
1− r2

)}
,

δp =
(
ξ2
(
1− r2

)
− η2

) 1

8π2
exp

(
1− r2

)
,

where ∇̂ × w := (∂yw,−∂xw), and r2 = x2 + y2. We take η = ξ = 1 in computation.

The exact solution is the initial condition propagates with a velocity of (1, 1).

We run this problem until T = 20 with k = 2, 3, 4. A sample mesh is shown in Fig

3.3. The L2 errors and orders of Bx are presented in Table 3.1. It can be seen that for all

k = 2, 3, 4, the Base scheme shows the loss of accuracy, especially for k = 4. Meanwhile,

the LDF and GDF schemes could maintain the designed (k + 1)-th accuracy.

Moreover, the divergence norms and orders are shown in Table 3.2, and similar sit-

uations have also occurred in the Base scheme. Besides, the divergence norm of LDF

scheme achieves k-th order, and the GDF scheme exactly preserves the divergence norm

at machine level. We want to remark here that the loss of accuracy in Base scheme can

also be found in [23]. To further analyze this phenomenon, we present the evolution of

divergence norm in Fig. 3.4 of different schemes with mesh refinement from N = 15372

(denoted by 15K) to N = 60204 (denoted by 60K) for k = 4. As time increases, the

divergence of the Base scheme demonstrates a loss of order accuracy, while the LDF

scheme maintains the accuracy well, and the GDF scheme maintains the divergence at

machine error level.

Example 3.2. (Magnetic field loop.)

We consider the magnetic field loop test [20] to show the stability of our scheme, and

use the same setup in [26]. The computational domain is Ω = [−1, 1]× [−0.5, 0.5] with

periodic boundary condition. The initial data is given by

(ρ, ux, uy, uz, Bz, p) = (1, 2, 1, 1, 0, 1),
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Figure 3.3. Example 3.1: A Sample of mesh.

Table 3.1. Example 3.1: Smooth MHD vortex. L2 errors and orders of Bx at T = 20.

N Base Order LDF Order GDF Order
k = 2

1,100 6.57E-04 – 6.04E-04 – 1.41E-03 –
4,004 1.53E-04 2.10 4.49E-05 3.75 2.11E-04 2.74
15,372 3.79E-05 2.01 4.67E-06 3.27 2.99E-05 2.82
60,204 8.49E-06 2.16 7.41E-07 2.66 4.03E-06 2.89

k = 3
1,100 1.82E-04 – 8.55E-05 – 2.24E-04 –
4,004 1.51E-05 3.59 3.68E-06 4.54 7.74E-06 4.86
15,372 2.15E-06 2.81 1.51E-07 4.61 2.86E-07 4.76
60,204 3.20E-07 2.75 7.89E-09 4.26 1.11E-08 4.69

k = 4
1,100 3.61E-05 – 1.23E-05 – 2.39E-05 –
4,004 3.96E-06 3.19 3.23E-07 5.25 5.73E-07 5.38
15,372 3.65E-07 3.44 9.00E-09 5.17 1.31E-08 5.45
60,204 6.94E-08 2.39 2.78E-10 5.02 3.67E-10 5.16

and

(Bx, By) = ∇̂ × Az, Az =

A0 (R− r) , r ≤ R,

0, r > R,

where A0 = 10−3, R = 0.3, r =
√
x2 + y2. To clearly show the instability of the

formulation by Xu et al. [41] (denoted by “GDF-Xu”), we use a special uniform mesh

for this example. A sample of mesh is shown in Fig. 3.5.

We simulate this problem until T = 2. In Fig. 3.6, we present the numerical solution

of
√
B2

x +B2
y on N = 128 × 64 × 2 = 16384 uniform meshes with different schemes

at the final time. For the Base scheme, the solution left non-physical traces during its

movement [38]. And for the GDF-Xu scheme, since their formulation does not consider
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Table 3.2. Example 3.1: Smooth MHD vortex. Divergence norm at T = 20.

N Base Order LDF Order GDF Order
k = 2

1,100 1.29E-03 – 2.61E-04 – 2.68E-16 –
4,004 5.77E-04 1.16 8.14E-05 1.68 7.01E-16 –
15,372 2.26E-04 1.35 2.29E-05 1.83 1.84E-15 –
60,204 8.64E-05 1.39 5.77E-06 1.99 5.03E-15 –

k = 3
1,100 5.08E-04 – 4.56E-05 – 3.55E-16 –
4,004 8.11E-05 2.65 4.69E-06 3.28 8.68E-16 –
15,372 1.97E-05 2.04 4.55E-07 3.37 2.26E-15 –
60,204 6.11E-06 1.69 5.45E-08 3.06 6.05E-15 –

k = 4
1,100 8.53E-05 – 4.83E-06 – 4.16E-16 –
4,004 1.48E-05 2.53 3.23E-07 3.90 9.66E-16 –
15,372 2.42E-06 2.61 2.14E-08 3.92 2.54E-15 –
60,204 1.30E-06 0.90 1.37E-09 3.97 6.76E-15 –

0 5 10 15 20

10
-15

10
-10

10
-5

Base 15K

Base 60K

LDF 15K

LDF 60K

GDF 15K

GDF 60K

Figure 3.4. Example 3.1: Smooth MHD vortex. The time evolution of divergence norm
with mesh refinement.

the horizontal jumps of the solution, it can be seen that the result shows a strong

instability. Meanwhile, both the LDF scheme and the proposed GDF scheme give well-

resolved results. However, our GDF scheme has better performance in preserving the

structure of the magnetic field.

Example 3.3. (Orszag-Tang vortex.)

We consider the Orszag-Tang problem [32], which is a widely used test example in

the literature due to the complex interaction between several shocks generated as the

whole system evolves. The computational domain is set as Ω = [0, 2π] × [0, 2π] with
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Figure 3.5. Example 3.2: A sample of uniform mesh.
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(d) GDF.

Figure 3.6. Example 3.2: Magnetic field loop. Numerical solution of
√

B2
x +B2

y of
different schemes at T = 2. 15 contour lines are used.

periodic boundary conditions. And the initial data is given by

(ρ, ux, uy, uz, Bx, By, Bz, p) = (γ2,− sin x, sin y, 0,− sin x, sin 2y, 0, γ).

The mesh is the same to Fig. 3.3. Using N = 152988 cells with hmax = 0.0324, the

results at T = 0.5, 2, 3, 4 are shown in Fig. 3.7. One can see that in the early stage,

the solution is quite smooth. At T = 2, shocks have already appeared. At later times,

the shocks interact with each other and the structure gets quite complicated, and the

GDF scheme simulates these processes well. We also note here that the Base scheme will
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blow up before T = 3, and the LDF and GDF schemes can simulate stably. In Fig. 3.8,

we compare the divergence at T = 3 for LDF and GDF schemes. It can be seen that

for LDF scheme, although the interior divergence is zero, the jump of normal magnetic

component near discontinuity is still very large.
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(d) T = 4.

Figure 3.7. Example 3.3: Orszag-Tang vortex. The results of density on N = 152988
meshes. 15 contour lines are used.

Example 3.4. (Rotor.)

We consider the rotor problem originally presented by Balsara [6], and follow the

setup in [37]. This test example involves a dense fluid disc rotating at the center while

the surrounding fluid remains stationary. The magnetic field encircles the rotating dense

fluid, transforming it into an oblate formation. In [24], it is demonstrated that insufficient

control of magnetic field divergence errors in numerical schemes can result in observable

Mach number distortions.

The computational domain is taken as a disk

Ω = {(x, y) : (x− 0.5)2 + (y − 0.5)2 ≤ 0.652}
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(a) LDF. (b) GDF.

Figure 3.8. Example 3.3: Orszag-Tang vortex. The divergence of different schemes at
T = 3 on N = 152988 meshes.

instead of the original setup Ω = [0, 1] × [0, 1]. Outflow boundary condition is imposed

on ∂Ω. The initial data is given by

(ρ, ux, uy) =


(10,− (y − 0.5) /r0, (x− 0.5) /r0) , r < r0,

(1 + 9f,−f (y − 0.5) /r, f (x− 0.5) /r) , r0 < r < r1,

(1, 0, 0) , r > r1,

where

r =
√

(x− 0.5)2 + (y − 0.5)2, r1 = 0.115, r0 = 0.1, f =
(r1 − r)

(r1 − r0)
,

and p = 0.5, uz = By = Bz = 0, Bx = 2.5/
√
4π. A sample of mesh is shown in Fig. 3.9.

Figure 3.9. Example 3.4: Rotor. A Sample mesh.

We run this problem on N = 249608 cells with hmax = 0.0051 (denoted by “coarse”)

and N = 953688 cells with hmax = 0.0027 (denoted by “fine”), respectively. In Fig.
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3.10, we present the results of the GDF scheme on the coarse mesh at T = 0.295, all the

quantities are resolved well. Moreover, we compare the Mach number at central area

computed by the three schemes. In Fig. 3.11, we present the results of Mach number at

central area on both coarse mesh and fine mesh. For the Base scheme, significant Mach

number distortions are observed, while the results from the LDF and GDF schemes are

considerably improved. However, in the vicinity of (0.4, 0.45), it seems the Mach number

computed using the LDF formulation still exhibits minor distortions.

(a) Density. (b) Pressure.

(c) Mach number ∥u∥ /c. (d) Magnetic pressure 0.5 ∥B∥2.

Figure 3.10. Example 3.4: Rotor. The numerical solution on N = 246908 meshes at
T = 0.295.

To further study this phenomenon, in Fig. 3.12 we compare the 1D cuts of Mach

number along x = 0.413 and x = 0.545 for different schemes with mesh refinement.

The reference solution (denoted by “Ref”) is computed by the LDF DG in [24] scheme

on 800 × 800 rectangular meshes, which has been verified to be a reliable result. For

the Base scheme, the solution exhibits non-physical behavior in both cross-sections. For

LDF scheme, at x = 0.545, the scheme captures the structures well. But at x = 0.413,

it can be seen that the result of LDF scheme deviates from the reference solution near

y = 0.45. Moreover, this non-physical structure does not diminish with mesh refinement.
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(d) LDF, N = 953688.
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(f) GDF, N = 953688.

Figure 3.11. Example 3.4: Rotor. Mach number at central area with different schemes
at T = 0.295. 30 contour lines are used.

Meanwhile, the GDF scheme resolves the Mach number well on both cross-sections, and

demonstrates good convergence properties. This indicates that GDF scheme is the most

stable among these three schemes for this example.
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Remark 3.1. We also test the standard setup of rotor problem on Ω = [0, 1] × [0, 1]

with a uniform triangular mesh as shown in Fig. 3.5. An interesting result is that for

uniform meshes, the LDF scheme does not exhibit the distortion shown in Fig. 3.11 and

Fig. 3.12, but instead converges well to the reference solution as in the rectangular case

[24]. Based on this, we guess that the issue arises caused by the LDF scheme does not

fully satisfy the divergence-free constraint, resulting in slight non-physical behavior when

applied to complex meshes.

Example 3.5. (Rotated shock tube.)

Here, we investigate a 2D Riemann problem [37] created by rotating a one-dimensional

shock tube at an angle α = π/4. It is worth noting that the divergence-free property is

crucial for maintaining the constancy of the parallel component B|| := Bx cosα+By sinα.

We will use M1 × N1 × 2 uniform meshes for this example, and the computational

domain is defined as a rectangle Ω = [0, 1]× [0, N1/M1]. In particular, we take N1 = 1.

A sample mesh is shown in Fig. 3.13. The Dirichlet boundary conditions are applied to

the left and right boundaries according to the initial condition, and the top and bottom

boundaries are imposed with the shifted periodic type according to the translational

symmetry, as detailed in [37]. The initial data is

(ρ, ux, uy, uz, Bx, By, Bz, p) =


(
1, 10√

2
, 10√

2
, 0, 0, 5

√
2√

4π
, 0, 20

)
, x+ y < 0.5,(

1, −10√
2
, −10√

2
, 0, 0, 5

√
2√

4π
, 0, 1

)
, x+ y ≥ 0.5.

We run this problem on N = 512 × 1 × 2 = 1024 uniform meshes. The results at

T = 0.08/
√
2 are shown in Fig. 3.14, where the reference solution is computed by a

classical third-order 1D DG scheme using TVB limiter with M = 1 on 10,000 cells for

the non-rotated version, which can be treated as a 1D problem. Moreover, in Fig. 3.15,

we plot the evolution of divergence norm and the 1D cut of divergence along x-direction

at the final time. It can be seen that the B|| component obtained by GDF scheme is

the closest to constant, the LDF scheme is second, while the Base scheme exhibits the

highest error. This corresponds to the same order in which they satisfy the divergence-

free constraint: the GDF scheme fully satisfies the divergence-free property, the LDF

scheme partially satisfies it, while the Base scheme does not satisfy the divergence-free

property in any sense. Moreover, for u⊥ and B⊥ components, the Base scheme and LDF

scheme show minor oscillations, but the oscillation of LDF scheme is smaller than Base

scheme. Meanwhile, the GDF scheme gives the most stable result. As discussed in [24],

it seems that the divergence-free treatments have some “smoothing” effect, which could

enhance the stability of the scheme.

Example 3.6. (Cloud shock interaction.)

Finally, we test the cloud shock interaction problem [35]. This test case examines

a strong rightward-moving MHD shock passing a stationary bubble. The interaction
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Figure 3.12. Example 3.4: Rotor. The 1D cuts of Mach number with mesh refinement.
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Figure 3.13. Example 3.5: Rotated shock tube. A sample mesh.

between the shock and bubble generates highly complex flow structures throughout the

computational domain. These intricate formations surrounding the bubble are partic-

ularly vulnerable to numerical dissipation effects. Therefore, numerical schemes with

lower dissipation offer significant advantages in capturing these structures.

The computational domain is Ω = [0, 1]× [0, 1]. Inflow boundary condition is applied

at the left, and the remaining boundary conditions are outflow. The mesh type is same

to Fig. 3.3. The initial condition consists of a shock initialized at x = 0.05, and a circular

cloud of density 10 and radius 0.15 centered at (0.25, 0.5):

(ρ,u,B, p) =


(3.86859, 11.2536, 0, 0, 0, 2.1826182,−2.1826182, 167.345) in Ω1,

(10, 0, 0, 0, 0, 0, 0.56418598, 0.56418598, 1) in Ω2,

(1, 0, 0, 0, 0, 0, 0.56418598, 0.56418598, 1) in Ω3,

where
Ω1 = {(x, y) : x < 0.05} ,

Ω2 =

{
(x, y) : x ≥ 0.05,

√
(x− 0.25)2 + (y − 0.5)2 < 0.15

}
,

Ω3 =

{
(x, y) : x ≥ 0.05,

√
(x− 0.25)2 + (y − 0.5)2 ≥ 0.15

}
.

We simulate this problem until T = 0.06 on N = 604640 meshes with hmax =

0.0039. The results are presented in Fig. 3.16. Our results demonstrate that the GDF

scheme effectively captures shocks and other intricate flow features with high fidelity.

The computational solution shows strong agreement with previously published findings,

including those presented by [10, 40, 9, 27].

4 Concluding remarks

In this paper, we propose a general globally divergence-free DG framework for solv-

ing the compressible ideal MHD equations on unstructured meshes. We improve the

numerical flux selection in the updating scheme of normal magnetic components for bet-

ter stability, which provides a robust framework for handling complex MHD problems.

Moreover, by carefully utilizing the geometry of cell, we construct the cell-independent

least-squares formulation, which allows for direct implementation through matrix mul-
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Figure 3.14. Example 3.5: Rotated shock tube. The numerical solution along y = 0
at T = 0.08/

√
2 on N = 1024 meshes.
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Figure 3.15. Example 3.5: Rotated shock tube. The 1D cut of divergence with different
schemes at T = 0.08/

√
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Figure 3.16. Example 3.6: Cloud shock interaction. The numerical solution at T = 0.06
on N = 604640 meshes.

tiplication rather than solving linear systems repeatedly, making it particularly advan-

tageous for non-uniform or moving meshes.
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(a) LDF. (b) GDF.

Figure 3.17. Example 3.6: Cloud shock interaction. The divergence of different schemes
at T = 0.06.

Extensive numerical experiments conducted demonstrate that our proposed method

not only achieves the designed order of accuracy for smooth problems, but also exhibits

superior stability for problems involving strong discontinuities. Comparison between

the base DG, locally divergence-free DG, and our globally divergence-free DG methods

clearly illustrates that maintaining the divergence-free constraint at the global level is

crucial for long-time simulations and complex geometries.

Future work may include combining this framework with other structure-preserving

methods, such as the entropy stable method or the positivity-preserving method. Addi-

tionally, investigating the application of our method to more complex physical models

such as resistive MHD or Hall MHD could be considered.
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